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Supplementary Material
Procedure of PGE
The procedure of our approach is shown in Alg. 1 and Alg. 2.

Alg. 1 is the training procedure of the network. It can be described as the following four steps:

• randomly sample a batch of data : {𝒙𝑖 }𝑏𝑖=1.
• randomly sample a batch of vectors 𝒗 = {𝒗𝑖 }𝑏𝑖=1.
• form 𝒗− and compute 𝒗𝑟 = R(𝒗 |𝒗−).
• calculate the loss function with Eq. (8) and update the network.

We note that the network is trained to predict the direction where the logarithmic data density grows the most. We are more interested in

the direction of the predictions than the scale, so we choose cosine distance to select the top-𝑘 nearest projection vectors to form 𝒗− .
Alg. 2 is the sampling procedure of generated images. Unlike traditional Hamiltonian dynamics, we adjust the step size 𝜆 every fixed

number of epochs (line. 4 in Alg. 2). This enables faster sampling and does not get trapped in a local optimum. Every N rounds of sampling,

we perform an acceptance-rejection strategy to improve the fidelity and diversity of the generated images (line. 10-11 in Alg. 2).

Algorithm 1 Private Gradient Estimation

Input: Private data 𝒙 , training iterations 𝑇 , loss function L(𝜃 ; ·), DP mechanism R(·), randomized response parameter 𝑘 , learning rate 𝛾

1: Initialize 𝜃0 randomly

2: for 𝑡 ∈ [𝑇 ] do
3: Sample a batch of data {𝒙𝑖 }𝑏𝑖=1 from 𝒙

4: Sample a batch of vectors {𝒗𝑖 }𝑏𝑖=1 from a Gaussian distribution

5: Calculate loss L(𝜃 ; {𝒙𝑖 }𝑏𝑖=1, {𝒗𝑖 }
𝑏
𝑖=1
,R(·))

6: Update the network 𝜃𝑡+1 ← 𝜃𝑡 + 𝛾∇L
7: end for
8: return 𝜃𝑇
9: Function R(𝒗)
10: Initialize 𝒗𝑟 to be an empty set Φ
11: for each 𝒗𝑖 in 𝒗 do
12: Select top-𝑘 nearest vectors to 𝒗𝑖 from 𝒗 to form 𝒗−

13: Append 𝒗𝑖 to 𝒗𝑟 with probability of
𝑒𝜀

𝑒𝜀+𝑘−1 and append other elements in 𝒗− with probability of
1

𝑒𝜀+𝑘−1
14: end for
15: return 𝒗𝑟

Algorithm 2MCMC Sampling with Hamiltonian Dynamics

Input: Trained network 𝑞𝜃 (·), kinetic energy 𝐾 (·), step size 𝜆0, private data 𝐷 , sampling iterations𝑀 , acceptance-rejection iterations 𝑁

1: Initialize 𝒙 (0), 𝒄 (0) randomly

2: for𝑚 ∈ [𝑀] do
3: Initialize 𝑝 (𝑚) randomly

4: 𝜆 = 𝜆0 · (𝑀/𝑚)2
5: for 𝑛 ∈ [𝑁 ] do
6: 𝒄

(
𝑚 + (𝑛 + 1

2
)𝜆
)
= 𝒄 (𝑚 + 𝑛𝜆) − 𝜆

2
𝑞𝜃 (𝒙 (𝑚 + 𝑛𝜆))

7: 𝒙 (𝑚 + (𝑛 + 1)𝜆) = 𝒙 (𝑚 + 𝑛𝜆) + 𝜆∇𝒄𝐾 (𝒄
(
𝑚 + (𝑛 + 1

2
)𝜆
)
)

8: 𝒄 (𝑚 + (𝑛 + 1)𝜆) = 𝒄
(
𝑚 + (𝑛 + 1

2
)𝜆
)
− 𝜆

2
𝑞𝜃 (𝒙 (𝑚 + (𝑛 + 1)𝜆))

