
A Organization of the supplementary413

The organization of this supplementary document is as follows: In Section B, we lists definitions of414

the notations used in the proofs; Section C presents the theorems and propositions referenced in this415

study and their proofs; In Section D, the numerical experimental results related to the discussion416

in this study are provided; In Section E, the backpropagation algorithm referred to in Section 6 is417

presented. In addition to this material, the code used in the numerical experiments is also submitted418

as supplementary material.419

B Notations420

Table 1 lists the notations and definitions used in the proofs of Section C.421

C Proofs422

C.1 Proofs for Section 5423

In this Section, we provide propositions and their proofs, as referred to in Section 5.424

Lemma C.1. A variational representation of α-divergence is given as425

Dα(Q||P ) = sup
φ≥0

{
1

α(1− α) −
1

α
EQ

[
φ−α

]
− 1

1− αEP
[
φ1−α

]}
, (27)

where supremum is considered over all measurable functions with EP [φ
1−α] <∞ and EQ[φ

−α] <426

∞. The maximum value is achieved at φ = dQ/dP .427

proof of Lemma C.1. Let fα(t) = {t1−α − (1− α) · t− α}/{α(α− 1)} for α 6= 0, 1, then428

EP

[
fα

(
dQ

dP

)]
= EP

[
1

α(α− 1)

(
dQ

dP

)1−α
+

1

α

(
dQ

dP

)
+

1

1− α

]

=
1

α(α− 1)
EP

[(
dQ

dP

)1−α]
+

1

α
+

1

1− α
= Dα(Q||P ). (28)

Note that, the Legendre transform for gα(x) = x1−α/(1− α) is obatined as429

g∗α(x) =
α

α− 1
x1−

1
α . (29)

In addition, note that, for the Legendre transforms of any fuction h(x), it hold that430

{C · h(x)}∗ = C · h∗
( x
C

)
and {h(x) + C · t+D}∗ = h∗(x− C)−D. (30)

Here, A∗ denotes the the Legendre transform of A.431

From (29) and (30), we have432

f∗α(t) =

{
1

(−α)gα(t) +
1

α
t+

1

1− α

}∗

=
1

(−α)g
∗
α

(
−α ·

{
t− 1

α

})
− 1

1− α

= − 1

α
g∗α (1− αt) +

1

α− 1

= − 1

α

{
α

α− 1
(1− αt)1− 1

α

}
+

1

α− 1

=
1

1− α (1− αt)1− 1
α +

1

α− 1
. (31)
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Table 1: Notations and definitions used in the proofs

Notations Definitions, Meanings

1(·) A propositional function: 1(cond) = 1 if cond is true, and
1(cond) = 0 otherwise.

idA The identity function of a set A: idA(x) = 1 if x ∈ A, and
idA(x) = 0 otherwise.

‖ · ‖ the Euclidean norm.
Oa(x) A term such that limx→0O(x)/x = Ca <∞, where Ca is a scalar value

determined by a.
O(x) A term such that limx→0O(x)/x < C, where C is constant.
f . g A relationship between two functions f and g such that

lim supn→∞ f(n)/g(n) <∞.
P ≪ Q P is absolutely continuous with respect to Q.
P , Q A pair of probability measures with P ≪ Q and Q≪ P .
µ A probability measure with P ≪ µ and Q≪ µ.
dP
dQ The Radon–Nikodým derivative of P with respect to Q.

When dQ
dµ (x) = 0, this is defined as dP

dQ (x) = 0.

X A random variable with a probability distribution µ.
X∼P A random variable obtained from X by changing the probability

distributions from µ to P : P (X∼P ≤ x) = µ(X ≤ x), ∀x ∈ Rd.
Intuitively, an observed value of X in P .

X∼Q A random variable obtained from X by changing the probability

distributions from µ to Q: P (X∼Q ≤ x) = µ(X ≤ x), ∀x ∈ Rd.
Intuitively, an observed value of X in Q.

X(N) N i.i.d. random variables from µ: X(N) = {X1,X2, . . . ,XN}, Xi iid∼ µ.

X
(N)
P Random variables obtained from X(N) by changing the probability

distributions from µ to P : X
(N)
P = {X1

∼P ,X
2
∼P , . . . ,X

N
∼P }, µ(Xi ≤ x),

∀x ∈ Rd, (1 ≤ i ≤ N ). Intuitively, observed values of X(N) in P .

