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A Organization of the supplementary

The organization of this supplementary document is as follows: In Section[Bl we lists definitions of
the notations used in the proofs; Section[Cl presents the theorems and propositions referenced in this
study and their proofs; In Section [D] the numerical experimental results related to the discussion
in this study are provided; In Section [El the backpropagation algorithm referred to in Section [6] is
presented. In addition to this material, the code used in the numerical experiments is also submitted
as supplementary material.

B Notations

Table [llists the notations and definitions used in the proofs of Section

C Proofs

C.1 Proofs for Section 3

In this Section, we provide propositions and their proofs, as referred to in Section

Lemma C.1. A variational representation of a-divergence is given as

1 1 1
D.(Q|IP) = 2&%{@(1—04) - —Eqgl¢ ] -——FEp [QSIQ]}, 27

o 1l -«

where supremum is considered over all measurable functions with Ep[¢'~%] < oo and Eg[¢~°] <
00. The maximum value is achieved at ¢ = dQ/dP.

proof of LemmalCIl Let fo(t) = {t'17* — (1 —a) -t — a}/{a(a — 1)} for a # 0, 1, then

o[ (22)] - o [ () -4 (9) ]
1

b | ()

= Da(Ql|P). (28)

Note that, the Legendre transform for g, (z) = x*~%/(1 — ) is obatined as

1 1
+=+
(0%

P

l—«

« « 1—1
= o, 2

In addition, note that, for the Legendre transforms of any fuction h(z), it hold that
ﬂymwrzcwﬂ%)am (h(z) +C-t+ D} =h*"(z—C)—D.  (30)
Here, A* denotes the the Legendre transform of A.
From 29) and (30), we have
1 1 1"
{ga(t) + ot }
Q@

(—a) -«

- o) o

1 1
= g (l-—at)+ ——
a%( at) +

fa(®)

a—1
1 « 1— 1
- = l—at) e by~
a{a—l( at) }+ -1
1 1
- Tj*ﬂ*aﬂ1i+a_1 31)



Table 1: Notations and definitions used in the proofs

Notations | Definitions, Meanings

1(+) A propositional function: 1(cond) = 1 if cond is true, and
1(cond) = 0 otherwise.

id The identity function of a set A: id4(x) = 1if x € A, and
ida(x) = 0 otherwise.

|- 1l the Euclidean norm.

O (z) A term such that lim,_,o O(z)/x = C, < oo, where C,, is a scalar value
determined by a.

O(x) A term such that lim,_,o O(z)/x < C, where C is constant.

f<g A relationship between two functions f and g such that
limsup,,_, f(n)/g(n) < cc.

P<q@Q P is absolutely continuous with respect to ().

P,Q A pair of probability measures with P < @ and Q < P.

p A probability measure with P < g and QQ < p.

% The Radon—Nikodym derivative of P with respect to Q.
When %(x) = 0, this is defined as %(x) =0.

X A random variable with a probability distribution .

X~ p A random variable obtained from X by changing the probability
distributions from i to P: P(Xp < x) = (X < x), Vx € R9,
Intuitively, an observed value of X in P.

X~ A random variable obtained from X by changing the probability
distributions from i to Q: P(Xg < x) = u(X < x), ¥x € R%
Intuitively, an observed value of X in Q).

X (V) N i.i.d. random variables from p: X(V) = {X! X2 ... XN}, X* LS

ngN) Random variables obtained from X (™) by changing the probability
distributions from u to P: XgDN) ={XLp5, X2, ..., XN} pu(XE < x),
vx € R%, (1 <i<N). Intuitively, observed values of X®) in P.

X(QN) Random variables obtained from X (V) by changing the probability
distributions from y to Q: XSV) ={XLo, X2, .., X0} u(XF < x),
vx € RY, (1 <i < N). Intuitively, observed values of X®) in Q.

p) The (empirical) distributions of X;N): P (z) = L3 X p = a).

QW) The (empirical) distributions of XEQN): QWM (z) = £ 3, 1(XL, = ).

T The set of functions defined in Theorem

U= {U,...,Un} || Unobserved random variables.

V ={V,...,V,} || Observed random variables.

XA The domain of variables A.

G =Gvu The causal graph for V U U.

Pa(A)g All the parents of the observed variables in G for for A C V.

Ch(A)q All the children of the observed variables in G for for A C V.

An(A)g All the ancestors of the observed variables in G for for A C V.

De(A)g All the descendants of the observed variables in G for for A C V.

W, The Wasserstein distance of order p.
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By differentiating f, (t), we obtain

flt) =~ 4 =, 32
(0% «
Thus, we have
/ _ 1,1

Eqlfu(o)] = Fo |- 307 + 3. 63)

From (@1) and (32)), we obtain
1 1 1 1-3 1
Ep [f2(/4@)] = Ep 1_{1_a (‘¢“+a)} _%a_ll
— 1 l—« 1
= FEp L_O‘QS +0¢—1:|' (34)

In additionm, from (33) and (34), we see for both Ep[¢! =] < oo and Eg[¢~*] < oo to hold is
equivalent for both Ep [f%(f.(¢))] < oo and Eq [f/,(¢)] < oo to hold.

Finally, substituting (33) and (34) for (I0), we have

Do (QIIP) = Zg%{EQ [fo(D)] = Ep[fa(folo)]}
1 1 1 1
—_ E -« | - E - o l-a
e [ae ] e [ae )
1 1 1
— - _°FE ol _ _ - R 11—« .
ngo{a(l—a) o Q[¢ ] l—« P[¢ ]}
This completes the proof. O
Proposition C.2. «a-divergence can be written as follows:
1 1 1
D, P) = - - __FE aT) _ E (a—1)-T 35
(QIIP) T:%ggR{a(l—a) @ o [e™"] 11—« P[e ] ’ (35)

where supremum is considered over all measurable functions T : R? — R with Ep[e!®~)7T] < 0o
and Eqle* ™) < oo. The equality holds for T* satisfying

dQ g
proof of Proposition[C2] Substituting e~ for ¢ in 7)), we have
1 1 1
Da P = - - F -« _ ____F 11—«
(QIIP) Zg%{a(l_a> SEolo™] - Erle ]}
1 1 —a 1 l—«a
pﬁiR{M1—a> R AL w2 S LC
= sup _ lEQ [ea'T] — LEp [e(a_l)'T} . (37)
rrise (ol —a) o -«
Finally, from Lemmal[C] the equality for (3Z) holds if and only if
dQ -
This completes the proof. O
Proposition C.3. ForT € T, let
1 1
lo X, Xup;T) = aea'ﬂx%ﬂ + 1fem—l)‘T(Xw). (39)

Then the optimal function T* for infp.pa_g lo (X, Xop;T) is obtained as T* = —log dQ/dP,
pu-almost everywhere.

14
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proof of Proposition From the definition for X, and X p, we see

ea'T(XNQ:x) — ea~T(X:x) . @(X),
dp
and
e(a—l)-T(X~p:x) _ (a 1) T(X=x) , dP( )
dp
Subsequently, we obtain

1 _ d@ 1 _ dP
o Xwo=%,Xp=xT) = = . e@TX=x)  Z% = elam D) T(X=x) 22 gy
Ot( Q X, P X5 ) o € dﬂ(X)+ 1—a € dM (X)

Note that, from Jensen’s inequality, it holds that
log(p- X +¢q-Y) > p-log(X) +p-log(Y), (40)
for X, Y > 0 and p,q > 0 with p + ¢ = 1, and the equality holds when X =Y.

From this equation, by letting X = e 7(X=%). %(x), Y = elo-DTX=x). dP( ),p=1—aand
q = a, we observe that

1

10g(p-X—|—q~Y):log(M

AoXeo =x,Xop=x;T) |,
= (X =x.Xop =xiT) )

aT(X=x) . %(X) _

and log( (1 a) Aa(Xg =x XNPIX'T)) is minimized when e
eloa—1) T(X=x) . (x) p-almost everywhere.

Then, we see that infr.pa g lo(Xog = x,Xop = x;T') is achieved at e T = dQ

everywhere. Hence, we have T* = —log d@)/dP, pi-almost everywhere.

, p-almost

O

Proposition C.4. For T € T, let TY* = T 4 k. Then the optimal function T* for
infrer lo XNQ,XNP;TH“) is satisfying that Ep [e *} = 1, where I, (Xog, Xp;T) is de-
fined as

proof of Proposition From the definition for X, and X p, we see

(O T Xg=x) _ ot X AQ ) ek et Q)
du du
and

ela=1) T(X~p=x) :e(a—1)~T+k(X=x) . E(X) — pla=1)k | (a=1)T(X=x) dP( ).
du dup

Subsequently, we obtain

d d
lo(Xng =%, Xop =x;T) = ek exTX=0). ﬁ(x) + ek e TX=0) %(X).

For Jensen’s inequality (@0), let X = e“'k~ea'T(X:x)~%(x), Y = ela=Dk gla-1) T(X=x), ‘éﬁ( x),
p=1—aand g = a. Then, [, (XNQ, X p; T*k) is minimized when e® %~ . @ T(X=x) . ‘fg( X) =

a—1)-k, a—1)-T(X=x) ,

el el Z—i(x), u-almost everywhere.