9: end for
10: Calculate the probability 𝑝𝑎 = min(1, 𝑞𝜃 (𝒙 (𝑚 + 𝑁𝜆))/𝑞𝜃 (𝒙 (𝑚)))
11: 𝒙 (𝑚 + 1) = 𝒙 (𝑚 + 𝑁𝜆) with probability 𝑝𝑎 and 𝒙 (𝑚 + 1) = 𝒙 (𝑚) with 1 − 𝑝𝑎
12: end for
13: return 𝒙 (𝑀)
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Proof of Theorem. 1
Recall the core thought of our PGE, we perturb the projection vector of log data density to achieve differential privacy. We aim to protect

the log data density (𝒗𝑇 )∗𝒗𝑇∇ log 𝑝 (𝒙), which guides the network learning. 𝒗∗ represents the inverse matrix of 𝒗. Given a batch of data

𝐷 = {𝒙𝑖 }𝑏𝑖=1 and projection vector 𝒗 = {𝒗𝑖 }𝑏𝑖=1, the probability of 𝒗∗
𝑖
𝒗𝑖∇ log 𝑝 (𝒙𝑖 ) is as follows:

𝑃𝑟 [𝒗𝑖 , 𝒙𝑖 |𝒗, 𝐷] = 𝑃𝑟 [𝒙𝑖 |𝐷] · 𝑃𝑟 [𝒗𝑖 |𝒗] · 𝑃𝑟 [𝒗− |𝒗𝑖 , 𝒗] · 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗
−] . (1)

After we achieve differential privacy by performing randomized response, the probability of the resulting output 𝒗∗
𝑖
𝒗𝑟
𝑖
∇ log 𝑝 (𝒙𝑖 ) =

𝒗∗
𝑖
R(𝒗𝑖 )∇ log𝑝 (𝒙𝑖 ) is as follows:

𝑃𝑟 [𝒗𝑖 , 𝒙𝑖 , 𝒗𝑟𝑖 , 𝒗
− |𝒗, 𝐷] = 𝑃𝑟 [𝒙𝑖 |𝐷] · 𝑃𝑟 [𝒗𝑖 |𝒗] · 𝑃𝑟 [𝒗− |𝒗𝑖 , 𝒗] · 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗

−] . (2)

This equation is obtained by Bayes’ theorem. In our approach, we sample data 𝒙𝑖 and 𝒗𝑖 uniformly, so that 𝑃𝑟 [𝒙𝑖 |𝐷] and 𝑃𝑟 [𝒗𝑖 |𝒗] are 1/𝑏.
Given 𝒗 and 𝒗𝑖 , we select the top-𝑘 vectors from 𝒗 that are similar to 𝒗𝑖 to form 𝒗− . This process is fixed, so 𝑃𝑟 [𝒗− |𝒗𝑖 , 𝒗] = 1. Following the

above analysis, we have,

𝑃𝑟 [𝒙𝑖 , 𝒗𝑖 , 𝒗𝑟𝑖 , 𝒗
− |𝒗, 𝐷] = 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗

−] · 1/𝑏2 . (3)

Given a image 𝒙𝑖 and its projection vector 𝒗𝑖 , we defineM(𝒗𝑖 , 𝒖𝑖 ) = R(𝒗𝑖 ) · H (𝒖𝑖 ) = 𝒗𝑟
𝑖
· ∇ log 𝑝 (𝒙𝑖 ). In our case, we assume that R and

H are independent of each other, so 𝑃𝑟 [M(·)] = 𝑃𝑟 [R(·)] · 𝑃𝑟 [H (·)].

Lemma 1. For any two different training data 𝒙𝑖 , 𝒙 𝑗 and their projection vectors 𝒗𝑖 , 𝒗 𝑗 , the mechanismM satisfies

𝑃𝑟 [M (𝒗𝑖 , 𝒙𝑖 ) ∈ 𝑂] ≤ 𝑒𝜀 · 𝑃𝑟
[
M

(
𝒗 𝑗 , 𝒙 𝑗

)
∈ 𝑂

]
, (4)

where 𝑂 is a possible output ofM.