X
(N)
Q Random variables obtained from X(N) by changing the probability

distributions from µ to Q: X
(N)
Q = {X1

∼Q,X
2
∼Q, . . . ,X

N
∼Q}, µ(Xi ≤ x),

∀x ∈ Rd, (1 ≤ i ≤ N ). Intuitively, observed values of X(N) in Q.

P̂ (N) The (empirical) distributions of X
(N)
P : P̂ (N)(x) = 1

N

∑
i 1(X

i
∼P = x).

Q̂(N) The (empirical) distributions of X
(N)
Q : Q̂(N)(x) = 1

N

∑
i 1(X

i
∼Q = x).

T α The set of functions defined in Theorem 6.1.
U = {U1, . . . , Um} Unobserved random variables.
V = {V1, . . . , Vn} Observed random variables.
XA The domain of variables A.
G = GVU The causal graph for V ∪U.
Pa(A)G All the parents of the observed variables in G for for A ⊂ V.
Ch(A)G All the children of the observed variables in G for for A ⊂ V.
An(A)G All the ancestors of the observed variables in G for for A ⊂ V.
De(A)G All the descendants of the observed variables in G for for A ⊂ V.
Wp The Wasserstein distance of order p.
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By differentiating fα(t), we obtain433

f ′α(t) = −
1

α
t−α +

1

α
. (32)

Thus, we have434

EQ [f ′α(φ)] = EQ

[
− 1

α
φ−α +

1

α

]
. (33)

From (31) and (32), we obtain435

EP [f∗α(f
′
α(φ))] = EP

[
1

1− α

{
1− α ·

(
− 1

α
φ−α +

1

α

)}1− 1
α

+
1

α− 1

]

= EP

[
1

1− αφ
1−α +

1

α− 1

]
. (34)

In additionm, from (33) and (34), we see for both EP [φ
1−α] < ∞ and EQ[φ

−α] < ∞ to hold is436

equivalent for both EP [f∗α(f
′
α(φ))] <∞ and EQ [f ′α(φ)] <∞ to hold.437

Finally, substituting (33) and (34) for (10), we have438

Dα(Q||P ) = sup
φ≥0
{EQ[f ′α(φ)]− EP [f∗α(f ′α(φ))]}

= sup
φ≥0

{
EQ

[
− 1

α
φ−α +

1

α

]
− EP

[
1

1− αφ
1−α +

1

α− 1

]}

= sup
φ≥0

{
1

α(1− α) −
1

α
EQ

[
φ−α

]
− 1

1− αEP
[
φ1−α

]}
.

This completes the proof.439

Proposition C.2. α-divergence can be written as follows:440

Dα(Q||P ) = sup
T :Rd→R

{
1

α(1− α) −
1

α
EQ

[
eα·T

]
− 1

1− αEP
[
e(α−1)·T

]}
, (35)

where supremum is considered over all measurable functions T : Rd → R with EP [e
(α−1)·T ] <∞441

and EQ[e
α·T ] <∞. The equality holds for T ∗ satisfying442

dQ

dP
= e−T

∗

. (36)

proof of Proposition C.2. Substituting e−T for φ in (27), we have443

Dα(Q||P ) = sup
φ≥0

{
1

α(1− α) −
1

α
EQ

[
φ−α

]
− 1

1− αEP
[
φ1−α

]}

= sup
T :Rd→R

{
1

α(1− α) −
1

α
EQ

[{
e−T

}−α]− 1

1− αEP
[{
e−T

}1−α]
}

= sup
T :Rd→R

{
1

α(1− α) −
1

α
EQ

[
eα·T

]
− 1

1− αEP
[
e(α−1)·T

]}
. (37)

Finally, from Lemma C.1, the equality for (37) holds if and only if444

dQ

dP
= e−T

∗

. (38)

This completes the proof.445

Proposition C.3. For T ∈ T α, let446

lα (X∼Q,X∼P ;T ) =
1

α
eα·T (X∼Q) +

1

1− αe
(α−1)·T (X∼P ). (39)

Then the optimal function T ∗ for infT :Rd→R lα (X∼Q,X∼P ;T ) is obtained as T ∗ = − log dQ/dP ,447

µ-almost everywhere.448
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proof of Proposition C.3. From the definition for X∼Q and X∼P , we see449

eα·T (X∼Q=x) = eα·T (X=x) · dQ
dµ

(x),

and450

e(α−1)·T (X∼P=x) = e(α−1)·T (X=x) · dP
dµ

(x).