Then, we see

67]6* dQ( ) T(x) . Q(X)
dp dp
By integrating both sides of the above equality over R? with 1, we obtain
—k. — EP [BiT] .
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From this, we have
ek . Ep [e_T] =1.
Now, since T, = T + k., we see

Ep [e—T*] =Ep [6_T+k*] _ ek* -Ep [C_T] - 1.
This completes the proof. O

Proposition C.5. For a fixed point xo € R?, suppose that %(xo) > 0 and %(xo) > 0. Fora

constant L > 0, let I, denote an interval [—L — log %(xo), L —log %(Xo)]. Subsequently, let
f: I, = R be a function as follows:

49 L ea-ne 42

FE) = 5ot e x0) +

@ du 11—« du (x0)- @1

-« «
Let 3 =e L. {%(xo)} {Cép (xo)} . Then, f(t) satisfies f"(t) -t> > % -t forall t € I,

1- a
thar s, (1) i ol <2 {0} " {400} hotas
forallt € I, and f(t) is minimized at t, = 1og o 9 (xq).

proof of Proposition By repeating the derivative of f(t), we obtain
4Q oo AP

! — ort _ 42
and dQ P
" — ot | 1— C(a=1)t B ) 4
70 D0+ 1-a)-elee. g @)
First, we see that f”/(t) > % holds for all ¢ € Ir,.. From (@3], we have
dQ dP
1 > Lo (te—L) | 1 — (a 1)-(t«+L) |
) = ae 200+ (1-a): pae
dQ dP
> Lo~ L oty 1— o (a=1)-L  _(a—=1)t.
> a-e du() (I-a)-e e du(X)
40 AP
> —L ot 11— —L  _(a—=1)t. .
> o —dﬂ x)+(1—-a)-e e 0 (x)
d dP
= e L. {a St %(X) +(1—a)- et d,u(x)} . (44)
Note that, from (@0}, we see
p-X+q-Y>p-XP.YY 45)

for X, Y > 0 and p,q > 0 with p + ¢ = 1, and the equality holds when X = Y. By letting
X = >t . %(x), Y = ela=Dtx . %(x), p = a, and ¢ = 1 — a in the above equality, we obtain

P+ (-t g > feor flff< o) foemne ARV

e ) )
- ) () ()

e ()

Thus, from {@4) and @6), we see f”(t) > % holds for all ¢t € Iy,.

a- et dQ
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Next, we obtain | f/(¢)| < 2eE { Q( 0)}17 {dp(xo)}a. From (#2), we have

dp
dQ dP
"(¢ < a-(t«+L) | (a—=1)-(tx—L) .
THCIEE PHORE o
d dP
= ot el g(X) + ela Dt p(1=a)L @(X)
d dP
< eF {ea't* . g(x) +ele= Dt d,u(x)}
= eL

{Be} P+ {Pix >}1aﬁfj<x>
d

- ) o ) ()]

Here, we see f/(t) < 2-e {dQ (xo)}lia {%(xo)}a.

The rest of the proposition statement follows from Lemma[C3l
This completes the proof. O

Corollary C.6. For N fixed points {xi}ﬁvzl C R4, suppose that @(xz) > 0 and & (X,) >0
(1 <V < N). Fora constant L > 0, let I denote an interval [—L — log & 5 9 (x;), L — log o 9 (x;)).
Subsequently, let f(N) Il xI? x -+ x Iiv — R be a function as follows:

11 Y dQ 1

(M (t) = (V) - - at; - - a=1)t; 27
FOE) = F (b, ) QN;B 2 )+ NZ Xi), (48)
and let

A1, (dQ eqap, \°

2_N.1£1_<HN{6 {dﬂ(xz)} {du(xz)} } (49)
Then, f(N)(t) satisfies

o2 fN A
T2 f(N)(g) 4 — N > A 2
EVEE) b= D it 2 (50)
1<i,j<N

that is, f(N)(t) is A-strongly convex.

-« a
In addition, let D; = 2 - e* - {dQ (xl)} {Q(xi)} . and let D = max {Dy, Ds, ..., Dy}>
Then,

P 2
VMt (N) (¢ M), ..., — Mg < D?, 51
Vs U LUCRPL O (5
forallt € I} x I? x - x IL , and fN) () is minimized at t, = (t1,42,...,tY) = (= log %(}QL
—log dp(XQ) 10g ar (XN))
proof of Corollary[C6l Let
1 . dQ 1 P
it _ —pat % i 7((1—1)'t.7 i 52
i) = et By 1 Lo L 52
11—« [eY
and let 2 = e L. {dQ( )} {ff: (xl)} . From Proposition [C3] for each 1 < i < N,
fz( ) satlsﬁes that f/'(t) > & -t and f/(t) < D; holds for all t € I}, and f;(t) is minimized at

log o (xz)
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Note that,

2 2 2
82212’51 f(N)(t) 7212,52 f(N) (t) f)taltN f(N) (t)
N N
V2N () = 7 /O G /)
2 : 2 2
gt V) g FA() s f ()
~ o f(t)
w0
= (53)
~  fr(tn)
From this, we see
LN
T 72 ¢(N) . _ = Mgy . 42
SRS DI O
N
1 A o
> N4t
> 2yt
N
— Ziﬁﬁ
‘N 2 !
=1
N
A
> 242
> ;2 :
A2
= 2.t 54
el (54
In addition, since f(M)(¢) = & Zfil fi(t;), we have
2 9 9 9 ?
V<N>tH = [ ==/™), = fM),..., =—— M) )| ,
IVt o f®), 5T @), o N )
1 1 1 ?
= |(F st e - Fitew) )
1 1 1 2
< — Di,— Dy, ..., — -
< (N DlvN Do, N DN)
2
1 1 1
< —.D,—-D,...,—-
< (N D’N D, "N D>
= D% (55)
and fV)(t) is minimized at t, = (t1,¢2,...,tN) = (—log%(xl),—log%(xﬂ,...,
flogg—g(x]v)).
This completes the proof. O
Lemma C.7. ForT € T, let
Poxioy = L eTxiy) (a—1)T(XLp)
loz(XNQvXNPvT) - a e Q +1—O¢ e P, (56)
1 1
La(@ PiT) = —-Eq [ex 7] +1——Ep [l 7], (57)
and let
lo(XE ,, Xt = inf 1L,(XL,, XL T), 58
(XLo ) L (XLo piT) (58)
Lo(Q,P) = inf La(Q,P;T), (59)
TRISR

18
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where the infimums of (58) and (59) are considered over all measurable functions with T : R4 — R
with Eple(*=VT] < 00 and Eg[e*™] < oc.

In addition, let

LV(@P) =  inf L&N)<Q, P:T). (61)
T:Re—R

Then, it holds that

B, [E(Q, P)| = By [la(XLg, XEp)] = La(Q. P). (63)

proof of LemmalC.Zl We first show the last equality in (63) holds. Now, we consider the following
integral:

E[a(ll_a)—la( ~Q» Lp)} = /{a(ll_a)—l( ~o XL )}du
- /{a(ll_a)T:DggiRza(xiQ,xip;T)}dﬂ

1 ) )
= sup — — (X" 5, XY, ;T}d,u.
/T:]RdHR { a(l —a) ( @ riT)
(64)

Let T* be the opimal function for (33) in Lemma Let Ty, = —logdQ/dP + 1/k, then from
Proposition[C.3l we have

1 X o X T, inf XE o XE T,
k;nolol( ~Q ~P k) T:HIQIdlA)]Rla( ~Q@ P ) (65)

From this, we obtain

dm B iy el ~Q’X~P7Tk>] = al—a) A F lle(Xag Xopi Th)]

1 , .
= - inf loc X! ) Z\/ 5 T
a(l —a) TRISR (X~a PiT)

1 , ,
= E T - la Xz 7XL aT :
o (B[ - eode X |)
(66)
Now, from Lemma|C.2| we see
b xio x| = s I (X, X T
o(l —a) ~QrEP B T:E{ggﬂk o(l —a) ~e Tl
o lerxig o L enrixi,)
al—a) « 11—«
- ()Y e (k)
 a(l—a) dpP 1—a \dP '
(67)
Let ¢(X) denote the term on the right hand side of (67). Then, we observe that
1 i ,
m — Lo ~Q7XZ~P;T)’ < @(X) and E[p(X)] < oo

19
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That is, we see that the following sequence is uniformaly integrable for p:

1 N
{ (1 O[) la( NQ) ~P> k)}

k=1
Thus, from the property of the Lebesgue integral (23, P188, Theorem 4), we obtain

. 1 i i _ o 1 _ i i
Bt { Sy K X T | = i B (K X
(63)
Finaly, from (66) and (68)), we have
L BllXigXip)] = B 1a(Xig.XLp)
a(l —a) R et la(l—a) Tr@TP

1
= E S 7—l X’L T
Lo (o (X X D)}

. 1 i i ]
= # | { gy ~Q’X~P’T’“)}_
= Py X X T )
) _
- E|l——— -1, X . T N ((4161)
T:HS{gIlR{ [0‘(1_@) (& NQ7 ~r )}
1

= ———— inf XLy, XLpT
a(l—a) TRISR (X~a piT)

1
= — —L,(Q,P). 69
Here, we see
E [la(XLq, XLp)] = La(Q, P). (70)
Next, we show the first equality in (&3) holds. Note that, it holds that
| N
N i=1 Ti:ﬁg}ifamla( LNQ’XLP;T TulgI}iR Zl NQ’ XpT) < Zl NQ’ ~PaT*)

' 1)
Since inf7, .ga g lo (XNQ, X pi 1) = 1o(X NQ, X!, p;T.) from Proposition[C3] we have

Zz Loy XipiT) < inf Zz Lo Xp T <f21 Lo Xp T7).

(72)
Therefore,
1 & 1 Y
inf — Y I, X T = — Y 1 (XL, XE o TH). 73
T:HE{!I%RN; (X* ~Q pT) = N; (XZg pT") (73)
From this, we see
1 N
7 (N) _ : - 7 i .
La (Q)P) - T:HIEI;}E)R N ;IQ(XNQ7 NP’T)
N
- NZla( Lo X T)
=1
1 N
- Nzla( ?\JQa rZ\/P)
=1
= la(XLg, XLp). (74)
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Subsequently, by integrating both sides of the above equation, we have
E[LN(Q, P)] = Blla(XLg. XLp)|. 75)

Here, we have (&3) from (Z0) and (73).
To see (62), note that, it holds that

M@ PiT) = NZ! (XLg XLpi T)- (76)

By integrating both sides of the above equation, we have

Epgm;an]: ﬂ;ﬁidw@ﬂwfﬂ

- AS e

= Bfla(XLg, XLpiT)]

= Lo(Q,P;T). (77
Here, we see that (62)) holds.
This completes the proof. O

Proposition C.8. Let Ty(x) : R? — R be a function such that the map 0 = (01,02, ...,0,) € © —
Ty (x) is differentiable for all § and ji-almost every x € R, Assume that, for a point § € ©, it holds
that Ep[e®=DT6(X)] < 00 and Eg[e®T6X)] < oo, and there exist a compact neighborhood of the
0, which is denoted by By, and a constant value L, such that | Ty (x) — Ty(x)| < L||v» — 0| holds.

Then, for la(XiNQ, X p;T) and Ly (Q P;T), L, (Q, P;T) in Proposition[C_I2] it holds that
E [V La(@™), PN Ty)|g—g| = E[Vola(XLo XLpi To)lg—g| = Vo La(@: i To)los.