Proof. From the definition of randomized response mechanism, we can know the probability that R(·) takes as input 𝒗𝑖 and returns 𝒗𝑖
is the largest for 𝑒𝜀/(𝑒𝜀 + 𝑘 − 1) and that takes as input 𝒗 𝑗 and returns 𝒗𝑖 is the smallest for 1/(𝑒𝜀 + 𝑘 − 1). We sample 𝒙𝑖 uniformly, so
𝑃𝑟 [H (𝒙𝑖 )] = 𝑃𝑟 [H (𝒙 𝑗 )]. Then we have

𝑃𝑟 [M (𝒗𝑖 , 𝒙𝑖 ) ∈ 𝑂] = 𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑜 ] · 𝑃𝑟 [H (𝒙𝑖 )]
≤ 𝑒𝜀 · 𝑃𝑟

[
R(𝒗 𝑗 ) = 𝒗𝑜

]
· 𝑃𝑟 [H (𝒙𝑖 )]

= 𝑒𝜀 · 𝑃𝑟
[
R(𝒗 𝑗 ) = 𝒗𝑜

]
· 𝑃𝑟 [H (𝒙 𝑗 )]

= 𝑒𝜀 · 𝑃𝑟
[
M

(
𝒗 𝑗 , 𝒙 𝑗

)
∈ 𝑂

] (5)

□

Lemma 2. The mechanismM satisfies 𝜀-DP.

Proof. Consider two adjacent datasets 𝐷 = {𝒙𝑖 }𝑏𝑖=1, 𝐷
′ = {𝒙′

𝑖
}𝑏
𝑖=1

that differ only by one data and their projection vectors 𝒗 = {𝒗𝑖 }𝑏𝑖=1, 𝒗
′ =

{𝒗′
𝑖
}𝑏
𝑖=1

. The data are independent of each other so we have

𝑃𝑟 [M(𝒗, 𝐷) ∈ 𝑂] = 𝑃𝑟
[
M

(
𝒗 ∩ 𝒗′, 𝐷 ∩ 𝐷′

)
∈ 𝑂

]
· 𝑃𝑟 [M (𝒗𝑖 , 𝒙𝑖 ) ∈ 𝑂]

≤ 𝑒𝜀 · 𝑃𝑟
[
M

(
𝒗 ∩ 𝒗′, 𝐷 ∩ 𝐷′

)
∈ 𝑂

]
· 𝑃𝑟

[
M

(
𝒗′𝑖 , 𝒙

′
𝑖

)
∈ 𝑂

]
= 𝑒𝜀 · 𝑃𝑟 [M(𝒗′, 𝐷′) ∈ 𝑂],

(6)

where 𝑂 is a set of possible outputs. From line 2 to line 3 is based on Lemma. 1. □

Our approach trains the network with datasets 𝐷 and projection vectors 𝒗. It is necessary to calculate the joint probability to clarify the

association of each vector. Next, we prove that our PGE satisfies differential privacy based on Lemma. 2.

Theorem 1. Our PGE satisfies 𝜀-DP.
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Proof. Consider two adjacent datasets 𝐷 = {𝒙𝑖 }𝑏𝑖=1 and 𝐷
′ = {𝒙′

𝑖
}𝑏
𝑖=1

and their projection vectors 𝒗 = {𝒗𝑖 }𝑏𝑖=1, 𝒗
′ = {𝒗′

𝑖
}𝑏
𝑖=1

. We define
F (𝒗𝑖 , 𝒙𝑖 ) = 𝒗∗

𝑖
R(𝒗𝑖 )∇ log𝑝 (𝒙𝑖 ), then according to Eq. (2) and Eq. (3), we have

𝑃𝑟 [F (𝒗, 𝐷) ∈ O] =
∏
𝑖

𝑃𝑟 [𝒗𝑖 , 𝒙𝑖 , 𝒗𝑟𝑖 , 𝒗
− |𝒗, 𝐷]