Subsequently, we obtain451

lα(X∼Q = x,X∼P = x;T ) =
1

α
· eα·T (X=x) · dQ

dµ
(x) +

1

1− α · e
(α−1)·T (X=x) · dP

dµ
(x).

Note that, from Jensen’s inequality, it holds that452

log(p ·X + q · Y ) ≥ p · log(X) + p · log(Y ), (40)

for X,Y > 0 and p, q > 0 with p+ q = 1, and the equality holds when X = Y .453

From this equation, by letting X = eα·T (X=x) · dQdµ (x), Y = e(α−1)·T (X=x) · dPdµ (x), p = 1−α and454

q = α, we observe that455

log(p ·X + q · Y ) = log

(
1

α · (1− α) · lα(X∼Q = x,X∼P = x;T )

)
,

and log
(

1
α·(1−α) · lα(X∼Q = x,X∼P = x;T )

)
is minimized when eα·T (X=x) · dQdµ (x) =456

e(α−1)·T (X=x) · dPdµ (x), µ-almost everywhere.457

Then, we see that infT :Rd→R lα(X∼Q = x,X∼P = x;T ) is achieved at e−T
∗(x) = dQ

dP , µ-almost458

everywhere. Hence, we have T ∗ = − log dQ/dP , µ-almost everywhere.459

460

Proposition C.4. For T ∈ T α, let T+k = T + k. Then the optimal function T ∗ for461

infk∈R lα
(
X∼Q,X∼P ;T+k

)
is satisfying that EP

[
e−T

∗]
= 1, where lα (X∼Q,X∼P ;T ) is de-462

fined as (39).463

proof of Proposition C.4. From the definition for X∼Q and X∼P , we see464

eα·T
+k(X∼Q=x) = eα·T

+k(X=x) · dQ
dµ

(x) = eα·k · eα·T (X=x) · dQ
dµ

(x),

and465

e(α−1)·T (X∼P=x) = e(α−1)·T+k(X=x) · dP
dµ

(x) = e(α−1)·k · e(α−1)·T (X=x) · dP
dµ

(x).

Subsequently, we obtain466

lα(X∼Q = x,X∼P = x;T ) = eα·k · eα·T (X=x) · dQ
dµ

(x) + eα·k · eα·T (X=x) · dQ
dµ

(x).

For Jensen’s inequality (40), letX = eα·k ·eα·T (X=x) · dQdµ (x), Y = e(α−1)·k ·e(α−1)·T (X=x) · dPdµ (x),467

p = 1−α and q = α. Then, lα
(
X∼Q,X∼P ;T+k

)
is minimized when eα·k∗ · eα·T (X=x) · dQdµ (x) =468

e(α−1)·k∗ · e(α−1)·T (X=x) · dPdµ (x), µ-almost everywhere.469

Then, we see470

e−k∗ · dQ
dµ

(x) = e−T (x) · dP
dµ

(x).

By integrating both sides of the above equality over Rd with µ, we obtain471

e−k∗ = EP
[
e−T

]
.
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From this, we have472

ek∗ · EP
[
e−T

]
= 1.

Now, since T∗ = T + k∗, we see473

EP
[
e−T∗

]
= EP

[
e−T+k∗

]
= ek∗ · EP

[
e−T

]
= 1.

This completes the proof.474

Proposition C.5. For a fixed point x0 ∈ Rd, suppose that dQdµ (x0) > 0 and dP
dµ (x0) > 0. For a475

constant L > 0, let IL denote an interval [−L − log dQ
dP (x0), L − log dQ

dP (x0)]. Subsequently, let476

f : IL → R be a function as follows:477

f(t) =
1

α
· eα·t · dQ

dµ
(x0) +

1

1− α · e
(α−1)·t · dP

dµ
(x0). (41)

Let λ2 = e−L ·
{
dQ
dµ (x0)

}1−α {
dP
dµ (x0)