(78)
Here, E[ - | denotes Ep[Eqg| - ).

proof of Proposition[C.8 We now consider the values, as 1) — 0, of the following two integrals:

L o7 1 Ty }
— ¢ =€V — —e®0 5 dQ), (79)
[ — 9 { a a
and
/; Le(afl)'Tw _ Le(afl)'Té dP. (80)
=0 |1-a 1—a
Note that, it follows from the intermediate value theorem that
1 1
Ze¥T — Ze®Y| =[x —y| - e @l (34 € 0,1)). (81)
« «

By using the above equation as - = T, (x) and y = Tj(x) for the integrand of (79), we see

‘ { 1 e Ty(x) _ 1 Z e Tg(x) H
I — 0l a
1

= gy Bkl 01T (05 (Ty () ~T5))} (3 €[0,1])

- Wl_mTw(X) CTy(x)| - e (TeGO=To(x) | o Ty ()

< Hw1_9|Tw(X) — Ty(x)| - eI T CI=T5 (0 . o T5()

< L-eoblv=bll | gaTs(x) .
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sso  forall ¥ € Bg.
551 Thus, integrating the term on the left hand side of (82) by Q, we see

/ 1 {1ea-T¢<X> _ 1ea-T9<X>H 0

v — 4]l 04
< /L LU0 (o Ty(X) g

= L. eOéL'llw*éHEQ [ea'Té] ) (83)
552 Considering the supremum for 1) € By of (§3), it holds that

1 1 a-T, 1 aT }’
sup — < —e — 6 dQ
wa%{/‘w—ﬂn{a o

S sup {L . eaLHw_a_H EQ [ea'Té} }
YEB;

= Eg [ea'Té] - sup L- e L-llv=oll 00, (84)
YEBg

553 since Bg is compact.
554 Similarly, as for (80), we see

sup /
weBe

1 {1e(a—1>-m (X) — 1e<a—1)~T9<X>H P

I =6] 11—« l-a
< sup {L.e(l—a)buw—éu Ep {e(l—awg} }
YEBg
= EP |:e(17a)'T§:| - sup L - e(lfa)Lwaé” < 00. (85)
YEBg

ss5  From (84) and (83), we obtain

Na N’T _lOéX/i\av NvT deQ
s | [ [l Xt - o060 X

= sup // 1 { 1 eo‘ Tw(xb Q) 1 ea'TS(XLQ)}
$EBg [l - 6] a

1 { L 6<a1>~Tw<xip>16<a1>~T9<x:p>Hdde

T\ —a
< sup // 1 {1 aTy(XLqg) _ 1 e Ta (XL Q)}
 weBg [ a
1 i 1 i
- (a=1)Typ(XLp) _ (-1 T;XEp) U ap g
+|w =Ty i farac
e 1 a-T5(X)
= sup {/‘ { Ty(X) _ — paTy dQ
weBy [ — 4 a
1 1
_ (a=1)-Ty(X) _ (a=1)Te(X) | gp
+/“w w{lae o }‘ }
1
« am{fltn (i iee)o
wEBg v — 0 a
1 1
+ sup {/‘ {e(a—l)'Tw(X) = pla=1)Ty X)}'dp}
weB; [ =0 \1-a 1—af
ss6 Therefore, the following set is uniformaly integrable for u:
1 . , . ,
[ (b X 1)~ L (X X T} v B} @
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s57  Then, from the property of the Lebesgue integral (25, P188, Theorem 4), the integral | [(-) dPdQ
sss  and the limitation lim,,_,5 for the above term are exchangeable.

s59 Hence, we have

Lo X piTy) — 1a(XE o, X2 p; Ty) pdP dQ
wﬁe//llw 9H Lo XLpiTy) = la(Xg, XLp 9)}

- //wﬁe[nw 71X XL i 7o) = L ~Q7XLP’T0)}} dP dQ
//VGla(Xinyip;TeﬂgzgdeQ

- B [vg lo(Xi g, XE s T9)|9:§} . (88)

se0  On the other hand, for the term on the left hand side of (88)), we obtain

X i Ty) — 1o(X ), X p: T5) tdP d
¢—>9//||¢ 9|| NQ i Ty) —1a(Xg P 9)} Q

= VX i Ty) — 1o(XE ), X p: T5) tdP d

= lim , P; T, , P Ty
= Vo La(Q, P;Tp)lg—p- (89)
561 From (88) and (89)), we obtain
E [Vola(XLg, XLpi To)lo=s] = Vo La(Q, P; Ty)lgs- (90)

s62  From this, we also have

B [Vola(Q™), PO Ty)lg] =

N
1 i i
E | Volo=g N Zla(wav X2 p;Ty)
i=1

N
1 Z i i
N V@ la(X~Q7X~P;T9)|9—9‘|

= %ZE[V@Z NQ, NP§T9)‘0:9’]

1
— sze La(Qv-P;T(’”G:é
=1

= Vo La(Q, P;Tp)[g—g- on
563 Here, we see (78) from (©0) and (OT).

se4 This completes the proof. O

565 Proposition C.9. Let
N
A 1 1]1 1 1
DWV) P ! _ )= aT(XLg) \ _ — (a=1)-T(XZp)
D@1 = sw [aa_a) a{Nze Ll ,
92)

ses  where supremum is considered over all measurable functions T : RY — R with Ep[e(*~1)'T] < 0o
s67 and Egle*T] < .

ses  Then, it holds that if o # 1/2,
VN {DI(QIIP) - Da(QIIP)}

— N(0, €L Doaa(QIIP) + C2 - Dal(QIIP) + C2- Da(QIIP) ), ©O3)
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s69 where

ol = <;2+(1_1a)2> (20— 1) - 20— 2),
¢ — 2{02 -+(1(1—_o§)2} and C% = —a? — (1—a)?,

570 andifa=1/2,

VN{DM(@IIP) - D, (QHP)}
s w(0,4Da(QIP) - 5 Dal@lIP).

571 proof of Proposition First, we note that

- 1 1 /1
D) P) — R
« (@lIP) TEQJER [a(l —a) o |N

1 1[1 & ;
- by 12T AN erxig)
a(l—a) TRISR [a {N Ze *

(94)

95)

(96)

1 {1 zNje(a—l).T(ng)H
—a | N pt
N
1 1 i
72 (a=1)-T (X p)
e
- {N i=1 H

o7

_ L ii Loarxio) ¢ L a-1rexi,)
a(l—a) TRiSRN —~ | -
N
1 1
= — inf — Y [lo(Xp, X p T
ol —a) TRIsR N ; [le(X2g P 7))
N
1 1
— _ la 7 ; 7
a(l —a) N; (g Xnp)

572 On the other hand, from LemmalC.7] it holds that

Da(Q|P)

1

1 1 1
_ *E a-T _ E |: (()/—1)~T:|
o |y - afele T -

1 1
- - _ (a—1)-T
N (1—a) TDIQI‘}iR{ B [e] 1—aEP {6 }}

SR ALY

= ZE (Xo: XLp)]-

1—a

573 Subtracting (98) from (@F), we have
1 Y . , ,
DV(QIIP) = Da(QIIP) = 5 D {la (XL XLp) = F [la(XLq,

i=1

24
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574 Let Lj = 1o(XLo.X1p) — B [la(XLgo,XLp)]. Then {L;}}\; are independently identically
575  distributed variables whose means and variances are as follows:

ElL] = o, (100)
Var[L;] = E[{za(XLQ,Xip)—E[za(xiQ,Xip)]}ﬂ
o[ 1(22) " - (2))

ko) () )]
- Lme{ (1) [ (12) )
ap { (i) "o (Zzlg)] }
_ ;.Ep{ﬁ.<ﬁ>a(xi)—Ep jﬁ(ﬁ)”z
e e (52) oo (22) ]
vt e {(59) -2 ()]}
@6

aQ 1—(2a—1)
(dp> -

_|_

b

2
) ) 1 dQ 11—«
—Q (1—04) {a(al) P (d]j) —1 }
> 2 2 dQ\' ™
+a2(1 - a) {a~(a—1) P (dP) —1]} - 1]. (101)
576 From this, if o £ 1/2, we have
Var [Li] = Cg - D2a-1(Q[|P) + C3 - Da(Q||P) + Cq - Da(QI|P)?, (102)
577 where
1 _ 1 1 . —_1). _
C, <a2 + i —a)2> (2a —1) - (2a — 2),
s 2?+(1-a)?} 3_ 2 2
c: = o (—a) and C; =—-a°—(1—-a)7,

578 and if « = 1/2, we obtain

VarL] = 4D (QIIP) - 3 Da(QIIP) (103)
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583

584

585

586

587
588
589

590

591
592

593
594

595

Therefore, by the central limit theorem, we see

NZ{Z L0 Xp) — E[la(X10, X0p)]} —2 N (0,%). (104)

Here the “+" is (I02)) or (I03), which corresponds to the cases that o # 1/2 or oo = 1/2, respectively.
This completes the proof. O

We mention that the statement of the following corollary is the same as Corollary 1 in
Birrell et all(2022).

Corollary C.10 (Birrell et all(2022), P19, Corollary 1). For o = 1/2, it holds that

N Var [ DUJQ@IP)] 8D, (Q1P) - Dyel@I1P)
N—so0 Dy 5(Q[[P)? 2D, 2(Q|P)?

Thus, the sample complexity of D, for o = 1/2 is O(1).

(105)

proof of Corollary The statement of the corollary follows from (96)) in Proposition[C9l O

Proposition C.11. Let {T},}?2, be a sequence of functions in T with Ep[e™T(X)] = 1 such that
limg oo T, = —logdQ/dP, P-almost everywhere. Subsequently, let {Xg}z"zl be a sequence of
measures on R defiened as follows:

X@ = e XD xP,

Then, it holds that
X2 43 XQ  as k—s o (106)

proof of Proposition[C 11l Let Q. denote the probability distribution of Xg: Qr(A) = P(XkQ €
A) for all A € .%. Then, since dd%“ = e Tr(X) we see

= 107
aQ o) (107
Now, from Corollary 6 in [7], for probalility measures A and B with A < p and B < p, it holds
that
1 dA dB|?
- E,|— - — < D, (A||B). 108
585 - G|} < patam) (108)

By substituting A = Q. and B = @ into (I08)), we have

1 d d
Q{Eu dQr Q}

d}t d,u < Da(QkHQ)

=" {(Ciz%k>l_a‘1}d¢2
[ aa- 1)/(i%k>l_adQ‘a<al—1>

1 dp\'~* dQ 1
_ wr L (a=1)Ty
 ala—1) / (dQ> ¢ dP P - ala—1)

o
a—1)

(109)

|
2
Q
‘ =
=
—
7N
&‘&
O
N—
)
5
o
N
2
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Now, from Holder’s inequality, we have

[OR

dP

IN
—N—

= 1<oo. (110)

Hence, we see the following sequence is uniformaly integrable for P:

aQ\" @
(@) o an

Then, for (I09) as k — oo, we see

IN

dQ,  dQ\? , 1 / AQ\"  (a_1). 1
a2 lim ——— %) la-DThgp =
dp  du } hvoo ala—1) dpP ¢ d ala—1)

- (@) () s

_ ol Q1
B a(a—l)/deP ala—1)

= 0.