=
∏
𝑖

𝑃𝑟 [R(𝒗𝑖 ) = 𝒗𝑟𝑖 |𝒗
−] · 1/𝑏2

=
∏
𝑖

𝑃𝑟 [R(𝒗𝑖 ) · H (𝒙𝑖 ) ∈ 𝑂 |𝒗−] · 1/𝑏2

= 𝑃𝑟 [M(𝒗, 𝐷) ∈ 𝑂] · 1/𝑏2

≤ 𝑒𝜀 · 𝑃𝑟 [M(𝒗′, 𝐷′) ∈ 𝑂] · 1/𝑏2

= 𝑒𝜀 · 𝑃𝑟 [F (𝒗′,D′) ∈ O],

(7)

where O is the range of output of F , from line 4 to line 5 is based on Lemma. 2 and from line 5 to line 6 is the inverse derivation of line 1 to line
4. We note that as long as F (𝒗, 𝐷) satisfies differential privacy, the trained probabilistic model and the images generated with it also satisfy
differential privacy according to the post-processing property of differential privacy. So our PGE satisfies 𝜀-DP. □

Covergence Analysis
We begin by stating that most of our analysis process is based on [Bottou et al., 2018]. We consider the worst-case scenario: the gradient of

the randomized response algorithm when the outputs and inputs are different is exactly the opposite of the gradient when they are the same.

In this case, the R(·) algorithm performing on the label is equivalent to performing on the gradient. To make the analysis easier and more

understandable, we rewrite 𝑞𝜃 (·) as 𝑞(𝜃 ; ·) and follow five standard assumptions same as [Bottou et al., 2018],

(1) | |∇𝑞(𝜃 ; ·) − ∇𝑞(𝜃 ′; ·) | |2 ≤ 𝜅 | |𝜃 − 𝜃 ′ | |2;

(2) 𝑞(𝜃 ; ·) ≥ 𝑞(𝜃 ′; ·) + ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2

𝑐 | |𝜃 − 𝜃 ′ | |2
2

(3) ∇𝑞(𝜃 ; ·)𝑇E𝑥 [𝑔(𝜃 ; 𝒙)] ≥ 𝜇 | |∇𝑞(𝜃 ; ·) | |22;
(4) | |E𝒙 [𝑔(𝜃 ; ·)] | |2 ≤ 𝜇𝐺 | |∇𝑞(𝜃 ; ·) | |2;
(5) V𝒙 [𝑔(𝜃 ; ·)] ≤ 𝐶 + 𝜇𝑉 | |∇𝑞(𝜃 ; ·) | |22,

(8)

where 𝜃 and 𝜃 ′ are the weights of model 𝑞, ∇𝑞(𝜃 ; ·) is the true gradient, 𝑔(𝜃, ·) is the gradient we computed, E[·] is the symbol for mean

calculation, V[·] is the symbol for variance calculation and 𝜅, 𝑐, 𝜇, 𝜇𝐺 , 𝜇𝑉 ,𝐶 are non-negative constants.

Lemma 3. For any two weights 𝜃 and 𝜃 ′, the difference of the objective function 𝑞(𝜃 ) − 𝑞(𝜃 ′) is limited by the distance between the weights.