}α
. Then, f(t) satisfies f ′′(t) · t2 ≥ λ

2 · t2 for all t ∈ IL,478

that is, f(t) is λ-strongly convex. In addition, |f ′(t)| ≤ 2 · eL ·
{
dQ
dµ (x0)

}1−α {
dP
dµ (x0)

}α
holds479

for all t ∈ IL, and f(t) is minimized at t∗ = − log dQ
dP (x0).480

proof of Proposition C.5. By repeating the derivative of f(t), we obtain481

f ′(t) = eα·t · dQ
dµ

(x)− e(α−1)·t · dP
dµ

(x), (42)

and482

f ′′(t) = α · eα·t · dQ
dµ

(x) + (1− α) · e(α−1)·t · dP
dµ

(x). (43)

First, we see that f ′′(t) ≥ λ
2 holds for all t ∈ IL. From (43), we have483

f ′′(t) ≥ α · eα·(t∗−L) · dQ
dµ

(x) + (1− α) · e(α−1)·(t∗+L) · dP
dµ

(x)

≥ α · e−α·L · eα·t∗ · dQ
dµ

(x) + (1− α) · e(α−1)·L · e(α−1)·t∗ · dP
dµ

(x)

≥ α · e−L · eα·t∗ · dQ
dµ

(x) + (1− α) · e−L · e(α−1)·t∗ · dP
dµ

(x)

= e−L ·
{
α · eα·t∗ · dQ

dµ
(x) + (1− α) · e(α−1)·t∗ · dP

dµ
(x)

}
. (44)

Note that, from (40), we see484

p ·X + q · Y ≥ p ·Xp · Y q, (45)

for X,Y > 0 and p, q > 0 with p + q = 1, and the equality holds when X = Y . By letting485

X = eα·t∗ · dQdµ (x), Y = e(α−1)·t∗ · dPdµ (x), p = α, and q = 1− α in the above equality, we obtain486

α · eα·t∗ · dQ
dµ

(x) + (1− α) · e(α−1)·t∗ · dP
dµ

(x) ≥
{
eα·t∗ · dQ

dµ
(x)

}α{
e(α−1)·t∗ · dP

dµ
(x)

}1−α

= e{α2−(1−α)2}·t∗
{
dQ

dµ
(x)

}α{
dP

dµ
(x)

}1−α

=

{
dQ

dP
(x)

}1−2α{
dQ

dµ
(x)

}α{
dP

dµ
(x)

}1−α

=

{
dQ

dµ
(x)

}1−α{
dP

dµ
(x)

}α
. (46)

Thus, from (44) and (46), we see f ′′(t) ≥ λ
2 holds for all t ∈ IL.487
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Next, we obtain |f ′(t)| ≤ 2eL
{
dQ
dµ (x0)

}1−α {
dP
dµ (x0)

}α
. From (42), we have488

|f ′(t)| ≤ eα·(t∗+L) · dQ
dµ

(x) + e(α−1)·(t∗−L) · dP
dµ

(x)

= eα·t∗ · eα·L · dQ
dµ

(x) + e(α−1)·t∗ · e(1−α)·L · dP
dµ

(x)

≤ eL
{
eα·t∗ · dQ

dµ
(x) + e(α−1)·t∗ · dP

dµ
(x)

}

= eL

[{
dQ

dP
(x)

}−α
dQ

dµ
(x) +

{
dQ

dP
(x)

}1−α
dP

dµ
(x)

]

= eL

[{
dQ

dµ
(x)

}1−α{
dP

dµ
(x)

}α
+

{
dQ

dµ
(x)

}1−α{
dP

dµ
(x)

}α]
. (47)

Here, we see f ′(t) ≤ 2 · eL
{
dQ
dµ (x0)

}1−α {
dP
dµ (x0)

}α
.489

The rest of the proposition statement follows from Lemma C.3.490

This completes the proof.491

Corollary C.6. For N fixed points {xi}Ni=1 ⊂ Rd, suppose that dQ
dµ (xi) > 0 and dP

dµ (xi) > 0492

(1 ≤ ∀ ≤ N ). For a constant L > 0, let IiL denote an interval [−L− log dQ
dP (xi), L− log dQ

dP (xi)].493

Subsequently, let f (N) : I1L × I2L × · · · × INL → R be a function as follows:494

f (N)(t) = f (N)(t1, t2, . . . , tN ) =
1

α

1

N

N∑

i=1

eα·ti ·dQ
dµ

(xi)+
1

1− α
1

N

N∑

i=1

e(α−1)·ti ·dP
dµ

(xi), (48)

and let495

λ

2
=

1

N
· min
1≤i≤N

{
e−L ·

{
dQ

dµ
(xi)