Thus, Q) converges to ( in total variation.

The statement (T06)), the convergence of XkQ to X in distribution, is derived from the convergence
of Q. to () in total variation.

This completes the proof. O
Corollary C.12. Let {T},}32 , be a sequence of functions in T such that

Da(Q™||P)
N N
1 11 i 1 1
- 1 - = aTe(Xg) o =~ (e=D)Tu(XLp) b (112
lcggo{a(loz) aNZe +1—0¢Nizzle (112)

Subsequently, let {X(E}N) (k)}22., be a sequence of measures on R? defiened as follows:

X3 (k) = e e x (Y (113)
Then, it holds that, as k — oo,
X5 (k) 4 X§V. (114)

proof of Corollary[C.I2] Let v be the countable measure on {X1,Xo,...,Xx}:

(115)

_J 1 if1<FH < Nst X; =x,
v(x) = 0 otherwise.

Then, P « v and Q(N) <L v.

For Proposition [C-IT] and its proof, substituting P™) for P, Q&) for @, and v for p1, we see that
the statement of the corollary holds.

This completes the proof. O
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614

615

616

617

618

619

Proposition C.13. For TeT? let Q and P be two probalities defined as

and let T, =
Then, it hols that

Here, Lo (Q

Lo
P; ) in (IT7) is defined as (37) in LemmalCZ

d) =eT.dP and dP =T
—logdQ/dP.

Q,P;T) — Lo(Q, P;T.).

-1
11—«

-dQ,

{ (a=1)(T.—T)

proof of Proposition[C_13] First, we see (I16). Note that, it holds that

By using (T08), we have

zimle-af} '+

Thus, we obtain

[0
P {&.

IN

l-a
ala—1)

Here, we see (I16).

1

«

1

(%

1 1 #
- oz-(T*—T)d _
a(l—a) « /e @

To obtain (I17)), we have

o
a(l —«)
1

&

_p dP

dQ

dQ
o

and

1—a

(s
}2+1—a

{E

U (5) =)

dP

dP

o7 aQ
dP’

%

(1—a)- Di—a(QllQ) + a- Da(P||P)

+o<<aa—1>{/<dp) adp_l}

e (i) o)

_ ! -t (AN p
1_a{/e (dP dP -1

{/ea'TeQ'T*dQ — 1}

1 N
_ {/e(al)-Te(al)-T*dP _ 1}
11—«

(0% —

1 _l/ea~(T*—T)dQ_
a

1 2 1
—/ea'(T*_T)dQ— -

28

1 N
- /e(a—m-(T*—T)dR

—

l1-—a
1 dQ 1 d
dQ 1) Q}du
a du o dp
+/ 1 dP 1
1-a du l-a

/e(a—n-(n—:ﬁ)dp

1 N
7/6(01—1)'(T*—T)dp

11—«

ol -(T. T)dp}du.

dp

(116)

(117)

(118)

P P|} < (1-a) Di_a(QIIQ) + a- Da(P||P).

(119)

(120)
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By replacing the measures y of the two integrals in (120) with
v= e*a'Tdu and 7= e*(afl)'jﬂdu, (121)

respectively, we obtain

/{1 42 1'6a'(T*_T)C@}€a-T.du

a dv  « dv

1 dP 1 # dP ;
Rl Lele=D)(Te=T) 22 L (a=1)-T 4
Jr/ { l-a dr 1-a ¢ dr } T

_ 1 a-TdQ 1 a-T*dQ
N /{a C w o€ dv dv

+/{1 L enrd? 1,e<a—1>-T*dP}dT

-« dr 1« dr

1 - 1 -
{ /e‘”TdQ + — e<a—1>'TdP}
« 11—«

- {1/ea'T*dQ+ L e(o‘l)'T*dP}
«a 11—«

= La(Q,P;T) — La(Q, P;T)). (122)
This completes the proof. [

C.2 Proofs for Section

In this Section, we present two theorems for the proposed method in Section |6l Before presenting
the first theorem, we briefly review Pearl’s do-calculus (Pearl(1995)) used in the proof of the first
theorem.

Theorem C.14 (do-calculus, [Pearl(1995)). Causal effects can be transformed by following rules
RI-R3:

RI. P(Y|do(X),Z,W) = P(Y|do(X), W), if (Y 1L ZX,W)gx)-

R2. P(Y|do(X),do(Z), W) = P(Y|do(X),Z, W), if (Y 1L Z|X, W)gx z-

R3. P(Y|do(X),do(Z), W) = P(Y|do(X), W), if (Y 1L Z|X, W)z z.) where Z* =
Z\ An(W)gx)-

Here, G(A) denotes a graph obtained from G by deleting all arrows emerging from variables to A,

and G(A,B) denotes a graph obtained from G by deleting both of all arrows emerging from any
variables to A and all arrows emerging from B to any variables, and (A 1L B)q represents that
there is no path between A and B in G.

We now provide the first theorem, which presents a sufficient condition for explanatory variables to
be available for estimating causal effects.

Theorem C.15. Let G be a DAG for V and U. For disjoint sets X, Y,Z C V, suppose that
P(Y|do(X), Z) is identifiable in G, and X C An(Y)q. Let Zp. = Z N De(Y ). Then,

P(Y|do(X),Z)

o P(Y|Xa Z) leDe = ¢7 (123)
— P(Y|X,Z\Zp.)P(Zp.|Y,X,Z\Zp. .
e ) 22 if Zp. # ¢.

proof of Theorem[CI3l We note that each Z; € Z can be assumed to be that either Z; € An(Y )¢
or Z; € De(Y)q. To see this, suppose that there exist some Z; € Z such that Z; ¢ An(Y)q and
Zi & De(Y)g. Let V! = V\ (Y UX U Z). Since (Y L Z;|X, V', U)gx, holds for the Z;, by
applying do-calculus R1 in Theorem [C.14] we have

P(Y|do(X),Z\{Z;},Z;,V',U) = P(Y|do(X),Z\ {Z;}, V', U). (124)
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By marginalizing both sides of (I24) for Xy, we obtain
P(Y|do(X),Z\{Z:}, Z;) = P(Y|do(X), Z\{Z:}). (125)

Thus, after repeating the above calculation, P(Y |do(X), Z) finally includes only Z; € Z such that
Z; € An(Y)g and Z; € De(Y)q.

Therefore, in this proof, we assume that
Z = ATL(Y)G @] DG(Y)G (126)

Next, we note that ZN An(X)sNDe(Y)g = ¢. To see this, suppose ZN An(X)gNDe(Y)g # ¢.
Let BN denote a path through only variables of V’. Then there exists a directed path such that
Y Y, Z Y. X, which contradicts the assumption X C An(Y)g.

From the above discussion, Z can be divided into the three disjoint sets as follows:

7 = Z,UZyUZs

Z, = (Z\De(X)g)NAn(Y)g,
Zo, = ZNnDeX)gNAn(Y)q,
Z; = (Z\ An(X)g) N De(Y)g.

Then, each of the paths between Z;, Z, and Z3 is one of the following P1, P2 and P3:

In fact, if there exists a directed path in the opposite direction of P1, that is Zq A Z1, then there
exists a path such that X; A Z, Y Z,. This contradicts the assumption Z; C Z \ De(X)¢.
Similarly, if there exists a directed path in the opposite direction of P2, that is Zg Y Z5, then
there exists a path such that Y; Y. Zs3 A Z,, which contradicts the assumption Zy C An(Y)¢.
In addition, if there exists a direc/ted path i,n the opposite direction of P3, that is Zs VL 71, then

. \Y% A% . . .
there exists a path such that Y; ----- = Zig -- ~ Z1, which contradicts the assumption Z; C An(Y)g.

Therefore, all paths expect P1, P2 and P3 are denied.
Hence, by marginalizing P(V') for Xy, we obtain
P(Y,X,Z) = Y P(V)
Xv/
XP(Z3|X,Z1) - P(Z3|Y, X, Z1,Zo).
In additon, from (d), we have
P(Y,Z|do(X)) = P(Y|X,Z1,Zs) P(Z1) P(Zo|X,Z1)
XP(ZB|Y,X,Zl,Z2). (127)
In the case that Z3 = ¢, by marginalizing out Y of (127, we have
P(Z|do(X)) = > P(Y =y,Zdo(X))
yEXY
= Y P(Y=y[X,21,Z,) P(Z1)- P(Z2|X, Z,)
yEXY
= P(Z1)- P(Z2|X,Zy) Z P(Y =y|X,Z,Z5)
yEXy

= P(Z1) P(Z2|X,Zy).
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On the other hand, in the case that Z3 # ¢, we obtain

P(Z|do(X)) = ) P(Y =y, Z|do(X))
yEXY
= Y P(Y=y[X,Z1,Z,)  P(Z,)
yEXy

XP(ZQ‘X7Z1) : P(Z3|Y = Y7X7 Zl; Z2>
= P(Z))-P(Z2|X,Zy)
x > P(Z3|]Y =y,X,Z1,Z,) - P(Y = y|X, Z1,Z5)
yEXy

= P(Zy) - P(Z2|X,Zy) - P(Z3|X,Z1,Zs).
Summarizing the above results, we have

P(Z,) - P(Z2|X,Z,), if Z3 = ¢,

P@) = {p(g) pigapx 20)- PEx 2z T g O

Inserting and (128) into @), we see
P(Y, Z|do(X
P(Y|do(X),Z) 1(3(Z|d|o()(())))
P(Y|X,Z1,Z5) if Zs = ¢,
= { p(mx,z}iéi)‘;gizfgzl,z2) if Z £ 6. (129)

Note that, Z3 = Z N De(Y)g, since Z N An(X)g N De(Y)g = ¢.
Therefore, by rewriting Z3 as Zp. and Z; U Zy as Z \ Zp, for (129), we obtain (123).
This completes the proof. O

Next, we provide the main theorem presented in Section

Theorem C.16 (Theorem [6.1lrestated). Given disjoint sets of X = {X1,Xs,..., X, },Y,ZCV
satisfying
X:{XlaXQa"'aXn} CAn(Y)Ga (130)

and
71 De(Y)e = ¢ (131)

LetP = P(X1,Xs,...,X,,Z) and(@ P(X1) x P(X3) X --» x P(Xy) x P(Z), and P =
P(Y[do(X),Z) x P(X1) x P(Xz) x -+ x P(Xq) x P(Z).
Suppose P satisfies Assumptions 1 and 2 in the above setting, and it holds that Ep [(d@ /dP) 17&} <
oo for some 0 < a < 1, then, for the optimal function T, such that

T (X1, X2y..., Xy, Z)

= arng%f_a{ Eg [e*T]

+3 i —Ep [e(“*U'T} } : (132)

it holds that

AP 14X, X, X0 Z)

= Ko "), 133

ap _© (133)
Here, T® denotes the set of all non-constant functions T(x) : R* — R with Fp[e(®~ 1 T(X)] < o,
proof of Theorem From Theorem[C. 13 and the assumption (I31)), we have

P = P(Y|do(X),Z) x P(X1) x P(X3) X --- X P(Xp) x P(Z)
P(Y|X,Z) x P(X3) x P(X3) x -+ x P(Xy) x P(Z).
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Thus, from Lemma[C.2] we obtain

o T (X1 Xs, X, 2) dQ _ aP (134)

This completes the proof. O

C.3 Proofs for Section[7]
In this section, we first present a proposition for obtaining the density ratio between empirical dis-

tributions of the source and target distributions. Next, we present a proposition and lemmas for the
early stopping method proposed in this study.