𝑞(𝜃 ; ·) ≤ 𝑞(𝜃 ′; ·) + ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2

𝜅 | |𝜃 − 𝜃 ′ | |2
2
. (9)

Proof. Consider any path 𝑠 from 𝜃 ′ to 𝜃 , we have

𝑞(𝜃 ; ·) − 𝑞(𝜃 ′; ·) =
∫
𝑠

∇𝑞(𝑥 ; ·)𝑇𝑑𝑥

=

∫
1

0

𝜕𝑞(𝑠 (𝑡); ·)
𝜕𝑡

𝑑𝑡

=

∫ 𝜃

𝜃 ′
∇𝑞(𝑠 (𝑡); ·)𝑑𝑠 (𝑡)

=

∫ 𝜃

𝜃 ′
∇𝑞(𝜃 ′; ·)𝑑𝑠 (𝑡) +

∫ 𝜃

𝜃 ′
[∇𝑞(𝑠 (𝑡); ·) − ∇𝑞(𝜃 ′; ·)]𝑑𝑠 (𝑡)

≤
∫ 𝜃

𝜃 ′
∇𝑞(𝜃 ′; ·)𝑑𝑠 (𝑡) +

∫ 𝜃

𝜃 ′
𝜅 | |𝑠 (𝑡) − 𝜃 ′ | |2𝑑𝑠 (𝑡)

= ∇𝑞(𝜃 ′; ·)𝑇 (𝜃 − 𝜃 ′) + 1

2

𝜅 | |𝜃 − 𝜃 ′ | |2
2
.

(10)

□

The inequality is based on assumption (1).

Lemma 4. For any weight 𝜃 , the distance between 𝑞(𝜃 ; ·) and the minimum value 𝑞(𝜃∗; ·) is limited by ∇𝑞(𝜃 ; ·) as follows

𝑞(𝜃 ; ·) − 𝑞(𝜃∗; ·) ≤ 1

2𝑐
| |∇𝑞(𝜃 ; ·) | |2

2
. (11)
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Proof. According to assumption (2), we can regard the right side of the inequality as a quadratic function on 𝜃 . When 𝜃 = 𝜃 ′ − 1

𝑐 ∇𝑞(𝜃
′
; ·),

it takes the minimum value 𝑞(𝜃 ′; ·) − 1

2𝑐 | |∇𝑞(𝜃
′
; ·) | |2

2
. Substituting it into assumption (2) and letting 𝜃 = 𝜃∗, we can get Lemma 4. □

According to the assumptions before (We consider the worst-case scenario: the gradient of the randomized response algorithm when the

outputs and inputs are different is exactly the opposite of the gradient when they are the same.), we consider the update at step 𝑘 as

𝜃𝑘+1 = 𝜃𝑘 − 𝛾 · R(𝑔(𝜃𝑘 , ·)), (12)

where R(𝑔(𝜃𝑘 , ·)) will return 𝑔(𝜃𝑘 , ·) with the probability of 𝑒𝜀/(𝑒𝜀 + 𝑘 − 1) and return −𝑔(𝜃𝑘 , ·) with the probability of 1 − 𝑒𝜀/(𝑒𝜀 + 𝑘 − 1).
Based on Lemma 3, we have

𝑞(𝜃𝑘+1; ·) ≤ 𝑞(𝜃𝑘 ; ·)−𝛾∇𝑞(𝜃𝑘 ; ·)𝑇R(𝑔(𝜃𝑘 , ·)) +
1

2

𝜅𝛾2 | |R(𝑔(𝜃𝑘 , ·)) | |22︸            ︷︷            ︸
| |𝑔 (𝜃𝑘 ,· ) | |22

.
(13)

Taking the expectations on both sides gives

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃𝑘 ; ·)] ≤ −𝛾∇𝑞(𝜃𝑘 ; ·)𝑇E[R(𝑔(𝜃𝑘 , ·))]

+ 1

2

𝛾2𝜅 E[| |𝑔(𝜃𝑘 , ·) | |22]︸            ︷︷            ︸
| |E[𝑔 (𝜃𝑘 ,· ) ] | |22+V[𝑔 (𝜃𝑘 ,· ) ]

. (14)

According to our pre-assumed scenario,

E[R(𝑔(𝜃𝑘 , ·))] =
𝑒𝜀

𝑒𝜀 + 𝑘 − 1𝑔(𝜃𝑘 , ·)