}1−α{
dP

dµ
(xi)

}α}
. (49)

Then, f (N)(t) satisfies496

tT · ∇2f (N)(t) · t =
∑

1≤i,j≤N
ti · tj ·

∂2f (N)

∂titj
≥ λ

2
· ‖t‖2, (50)

that is, f (N)(t) is λ-strongly convex.497

In addition, let Di = 2 · eL ·
{
dQ
dµ (xi)

}1−α {
dP
dµ (xi)

}α
, and let D = max {D1, D2, . . . , DN}2.498

Then,499

∥∥∥∇f (N)(t)
∥∥∥
2

=

∥∥∥∥
(
∂

∂t1
f (N)(t),

∂

∂t2
f (N)(t), . . . ,

∂

∂tN
f (N)(t)

)∥∥∥∥
2

≤ D2, (51)

for all t ∈ I1L×I2L×· · ·×INL , and f (N)(t) is minimized at t∗ = (t1∗, t
2
∗, . . . , t

N
∗ ) = (− log dQ

dP (x1),500

− log dQ
dP (x2), . . . ,− log dQ

dP (xN )).501

proof of Corollary C.6. Let502

fi(t) =
1

α
eα·t · dQ

dµ
(xi) +

1

1− αe
(α−1)·t · dP

dµ
(xi), (52)

and let λi
2 = e−L ·

{
dQ
dµ (xi)

}1−α {
dP
dµ (xi)

}α
. From Proposition C.5, for each 1 ≤ i ≤ N ,503

fi(t) satisfies that f ′′i (t) ≥ λi
2 · t and f ′i(t) ≤ Di holds for all t ∈ IiL, and fi(t) is minimized at504

ti∗ = − log dQ
dP (xi).505
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Note that,506

∇2f (N)(t) =




∂2

∂t1t1
f (N)(t) ∂2

∂t1t2
f (N)(t) · · · ∂2

∂t1tN
f (N)(t)

∂2

∂t2t1
f (N)(t) ∂2

∂t2t2
f (N)(t)

...
. . .

∂2

∂tN tj
f (N)(t) ∂2

∂titj
f (N)(t) · · · ∂2

∂tN tN
f (N)(t)




=




1
N · f ′′1 (t1)

1
N · f ′′2 (t2) 0

. . .

0 . . .
1
N · f ′′N (tN )




. (53)

From this, we see507

tT · ∇2f (N)(t) · t =
1

N

N∑

i=1

f ′′i (ti) · t2i

≥ 1

N

N∑

i=1

λi
2
· t2i

=

N∑

i=1

1

N
· λi
2
· t2i

≥
N∑

i=1

λ

2
· t2i

=
λ

2
· ‖t‖2. (54)

In addition, since f (N)(t) = 1
N

∑N
i=1 fi(ti), we have508

∥∥∥∇f (N)(t)
∥∥∥
2

=

∥∥∥∥
(
∂

∂t1
f (N)(t),

∂

∂t2
f (N)(t), . . . ,

∂

∂tN
f (N)(t)

)∥∥∥∥
2

,

=

∥∥∥∥
(

1

N
· f ′1(t1),

1

N
· f ′2(t2), . . . ,

1

N
· f ′N (tN )

)∥∥∥∥
2

≤
∥∥∥∥
(

1

N
·D1,

1

N
·D2, . . . ,

1

N
·DN

)∥∥∥∥
2

≤
∥∥∥∥
(

1

N
·D, 1

N
·D, . . . , 1

N
·D
)∥∥∥∥

2

= D2, (55)

and f (N)(t) is minimized at t∗ = (t1∗, t
2
∗, . . . , t

N
∗ ) = (− log dQ

dP (x1),− log dQ
dP (x2), . . . ,509

− log dQ
dP (xN )).510

This completes the proof.511

Lemma C.7. For T ∈ T α, let512

lα(X
i
∼Q,X

i
∼P ;T ) =

1

α
· eα·T (Xi

∼Q) +
1

1− α · e
(α−1)·T (Xi

∼P ), (56)