Proposition C.17. It holds that

dO™) o { dQ/dP(x) if 1 <3 < NstX; =x, (135)

dPW) 0 otherwise.
proof of Proposition Let v be the countable measure on {X1, Xo,..., Xy}

1 if1<FH<SNst. X; =x,
v(x) = { 0 otherwise. (136)

Then, PW) « pand Q(N) < V.

Note that, from the definitions of P(Y)(x) and Q™) (x), we have

PV) = 5 S 1(Kp =) = 5 1K =) T ), (137)
and 1 1 d
QM) = 1K =) = DX =) T2, (139)

i i
where 1(-) equals one if the statement in parentheses is true and zero otherwise.
From (I37) and (I38), if X; = x, we see

dpW) R 1dpP
— pv) el
(%) =PV ) = 5 ), (139)
and .
dQW) AN _1dQ
Then, we have
~ S5(N)
aQ™ - (%) dQ
—(x) = 25— = —(x). (141)
dPW) 4O (x) AP

For x ¢ {X;,Xs,...,Xy}, we observe dQ™) /dv(x) = 0. Note that, dQ™) /dPN)(x) is
defined as zero for x € Q such that dQ) /dv(x) = 0. Subsequently, we see dQ™) /dPN) (x)
0.

Ol

Next, we present a proposition for the early stopping method proposed in Section We obtain
an early stopping step as the step that minimizes the W, distance of the balanced distribution and

target distribution, QI(CN) and @Q in @2). To obtain the early stopping step, we assume that the
two distributions differ the worst outside the neighborhood of the observations because we cannot

know the closeness of the two distributions, Q,(CN) and @ in (22) except in the neighborhood of the
observations.
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700 We now provide a note on the convergence rate for optimizing the loss function (I6). Let

N N
11 dQ 11 4P
(N)t _ (N)t too . tn) = —— 'ty | T (. 772 (a=1)-t; 7 .
f () f (17 2 7N) Oé]Vi:16 d,U/(XZ)+1—OéNi:1€ d,U/(XZ)

(142)
710 Subsequently, let tx denote a model at step K when optimizing (I42) with a Stochastic Gra-
711 dient Desent (SGD) algorithm. Because, from Corollary fN)(t) is strongly convex with

712 ||Vf(N)(t)H2 < D? (3D € R) around the optimal point t, = (t},¢2,...,tY) = (—log %2 (x,),

713 —log ‘;—g(xQ), ...,—log j—%(xN)), an O(1/K) convergence rate can be achieved at step K when
714 optimizing (I42) with SGD algorithms under regular conditions for t:
C

E[fn(tx)] — fn(ts) (143)

< T 10
T K+1
715 where ty is a weighted averaging such that tyx = m Yplk+1)-tpand C > 0 is

716 constant. Here E [-] denotes the expectation for the randomness of batch sampling of SGD As
717 assumptions close to (I43), we briefly assume (I44) in Assumption E1 and (I43) in Assumption E2
718 to obtain an early stopping step, which are simpler and more relaxed than (143]).

719 Herein, we make the following assumptions for the early stopping method presented in Section[7]

720 * Assumption EI. Let {T,gN) }22, a sequence of functions in 7% such that
721 limy o0 TV (X,) = —log dQ/dP(X,), for 1 < Vi < N. Suppose that
. - C
L@ PTM) - L@ PiT) < 22, (144)
722 where L4V (Q, P;-) is defined as (60) in Lemmal[C7land Cj > 0 is constant.
723 « Assumption E2. Let {7} }32, be a sequence of functions in 7% with Eple=T+(X)] = 1
724 such that limy_, o, Ty, = — log dQ /dP, P-almost everywhere. Suppose that
C
La(Q.PiTi) = La(Q. PiT.) < 72, (145)
725 where L, (Q, P;-) is defined as (37) in LemmalC7land C; > 0 is constant.
726 In addition, we make the following assumptions to simplify the discussion in the proofs.
727 + Assumption E3. Let Q be a compact set in R?. Then A denotes the Lebesgue measure on
728 R<,
729 * Assumption E4. Let () and P be two probabilities on {2 with continuous probability densi-
730 ties p(x) g(x), respectively. Assume 0 < ppin < P(X) < Pmaz and 0 < Gmin < q(x) <
731 (maz Tor all x € Q).
732 * Assumption E5. For {T,gN) }72 , in Assumption E1, assume that each function of T,iN) (X)
733 is Lipschitz continuous: for 1 < k£ < oo,
N N
T 0) = T )] < -l = . (146)
734 * Assumption E6. For {T,gN) }%2 , in Assumption E2, assume that each function of T} (X) is
735 Lipschitz continuous: for 1 < k < oo,
Tk (x) = Th(y)| < ok - [Ix = I (147)
736 Note that, the Lipschitz coefficient in Assumption E5 does not depend on the sample size N.
737
738
73s  Lemma C.18. For {TéN)}zczl in Assumption ES5, it holds that for x € Q and ||y — x|| < D,
e T W) = V0 4 T {0(D) + 0 (D)} + Ox (D). (148)

SFor the convergence rate of SGD algorithms, for example, readers can refer to [12].
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proof of Lemma|C. I8 From the intermediate value theorem for the second derivative of e™%, we

have
e—T+0-(z—y)

eV=e"—e" (y—a)+ 5

(y — )%, (149)
where 0 < 0 < 1.

By substituting y = T,gN) (y)and z = T,gN) (x) into the above formula, we obtain

e_TISN)(Y) = e_TlgN)(x) - €_T’5N)(X) (TISN) (y) — T;EN) (X))
-1 ) +0(x,y)- (T () -1 (%)
e 'k k k 2
+ > (V0 -1V ) as0)

where 0 < O(x,y) < 1.

Now, note that, from Assumption ES5,
M (y) ~ TN (x) < pi - Ix — | < pi - D (151)
From (I30) and (I31), we see

N N
TV ) _ om0

_p(N) 5
‘e T >,(T£N>(y) —T,§N>(x))

o TN 06y (1) (1)1 ()

¥ ; (1) -1 )
< =TV (%) cpr - D+ eTIEN;(xHD . D?
= %0 L0(D) + 0 (D)} + 0y (D). (152)
Therefore, we have
e T = o TV 4 TV L0 (D) + 0 (D)} + Ox (D). (153)
This completes the proof. O

Lemma C.19. For {T},}%2 | in Assumption E6, it holds that for x € Q and ||y — x| < D,
e TeW) = ¢ T (x) + ¢ T+ . LO (D) + O (D?)} + Ox (D). (154)
proof of Lemmal|C._[9 Note that, we use only the Lipschitz continuity of T]EN) (x) to prove Lemma

[CI8l From Assumption E6, T}, (x) is Lipschitz continuous. Then, (I34) can be proven in a manner
similar to Lemma [C. [§&]

This completes the proof. O
Lemma C.20. Let T, = —log dQ/dP. Under Assumption E3 and E4, it holds that for x € Q and
ly —x| <D,

e Tr(y) = e T _ g7 {O(D)+ 0 (D*)} + Ox (D). (155)

proof of Lemma Note that, we use only the Lipschitz continuity of T,EN) (x) to prove Lemma
From Assumption E3 and Assumption E4, T, (x) is a bounded continuous function on €.
Since bounded continuous functions are Lipschitz continuous, T (x) is Lipschitz continuous. Thus,
can be proven in a manner similar to Lemma [C.T8]

This completes the proof. O
Lemma C.21. Let B(xo, D) = {y : ||y — xo|| < D}. Then,
Pmin - D < P(B(x0, D)) < pmaz - D*. (156)
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proof of LemmalC 21l From Assumption E4, ppin < p(X) < Pmas holds, and by integrating over

B(xg, D) with A, we obtain

[ pmins PEGuD) <[ p i
B(xo,D) B(x0,D)
.. Pmin - Dd S P(B(x07D)) S Pmaz - Dd~
This completes the proof.
Lemma C.22. Let B(xo, D) = {y : ||y — xo|| < D}. Then,
P(B(x¢, D)) = C - p(x) - D%,

where C'is constant.

proof of Lemmal[C22] From Assumption E4, p is a bounded continuous function on €.

bounded continuous functions are Lipschitz continuous, p(x) is Lipschitz continuous.

Then, there exist a constant C' such that
p(%) < plxo) + O x — xall,
and by integrating over B(x¢, D) with A, we obtain
P(B(x0, D)) < C - p(xo) - D*.
This completes the proof.
Proposition C.23. For {T,gN)}k“;l in Assumption E1, let Q,(CN) be a probability defined as
dQWN) = =T L ap.
Then, under Assumpution E1-E6, for a sufficiently large K > 0, it holds that

A(N _4d _1
ExonW1(Q. Q) <2 N K%+ K74,

(157)

(158)

Since

(159)

(160)

(161)

Corollary C.24. Let Ky = N T with § > 0. Then, under Assumpution EI-E6, for a sufficiently

large N, it holds that
~A(N S _1
Eyoo [W1(Q, Qi) <2 - K¢ + K 2.