+ (1 − 𝑒𝜀

𝑒𝜀 + 𝑘 − 1 )𝑔(𝜃𝑘 , ·)

= ( 2𝑒𝜀

𝑒𝜀 + 𝑘 − 1 − 1)︸              ︷︷              ︸
𝜁

𝑔(𝜃𝑘 , ·) .
(15)

Combined with assumptions (3), (4) and (5), we can get

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃𝑘 ; ·)] ≤ −𝛾𝜁∇𝑞(𝜃𝑘 ; ·)𝑇E[𝑔(𝜃𝑘 , ·)] +
1

2

𝛾2𝜅 ( | |E[𝑔(𝜃𝑘 , ·)] | |22 + V[𝑔(𝜃𝑘 , ·)])

≤ −𝛾𝜁 𝜇 | |∇𝑞(𝜃 ; ·) | |2
2
+ 1

2

𝛾2𝜅 (𝐶 + (𝜇2𝐺 + 𝜇𝑉 ) | |𝑞(𝜃𝑘 ; ·) | |
2

2
)

= (−𝛾𝜁 𝜇 + 1

2

𝛾2𝜅 (𝜇2𝐺 + 𝜇𝑉 ))︸                           ︷︷                           ︸
𝜏

| |𝑞(𝜃𝑘 ; ·) | |22 +
1

2

𝛾2𝜅𝐶.

(16)

If the algorithm converges, it takes −𝛾𝜇 + 1

2
𝛾2𝜅 (𝜇2

𝐺
+ 𝜇𝑉 ) < 0. According to Lemma 4, we can further get

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃∗; ·)] − E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)] ≤ 𝜏 | |𝑞(𝜃𝑘 ; ·) | |22 +
1

2

𝛾2𝜅𝐶

≤ 2𝜏𝑐E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)] +
1

2

𝛾2𝜅𝐶.

(17)

Eq. 17 is transformed to obtain

E[𝑞(𝜃𝑘+1; ·) − 𝑞(𝜃∗; ·)] +
𝛾2𝜅𝐶

4𝜏𝑐
≤ (2𝜏𝑐 + 1) (E[𝑞(𝜃𝑘 ; ·) − 𝑞(𝜃∗; ·)] +

𝛾2𝜅𝐶

4𝜏𝑐
) (18)

We know 𝜏 < 0, so 2𝜏𝑐 + 1 < 1. The algorithm converges when we guarantee that 𝜏 < 0. The error from the minimum 𝑞(𝜃∗; ·) is −𝛾
2𝜅𝐶
4𝜏𝑐 .

Experimental Results under Small 𝜀
We conduct experiments under small 𝜀 to verify the effectiveness of our method here. The results are shown in Tab. 1. We can find that even

under the condition of small 𝜀, our method still has outstanding performance.

Discussion of Residual Structure
We use a residual structure in our framework. Here, we conduct experiments on two datasets (MNIST and FMNIST) to explore the role of

this structure. The results are shown in Tab. 2. We capture the diversity of the generated samples through the metric of entropy. We find that

having this structure improves the diversity and data utility of the generated samples.
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Table 1: Classification accuracy comparisons on image datasets under small privacy budget 𝜀.

MNIST FMNIST
𝜀 0.2 0.6 0.8 0.2 0.6 0.8

DataLens 0.2344 0.4201 0.6485 0.2226 0.3863 0.5534

PGE 0.4702 0.7462 0.9211 0.4582 0.6954 0.8002

Table 2: Classification accuracy and entropy comparisons on image datasets under small privacy budget 𝜀.

Acc./Entropy MNIST FMNIST

With Res. 0.9751/3.21 0.8934/3.23
Without Res. 0.9543/3.14 0.8761/3.11

Extended Visualization Results
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Figure 1: Visualization results of MNIST and FashionMNIST with 28×28 resolution under different privacy budget.
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Figure 2: Visualization results of CelebA with 64×64 resolution under different privacy budget.