Lα(Q,P ;T ) =
1

α
· EQ

[
eα·T (X)

]
+

1

1− α · EP
[
e(α−1)·T (X)

]
, (57)

and let513

lα(X
i
∼Q,X

i
∼P ) = inf

T :Rd→R
lα(X

i
∼Q,X

i
∼P ;T ), (58)

Lα(Q,P ) = inf
T :Rd→R

Lα(Q,P ;T ), (59)

18



where the infimums of (58) and (59) are considered over all measurable functions with T : Rd → R514

with EP [e
(α−1)·T ] <∞ and EQ[e

α·T ] <∞.515

In addition, let516

L̂(N)
α (Q,P ;T ) =

1

α

1

N

N∑

i=1

eα·T (Xi
∼Q) +

1

1− α
1

N

N∑

i=1

e(α−1)·T (Xi
∼P ), (60)

L̂(N)
α (Q,P ) = inf

T :Rd→R
L̂(N)
α (Q,P ;T ). (61)

Then, it holds that517

Eµ

[
L̂(N)
α (Q,P ;T )

]
= Eµ

[
lα(X

i
∼Q,X

i
∼P ;T )

]
= Lα(Q,P ;T ), (62)

518

Eµ

[
L̂(N)
α (Q,P )

]
= Eµ

[
lα(X

i
∼Q,X

i
∼P )

]
= Lα(Q,P ). (63)

proof of Lemma C.7. We first show the last equality in (63) holds. Now, we consider the following519

integral:520

E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P )

]
=

∫ {
1

α(1− α) − lα(X
i
∼Q,X

i
∼P )

}
dµ

=

∫ {
1

α(1− α) − inf
T :Rd→R

lα(X
i
∼Q,X

i
∼P ;T )

}
dµ

=

∫
sup

T :Rd→R

{
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;T )

}
dµ.

(64)

Let T ∗ be the opimal function for (35) in Lemma C.2. Let Tk = − log dQ/dP + 1/k, then from521

Proposition C.3, we have522

lim
k→∞

lα(X
i
∼Q,X

i
∼P ;Tk) = inf

T :Rd→R
lα(X

i
∼Q,X

i
∼P ;T ). (65)

From this, we obtain523

lim
k→∞

E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;Tk)

]
=

1

α(1− α) − lim
k→∞

E
[
lα(X

i
∼Q,X

i
∼P ;Tk)

]

=
1

α(1− α) − inf
T :Rd→R

lα(X
i
∼Q,X

i
∼P ;T )

= sup
T :Rd→R

{
E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;T )

]}
.

(66)

Now, from Lemma C.2, we see524

∣∣∣∣
1

α(1− α) − lα(X
i
∼Q,X

i
∼P )

∣∣∣∣ =

∣∣∣∣ sup
T :Rd→R

{
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;T )

}∣∣∣∣

=
1

α(1− α) −
1

α
eα·T

∗(Xi
∼Q) − 1

1− αe
(α−1)·T∗(Xi

∼P )

=
1

α(1− α) −
1

α

(
dQ

dP
(Xi

∼Q)

)α
− 1

1− α

(
dQ

dP
(Xi

∼P )

)α−1

.

(67)

Let φ(X) denote the term on the right hand side of (67). Then, we observe that525

∣∣∣∣
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;T )

∣∣∣∣ ≤ φ(X) and E[φ(X)] <∞.
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That is, we see that the following sequence is uniformaly integrable for µ:526

{
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;Tk)

}N

k=1

.

Thus, from the property of the Lebesgue integral (25, P188, Theorem 4), we obtain527

E

[
lim
k→∞

{
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;Tk)

}]
= lim
k→∞

E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;Tk)

]
.