(162)

Corollary C.25.  In Corollary[C24) let &' > 0 such that Ndiiﬁ’ =2 andlet Ky = NTe, Then,

under Assumpution EI-E6, for a sufficiently large N, it holds that
AN St
Eng’)[Wl(QvQEKo))] <K, *.
Thus, if N > (1) then W1(Q,0'Y)) < e.

proof of Proposition Let Qx be a probability defined as
dQx =e 1% . dP.
Intuitively, Qi is the true balanced probability distribution at a step K.

First, from the triangle inequality for the L; norm, we have

Eu ’Q%V) - Q‘ S E}L A(N)

K _QK‘+E;L

QK_Q’~

Considering the expectation Ey (v) [-] for the both sides of the above equation, we see
P
A(N A(N
B [ |05 = f] < By [E QR - u ] + B [Eil e -]
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783 Next, we obtain the upper bound of the first term in (166).
78¢ Let A, = B(X,, 1/\/?) Subsequently, let A = vazl A,;. Then, we have

B, | - Qx|
= /‘e‘TéN)~(uD—e_T’f ar dp
dp
e
_ ‘ N L)
= B [ida | e B [idons o e

. _7@™ _
< Ep [sz‘e L

} + Ep [idQ\A ‘e_T’SN)H + Ep [idQ\A |6_Tk|] .

785 Considering the expectation EX(N) [-] for the both sides of the above equation, we see
P

B[22 |QK" - @
< Byoo [Bp [ida e — e
P

/]

()

+ Exon [Ep [idova e || + Exoo [Bp [idora ™[] (167)

786 To obtain the upper bound of the first term in (I67)), we see

. _7N) _
P [sz‘e T — e T

al (N)
E idAi‘e*Tk —e Tk

)

T _ =Tk

= EP

- ZEP [idac |7t - e

= ZEP[ B(X;,1/VE) |€ }
N (W)

N
. _ . —Th(X;
ZldB(Xi,l/\/f)'e Te _ZZdB(xiJ/ﬁ) re T
i=1 i=1

= EP

] : (168)

36



787 Subsequently, we have
N U

. -T . —Tx(X;
D idpx v € D i i e

i=1 i=1

: |

N
. (N) %) .
§ :ZdB(xiJ/\/?)(X) T E B(X; 1/\ﬁ x)-e —T, 7 (Xe)
=1 i—1

Ep

= EP

N N
; TN (X, . _T.(X,
+ D ik, 1y (%) €T ) =Y idp g () e
=1 i=1
N

+ ZidB(Xml/\/?)(X) reTTHO0) — ZidB(Xq‘,,l/\/E) (x) - e T

i=1 i—1

N N

+ ZidB(Xi’l/\/f) (x) e T09 — ZidB(xi,l/ﬁ)(X) e Te()
=1 i=1

N
ZidB(xi,l/\/k) (x) {e—Tk(,N)(X) _ e—T,gm(xi)}

i=1

= EP

N
, (N (x. v
+ D idgx, 1) {efT"N (Xa) e*T*<X1>>}

=1
N

N
. _T.(X, e
+szB(Xi)1/\/§){e T(Xi) _ T()}

; (V) B ,
ZZdB(Xhl/\/?) (X) ‘e T, (X)) _ e T*(XZ))“|
i=1

=T (x) e_Tk(X)

=1
N
+ Y idgx, 1 v (X) {em(x> _ eka(x)}
B(Xi,l/\/f)(x) ‘e - 1 .
1

i=1

N
ZidB(xiJ/\/f) (x) ‘eiTlim(x) _ efT,iN)(xi) 1

=1

< FEp

+ Ep

—Tu(Xi) _ o= Tu(x)

Z B(X;,1/VK) (x)|e

N
id

=1
id

+FE
N
+Ep

9

7

788 Considering the expectation EX< ~ [-] for the both sides of the above equation, we obtain
P

I

E (
x (V) [EP |:7:dA )B_TkN) —e Tk
P

N
. _rMN) _p(N) xc
< Exen |Ep ZZdB(Xi,l/\/f)(x)‘e TN (%) _ T (X0) H
=1
i (N)
+ Exen | Ep ZidB(X- 1/vE) (X) ‘G_T’“ (X _ e‘T*(Xi))‘H
P (2
L i=1
i N
+Expo | Ep ZidB(Xq‘,,l/\/R) (x) [e7 T+ (X) _ =T () H
L =1
i N
+ By |Ep | Y idgx, 1/vi) (%) ’e—de) _ e Tk H : (169)
I i=1
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789 Now, from Lemmal|C. 19| we have, for x € ¢d B(X;,1/VE)

_ T (x) 0 B 1 1
e Tk { TR +0 % + Ox, =)
3 () ()
ZidB(Xi 1/VK) (X) ‘eiT’“ GO e Tk (X4) ]
i=1

- Sl o) 0 (1)) +ox (7))
_ z it ] {00 o (L) w0 (1) rox ()
= (o) [ fo o) o i) on

- gP(B(Xi,l/W) ( )

(e‘Téka) e

790 Then, we see

Ep

=~
_ =

al 1 1
< Pmaz - Ox, i <> (170)
i=1 (\/E) \/E
N d+1
+
- Son (1)
i=1
791 Here, we obtain (TZ0) by using Lemma[C21]
792 Considering the expectation £y () [-] for the both sides of the above equation, we have
P
al (V) (™)
EXEDN) Ep ZidB(X,;,l/\/f)(X) ’eiTk (x) _ eka (X3) ‘|‘|
N d+1
= EX;N) Z Ox, (K_2)]
i=1
N
d+1
- Yo
i=1
= Noo(k) (171)

793 In addition, from Lemma[C.19and [C.20] it holds that, for x € id B(X:1 /v

o) o () on (3)
o) o () on (3)

795 In the similar manner to obtain (C23)), it holds that, for x € id B(X:1/VE) Ve obtain

H :NU(K—%), (172)

‘e—Tk(x) — e Ti(X)

794 and
‘e_T* ) e

N

. —1lx — ;
ZldB(Xi,l/\/E)(X) ’e Tpx) _ e T (Xi)
i=1

Ep

Eyoo
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796

797

799

800

801

802

803

804

and

N
. —Tu(x —T.(X;
Ex lEP [Zdexi,uﬁ)(X) e TH0) — e

i=1

Here, we obtain the upper bounds of the first, third, and fourth terms in (1L69).
We now have the upper bounds of the second term in (169).

First, we obtain

N

ZidB(xi,1/¢E) (x) ‘e—T,izv)(xi) _ e—T*(xi))”
=1

Ep

N
= 3 Ep [idp, 1 i ()] [T — e T 00|
=1

N
_ ZP( Xl,l/\ﬁﬂ —TM (%) _ e*T*<Xi>>‘. (174)
i=1
Then, from Lemma [C.22] we have

i ( (Xm 1/\/7) ‘ 7T(N) Xi) _ eiT*(Xi))’
i=1

N
= C Zp(xi) .0 (\/1)(1 ‘E*TQN)(Xi) _ B*T*(Xi))‘ ) (175)
i K

Next, note that,

I _ ] (176)

eiT}iN)(X") — e v(X ' =N-E,

Here, v is the countable measure on {X;, X, ..., Xy} defined as (I36).

In addition, since

LV(Q, P;T) = Lo (Q™), PN T),

holds, we obtain, from Propsition|C.13land Assumption E1,

& B,

> VEa(QU), PO T — L (), POV T,)

IN

Qi) = QW]

= ViY@ P 1) - i@, i)
1
Ol ——]). 177
(?) a77)
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sos  Finally, from (T74), (T73), (T78), and (I77), we have

N
Ep ZidB(Xi,l/\/E) (X) ‘e_T;EN)(Xi) . e_T*(Xi))“|
i=1
1 N
= ¢ 7| 2_pXo) ’ffoiN)(Xi) - efmxi))’ .
i=1

1 ~
< ol——| NoBle-q
(W)
1
= ¢ ( ) 'N'O(\/?>

(178)

|
o
/-\
\+
~—

sos  Considering the expectation Ey (~) [-] for the both sides of the above equation, we have
P

Ep

X(N)

(N) ) _ )
Z'LdB(X,,l/\/» X) ‘ T (%) _ o Te(X) ]]
=1

)
oK. (179)

go7  Summarizing (I69), (I71), (I72), (I73), and (I79),

|

D idpx, 1/vi)(X) ’e*TéN)(’” - eT’EN)(Xi)’H

i=1

N

. (N) _
EX(N) |:EP |:ZdA ‘ —Ty — € T
P

< FE Ep

()
XP

+Ey | E XN: Bxe1 Vi) (X )) ~TM X)) e—mxm‘H
s

+EXEDN) P D idg Bx:1vE) (X) |€ TG T H
S

+EX§,N) szB(X 1/\F x) ‘ ~Tu(x) _ o~ Tr(x) H

d+1

= N-O(K2)+N-OEK2)+N-0(K‘T)+N.0(K)

- N.O (K‘T). (180)

sos Here, we see the upper bound of the first term in (I67).
809 Next, we obtain the upper bound of the second and third term in (I67).
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8

o Fist, we obtain the upper bound of the second term in (I67). Now, we have

Exoo [Ep [idoa [e™" ]

)

= o e [{1=idy, 2,60
- N

= EXE;N) _Ep [ZdQ\UfV:1 A, (X) e

. ()
= Expo [L=Ep |3 idpex /v ()€ H
L =1
[ al , Y]
= By [1- ZEP i x,1/vr (¥ | | (181)
g11  Then, from Lemma[C.18land Lemma[C.21] we have
(N
Ep {ZdB(x“u\F) x) - e T )]
1 1 1
= FEp {de Xl,l/f X) - {ET,EM(xi) 4TV {0 K> +0 <K>} + 0, (K> H
1 1 1
= Ep {ZdB(x“y\F) )} {e—T,izv)(Xf,) LTV X {O (K) +0 <K>} + Oy (ﬁ)}
= P (B(Xz,l/f)) { TV (X)) 4o T (X) {O <1K> +0 ;{) + Ox \/})}
1 (N) (N) 1 1 1
> Pmin* OX,; 7| {eTk (Xi) + 67T’° (Xi) . {O ) + O ()} + Ox >}
= Ox, (K s) + Ox, (K—%). (182)
g2 From (I81) and (I82), we see
[ . _p(N)
e [ s 7]
[ al . (V)
= Exm |L-) Ep [de(xi’l/m(x) e Tk }
L =1
[ N d d+1
< By [1-20x (K7#) + Ox (K”)]
L =1
= 1-~N-{o(k ) +o(k)}
- 17N~O<K*%) (183)

813 In the similar manner to obtain (I83)), we obtain the upper bound of the third term in (I67):

By [Ep [idoa |e”™[]] =1- N -0 (K~#). (184)

814 Summarizing (167), (I80), (I83) and (184), we have

Bxgo [ Qi - x|

< N'O(K_%)+{1—N~O(K—%)}+{1—N.O(K—%)}

- 27N-O(K*%). (185)
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For the upper bound of the second term in (T66)), from Propsition [C.13 we obtain

o
\/;Eu’QK 7Q‘ S \/La(QavaK) - La(Qava*) (186)
Thus, under Assumption E2, we see
Cl
E ’ . ’< Lo 187
where C = /(2 - Cy)/ .

Considering the expectation Ey (v, [-] for the both sides of the above equation, we have
P

1

Eyn) {EM‘QK - QH ~0 (KT) : (188)

Finally, (I63), (183), and (I88), we have

Exoo [W(@, QN < By [Eu ‘Q(Ié\l) - QH
< Ex;m {EM‘Q%V) - QKH + EX;M [Eu QK — Q|}

2-N-0(K#)+0 (K1)

(189)
From this, for sufficiently large K > 0, we see
AN _d 1
EX;N)[WI(Q,Q;(})] <2-N-K % 4+K 3.
Here, we show (IG1).
This completes the proof. O
d+6
proof of Corollary[C24) For[161] substituting K, for K, and N = K2 , we have
B (Q 0N < 2-K,F K4 K,*
x (@, Q)] = 2-Ko* - Ky * + K,
s _1
= 2-Kj+K,"*. (190)
This completes the proof. O

s’ ’
proof of Corollary|C.25 For the setting of the proposition, we have K> = N T = 2. Thus, for
190l we see

A(N) o -3
ExonW1(Q, Q)] < 2-K," - K, * + K,
- 2 921K;®
= K,°?.
This completes the proof. O
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D Neumerical Experiments

In this section, we report the results of numerical experiments conducted in this study.

D.1 Experiments on convergence for different values of o

In this section, we report the results of the numerical experiments related to the discussion in Section
the results of the numerical experiments on the convergence of learning for different values of «
are presented.

Experimental Setup. For a = —3,—-2,—-1,0.2,0.5,0,8, 2.0, 3.0, and 4.0, we generated training
and test dataset, and then trained an NGB model with the training dataset while estimating the «
divergence at each learning step with the test dataset. One hundred numerical simulations were
performed for each a. As a result of the experiment, the median of the estimated value and ranges
between the 45th and 55th percentile quartiles and between the 5th and 95th percentile quartiles at
each learning step are reported.

Synthetic Data. We generated synthetic data of size 5000 from 5-dimantional normal distribution
{X1,Xs,..., X5} such that E[X;] = 0, Var[X;] = 1 and E[X, - X;] = 0.8 (i # j), for each of the

training and test datasets.

Estimating the o divergence. The « divergence was estimated in the following way

) — # _ l B aTo, (x)| _ n (a—1)-Ty, (x*¢)
DaQIP)O) = =y~ g Fele |- (191)
1
a(i-a) L (0:) (192)

where T, is a model at learning step ¢ in Algorithm [Tl and x'¢ denotes the test dataset. Note that,

decreasing of the estimated divergence Dy, (Q||P)(¢) in (I91) implies increasing of the loss L (6;)
in (192).

Implementation and Training Details. We used a neural network which has 3 hidden layers of
100 units in each layer. The Adam algorithm in PyTorch was used. For the hyperparameters in the
training, the learning rate was 0.001, BathSize was 2500, and the number of epochs was 500. A
NVDIA Tesla K80 GPU was used. It took approximately four hours to conduct all simulations for
each value of a.

Results. Figure[TlandRlshow the results of estimating the a divergence over the number of learning
steps during the optimization. Figure [[lis for « = —3,—2,—1,2,3 and 4, and Figure [2 is for
o = 0.2,0.5, and 0.8. The y-axis of each graph represents the estimated value of the « divergence,
and the x-axis of each graph represents the learning step. The solid blue line shows the median of
the estimates of the « divergence. The dark blue area shows the ranges of the estimates between the
45th and 55th percentiles, and the light blue area shows the range of the estimates between the 5th
and 95th percentile quartiles.

Discussion. As shown in Figure[1l the estimates of the « divergence diverged. This corresponds
to a negative divergence of the loss function £, (6;) in (I92), and then implies that Eg[e?:] — 0
for « > 1, and Eg[e’®:] — oo for @ < 0 in (I9I). The discussion in Section [3 suggests that
E[V¢L,(0)] — 0. That is, the gradients of the neural networks in this case vanished for a@ =
—3,—2,—1,2, 3 and 4. However, as shown in Figure[Il the estimates of the « divergence converge
stably for o = 0.2, 0.5, and 0.8.

43



1026 102(5

1.5
1.5
1.0
. .10
e _
w 0.5
0.0 y : = 0.0 ; =
0 100 200 300 400 500 0 100 200 300 400 500
Steps Steps
(a)a=-3 b)a=-2
1026 1024
1.2
1.5
1.0
=0.8 s
Q e 1.0
0.5
0.5
0.2
0'00 100 200 300 400 500 oY 100 200 300 400 500
Steps Steps
©a=-1 d)a=20
1024 1024
1.5
3.0
1.0 5
Sy 320
0.5 10
e 100 200 300 400 500 el 100 200 300 400 500
Steps Steps
(e)a=3.0 ®a=4.0
Figure 1: Results of estimating the « divergence for o« = —3,—2, —1,2, 3 and 4, over the number

of learning steps during the optimization. The y-axis of each graph represents the estimated value
of the a divergence, and the z-axis of each graph represents the learning step. The solid blue line
shows the median of the estimates of the « divergence. The dark blue area shows the ranges of
the estimates between the 45th and 55th percentiles, and the light blue area shows the range of the
estimates between the 5th and 95th percentile quartiles.
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Figure 2: Results of estimating the o divergence for o« = 0.2,0.5 and 0.8, over the number of
learning steps during the optimization. The y-axis of each graph represents the estimated value of
the o divergence, and the z-axis of each graph represents the learning step. The solid blue line
shows the median of the estimates of the o divergence. The dark blue area shows the ranges of
the estimates between the 45th and 55th percentiles, and the light blue area shows the range of the
estimates between the 5th and 95th percentile quartiles.

D.2 Experiments to confirm the relationship between dimensions of dataset and steps in
training

In this section, we report the results of numerical experiments related to the discussion in Section [t
the results of numerical experiments to confirm the relationship between dimensions of dataset and
steps in training are presented.

Experimental Setup. We generated training and test datasets of dimensions d = 2, 3, 4, 5, 6,
and 7, and then trained an NGB model with the training dataset while estimating the o divergence at
each learning step with the test dataset. One hundred numerical simulations were performed for each
dimension d. As a result of the experiment, the median of the estimated value and ranges between
the 5th and 95th percentile quartiles at each learning step are reported.

Synthetic Data. Foreachd = 2, 3,4, 5, 6, and 7, we generated the training and test datasets of size
5000 from d-dimantional normal distribution { X1, X, ..., X4}, such that E[X;] = 0, Var[X;] = 1
and E[X; - X;] = 0.8 (i # j).
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Table 2: The early stop step (IN2/%) and the median of the steps at which the estimated divergence
reaches its maximum (median(Ky,,x)), for each dimension d = 2, 3, 4, 5, 6, and 7.

d=2 d=3 d=4 d=5 d=6 d=7

N2/d 5000 292 71 30 17 11
median(Kp.,) 130 112 130 136 50 50

Estimating the o divergence. The « divergence was estimated in the following way:

b = # _ l 5 a-To, (x*)| _ ; (a—1)-Tp, (x*¢)
Da(@QIIP)(t) = — T [e ] —Fr [e (193)
1
a(i-a) Lo (0:) (194)

where Ty, is a model at learning step ¢ in Algorithm [Tl and x*¢ denotes the test dataset. Note that,
decreasing of the estimated divergence D, (Q||P)(t) in (I93) implies increasing of the loss L, (6;)
in (I94).

Implementation and Training Details. We used a neural network which has 3 hidden layers of
100 units in each layer. The Adam algorithm in PyTorch was used. For the hyperparameters in the
training, the learning rate was 0.001, BathSize was 2500, and the number of epochs was 500. A
NVDIA Tesla K80 GPU was used. It took approximately four hours to conduct all simulations for
each d.

Results. Let K.« denote the step at which the estimated divergence reaches its maximum:

Komax = argmaxD, (Q||P)(t). (195)
t

Table Blists N2/, the early stop step obtained from (23), and the median of K.y, for each dimen-
siond = 2, 3, 4, 5, 6, and 7. In Figure Bl we show the results of estimating the o divergence over
the number of learning steps during the optimization. Since the value of the « divergence changes
as the dimension of the dataset changes, we divided by the the estimated value of the divergence
by the true value of the divergence to normalize the results of each dimension. The y-axis of each
graph represents the estimated value of the o divergence divided by the true value of the divergence,
and the x-axis of each graph represents the learning step. The solid blue line shows the median of
the estimates of the « divergence. The light blue area shows the range of the estimates between
the 5th and 95th percentile quartiles. The dashed red line indicates Y=1, which corresponds to the
theoretical value of the estimate for each d.

divided

Discussion. As shown in Table ] the steps from the early stop method and those at which the
estimates decreased were approximately consistent, except in the case of d = 2. However, the
estimates of the data of the low dimensions, particularly d = 2, decreased earlier than the early
stop method suggests. This may be because C in 23] for the data of low dimensions can be small
because the neural network learns quickly when the dimensions of the data are low. However, Figure
shows that the estimates of the divergence decreased slowly when the dimensions of the data are
low, and they decreased more quickly when the dimensions of the data were higher. These results
suggest that the curse of dimensionality of balancing is easier to observe when dimensions of data
are higher.
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Figure 3: Results of estimating the « divergence for a« = —3,—2, —1,2, 3 and 4, over the number

of learning steps during the optimization. The y-axis of each graph represents the estimated value of
the a divergence divided by the true value of the divergence, and the x-axis of each graph represents
the learning step. The dashed red line indicates Y=1, which corresponds to the theoretical value of
the estimate for each d. The solid blue line shows the median of the estimates of the o divergence.
The dark blue area shows the ranges of the estimates between the 45th and 55th percentiles, and the
light blue area shows the range of the estimates between the 5th and 95th percentile quartiles.
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D.3 Experiments for esitimating causal effects of joint and multidimensional interventions
with different sample sizes

In this section, we report the results of numerical experiments related to the discussion in Section
[8 the results of numerical experiments for esitimating causal effects of joint and multidimensional
interventions with different sample sizes are presented.

Experimental Setup. The following two experiments were conducted, in which synthetic
data of size N = 1000,10000, and 100000 were generated using the method developed by
Vegetabile et al.(2021).

» Experiment 1. An experiment on estimating the causal effect of a single intervention,
especially for continuous intervention, E[Y |do(A), X].

* Experiment 2. An experiment to estimate the causal effect of a mixture of both arbitrary
discrete and continuous interventions, E[Y |do(A), do(X1), do(X2), do(X3)].

Experimental Details. Experiments 1 and 2 were conducted using the following steps.

Step 1: We created training dataset of size N = 1000, 10000, and 100000, and test dataset
with size N = 1000. The training dataset were generated using the method developed by
Vegetabile et all(2021)). The test dataset were generated from the following distribution:

* Experiment 1. P(Y|do(A),X) x P(A) x P(X),
« Experiment 2. P(Y |do(A), do(X1), do(Xa), do(X3)) x P(A)x P(X1) x P(X3) x P(X3),

where P denotes the distribution of the training dataset. To create the test dataset, we shuffled the
dataset generated from the same distribution as the training dataset.

Step 2: The balancing weights were estimated for each experiment. We estimated BW (A, X : Tp,)
for Experiment 1, and BW (A, X1, X2, X3 : Ty, ) for Experiment 2.

Step 3: We created models for each experiment using the linear regression (LR) or the gradient
boosting tree (GBT) algorithm with our weights from the previous step. The hyperparameters were
tuned to create models of GBT.

Step 4: We estimate the average causal effects E[Y|do(A), X] and E[Y|do(A),do(X),do(X2),

do(X3)] using the predictions of the models from Step 2 with the test dataset. Finally, we report the
mean squared error (RMSE) between the true and estimated values.

Baseline Method. The main baseline method used in our experiments is entropy balancing [30].
We compared our method with the method for balancing X with A for each of the moments from
1 to 4. For Experiment 1, both our method and the baseline method estimated the same target:
E[Y|do(A),X]. However, no existing method can fully deal with the target of Experiment 2:
E[Y|do(A),do(X1),do(X2),do(X3)]. Therefore, the same entropy balancing as in Experiment
1 was used in Experiment 2. This may be an unfair comparison to the baseline method. In addition,
we included a “ naive" estimation, using algorithms with no sample weights, as a baseline. For the
calculation of entropy balancing weights, WeightIt library in R was used. [].

Training Data Set. Specifically, we used the following steps to generate the dataset. First,
W = (Wy, Wa, W3, Wy, W5) were generated independently, such that W; ~ AN(—0.5,1),
Wy ~ N(1,1), W3 ~ N(0,1), Wy ~ N(1,1), and Xy, = {0,1,2} with P(W5 = 0) = 0.70 and
P(Ws =1) = P(W5 =2) = 0.15. Second, A and Y were generated as follows:

A~ ‘%.2(df = 37 MA(WMWQa W47W5))a
1
Y o= [(-0.154% + AW} + W) — 15)
+ (W7 + 3)? + 2(Ws — 25)% + W3)
—C+¢l, (196)

https://cran.r-project.org/web/packages/WeightIt/index.html
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where pa (Wi, Wo, Wy, W5) = 5|Wq| + 6|Ws| + |Wy| + a, anda = 0if W5 = 0,and a = 1
if Ws = 1,and a = 5if W5 = 2, and C = E[(W; + 3)?] + 2E[(W» — 25)?] + E[W3), and
e ~ N(0,1). Here, 2 2(df = n, p) is the noncentral x? distribution with n degrees of freedom and
a noncentral parameter x. Finally, we create new variables X = (X, X5, X3), as observed values
of W using the following transformation:

Xy = (X(l,l),X(1,2),X(1,3))7 (197)
where X (1 1) = exp (W1/2),
X(1,2) = W2 /(1 + exp(W1)) + 10,
X(173) = W1W3/25 + 0.6,

X, = (Wy—-1)% (198)
(1,0) if W5 =0,

X; = 0,1) ifW5=1, (199)
(0,0) if W5 = 2.

Test Data  Set. We first generated dataset from the same distribution as the training dataset.
Second, the dataset were shuffled by the index, with the following divided parts treated as a single
piece of data: for Experiment 1, A and X were shuffled by the index, and for Experiment 2, each
of A, Xy, Xo and X3 were shuffled by the index. Third, using the inverse transformation of Eq.
m—, we calculated (Wl, WQ,W37W4,W5) from X; = (X(l,l)aX(1,2)7X(1,3))’ X, and
X3 of the shuffled dataset:

Wi = 2log Xy, Wa=Xaz (1+X7,),
25(X(1,3) — 0.6)
W = - 7 W = X 1
3 210g X1.1) ) 4=V X2+ 1,

0 if X5 =(1,0),
1 ifXs = (0,1),
2 if X3 = (0,0).

Ws

Finally, the true values of Y for causal effects were calculated using the terms in Eq. (I96) without
the term €.

Implementation and Training Details. N = 1000: For experiments with the dataset of size N =
1000, we used a neural network which has 10 hidden layers of 100 units in each layer. & = 0.5 was
used to estimate the divergence. The Adam algorithm in PyTorch was used. For the hyperparameters
in the training, the learning rate was 0.0001, BathSize was 1000, and the number of epochs was 70.
A NVDIA Tesla K80 GPU was used. It took approximately 40 min to conduct all the simulations
for each experiment.

N = 10000: For experiments with the dataset of size N = 10000, We used a neural network which

has 10 hidden layers of 100 units in each layer. & = 0.5 was used to estimate the divergence. The
Adam algorithm in PyTorch was used. For the hyperparameters in the training, the learning rate was
0.0001, BathSize was 2500, and the number of epochs was 200. A NVDIA Tesla K80 GPU was
used. It took approximately 7 h to conduct all the simulations for each experiment.

N = 100000: For experiments with the dataset of size N = 100000, We used a neural network

which has 10 hidden layers of 100 units in each layer. o« = 0.5 was used to estimate the divergence.
The Adam algorithm in PyTorch was used. For the hyperparameters in the training, the learning rate
was 0.0001, BathSize was 2500, and the number of epochs was 200. A NVDIA Tesla K80 GPU was
used. It took approximately 78 h to conduct all the simulations for each experiment.
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Table 3: Average RMSE for estimation in Experiments 1 and 2 for dataset of size N = 1000, 10000,
and 100000. For entropy balancing, the number to the right side of the method name, “(m),” denotes
the number of moments that are balanced. The results from 100 simulations are in the form of “mean
(std. err.) 7.

(a) N = 1000

Experiment 1 Experiment 2
Method LR GBT LR GBT
Unweighted 1.347(0.039) 0.739(0.066) 1.347(0.033) 0.741(0.068)
Entropy Balancing(1) 1.303(0.056) 0.724(0.058) 1.303(0.052) 0.726(0.060)
Entropy Balancing(2) 1.206(0.029) 0.693(0.056) 1.206(0.026) 0.698(0.055)
Entropy Balancing(3) 1.201(0.026) 0.690(0.054) 1.201(0.024) 0.698(0.061)
Entropy Balancing(4) 1.203(0.027) 0.699(0.057) 1.203(0.025) 0.699(0.061)
NBW 1.347(0.039) 0.745(0.065) 1.347(0.034) 0.738(0.063)

(b) N = 10000

Experiment 1 Experiment 2
Method LR GBT LR GBT
Unweighted 1.342(0.030) 0.489(0.035) 1.342(0.026) 0.489(0.039)
Entropy Balancing(1) 1.295(0.033) 0.486(0.026) 1.295(0.030) 0.487(0.035)
Entropy Balancing(2) 1.194(0.025) 0.466(0.036) 1.194(0.025) 0.468(0.041)
Entropy Balancing(3) 1.187(0.025) 0.459(0.032) 1.187(0.024) 0.457(0.036)
Entropy Balancing(4) 1.189(0.024) 0.457(0.035) 1.189(0.023) 0.452(0.034)
NBW 1.274(0.038) 0.488(0.035) 1.273(0.031) 0.485(0.032)

(c) N = 100000

Experiment 1 Experiment 2
Method LR GBT LR GBT
Unweighted 1.342(0.027)  0.457(0.048) 1.342(0.023) 0.459(0.044)
Entropy Balancing(1) 1.299(0.029) 0.453(0.037) 1.298(0.027) 0.455(0.036)
Entropy Balancing(2) 1.195(0.025) 0.391(0.034) 1.194(0.023) 0.386(0.039)
Entropy Balancing(3) 1.186(0.024) 0.361(0.025) 1.186(0.023) 0.360(0.023)
Entropy Balancing(4) 1.188(0.024) 0.353(0.022) 1.187(0.023) 0.356(0.020)
NBW 1.239(0.095) 0.376(0.033) 1.252(0.080) 0.388(0.030)

Results. We report the average and standard errors of the root mean squared error (RMSE) be-

tween the estimated and true values of the average causal effects for synthetic data of size N = 1000,
10000, and 100000. Table[llists the results of Experiments 1 and 2 for each N. Each result is in the
form of “ mean (std. err.) ” from 100 simulations.

Discussion. As shown in all the results, the results of NBW were less accurate than those of the
entropy-balancing method. Moreover, the results for NV = 1000 shows that NBW were less accurate
than the unweighted estimation. However, as seen in all results for N = 100000, the accuracy of
NBW was superior to that of the unweighted estimation, which was close to the accuracy of the
entropy-balancing method. These results imply that the sample size requirements of the proposed
method are larger than those of the entropy balancing method.
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Algorithm 3 Back-Propagation Algorithm using Neural Balancing Weights

Input: Data (y,X1,Xs,...,X,,2) = {(y',x},x5,...,x,,2)])i =1,2,...,N}
1: A Neural Balancing Weight Model T'
Output: A Neural Network Model f, for Estimating £5[Y'|X, Z]
2: repeat
3: G fo(x1,X2,...,Xp,2) // Forward Propagation

BW (x1,X2,...,Xp,2) £
Errg < y—19 // Obtaining Errors for fg
L(¢) < MEAN(Erry @ Errg @ BW (x1,X2,...,Xn,2)) // Calculating Loss L(¢)
¢+ ¢ —VL(P)

until convergence

AN A

ss7 E Back-Propagation Algorithm using Neural Balancing Weights
988 We show a back-propagation algorithm using NBW for MSE loss in Algorithm 3] The MSE loss

989 here is calculated by the mean of the element wise product of both the original squared errors and
990 the balancing weights.
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