(68)

Finaly, from (66) and (68), we have528

1

α(1− α) − E
[
lα(X

i
∼Q,X

i
∼P )

]
= E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P )

]

= E

[
sup

T :Rd→R

{ 1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;T )

} ]

= E

[
lim
k→∞

{
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;Tk)

}]

= lim
k→∞

E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;Tk)

]
∴ (68)

= sup
T :Rd→R

{
E

[
1

α(1− α) − lα(X
i
∼Q,X

i
∼P ;T )

]}
∴ (66)

=
1

α(1− α) − inf
T :Rd→R

lα(X
i
∼Q,X

i
∼P ;T )

=
1

α(1− α) − Lα(Q,P ). (69)

Here, we see529

E
[
lα(X

i
∼Q,X

i
∼P )

]
= Lα(Q,P ). (70)

Next, we show the first equality in (63) holds. Note that, it holds that530

1

N

N∑

i=1

inf
Ti:Rd→R

lα(X
i
∼Q,X

i
∼P ;Ti) ≤ inf

T :Rd→R

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T ) ≤

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T

∗).

(71)
Since infTi:Rd→R lα(X

i
∼Q,X

i
∼P ;Ti) = lα(X

i
∼Q,X

i
∼P ;T∗) from Proposition C.3, we have531

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T

∗) ≤ inf
T :Rd→R

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T ) ≤

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T

∗).

(72)
Therefore,532

inf
T :Rd→R

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T ) =

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T

∗). (73)

From this, we see533

L̂(N)
α (Q,P ) = inf

T :Rd→R

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T )

=
1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T

∗)

=
1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P )

= lα(X
i
∼Q,X

i
∼P ). (74)
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Subsequently, by integrating both sides of the above equation, we have534

E
[
L̂(N)
α (Q,P )

]
= E

[
lα(X

i
∼Q,X

i
∼P )

]
. (75)

Here, we have (63) from (70) and (75).535

To see (62), note that, it holds that536

L̂(N)
α (Q,P ;T ) =

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T ). (76)

By integrating both sides of the above equation, we have537

E
[
L̂(N)
α (Q,P ;T )

]
= E

[ 1
N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;T )

]

=
1

N

N∑

i=1

E
[
lα(X

i
∼Q,X

i
∼P ;T )

]

= E
[
lα(X

i
∼Q,X

i
∼P ;T )

]

= Lα(Q,P ;T ). (77)

Here, we see that (62) holds.538

This completes the proof.539

Proposition C.8. Let Tθ(x) : R
d → R be a function such that the map θ = (θ1, θ2, . . . , θp) ∈ Θ 7→540

Tθ(x) is differentiable for all θ and µ-almost every x ∈ Rd. Assume that, for a point θ̄ ∈ Θ, it holds541

that EP [e
(α−1)·Tθ̄(X)] <∞ and EQ[e

α·Tθ̄(X)] <∞, and there exist a compact neighborhood of the542

θ̄, which is denoted by Bθ̄, and a constant value L, such that |Tψ(x) − Tθ̄(x)| < L‖ψ − θ̄‖ holds.543

Then, for lα(X
i
∼Q, Xi

∼P ;T ) and L̂
(N)
α (Q,P ;T ), Lα(Q,P ;T ) in Proposition C.12, it holds that544

E
[
∇θ Lα(Q̂(N), P̂ (N);Tθ)|θ=θ̄

]
= E

[
∇θ lα(Xi

∼Q,X
i
∼P ;Tθ)|θ=θ̄

]
= ∇θ Lα(Q,P ;Tθ)|θ=θ̄.

(78)
Here, E[ · ] denotes EP [EQ[ · ]].545

proof of Proposition C.8. We now consider the values, as ψ → θ̄, of the following two integrals:546

∫
1

‖ψ − θ̄‖

{
1

α
eα·Tψ − 1

α
eα·Tθ̄

}
dQ, (79)

and547 ∫
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ − 1

1− αe
(α−1)·Tθ̄

}
dP. (80)

Note that, it follows from the intermediate value theorem that548 ∣∣∣∣
1

α
eα·x − 1

α
eα·y

∣∣∣∣ = |x− y| · eα·{y+γ·(x−y)} ( ∃γ ∈ [0, 1] ). (81)

By using the above equation as x = Tψ(x) and y = Tθ̄(x) for the integrand of (79), we see549

∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ(x) − 1

α
eα·Tθ̄(x)

}∣∣∣∣

=
1

‖ψ − θ̄‖ |Tψ(x)− Tθ̄(x)| · e
α·{Tθ̄(x)+γx·(Tψ(x)−Tθ̄(x))} ( γx ∈ [0, 1] )

=
1

‖ψ − θ̄‖ |Tψ(x)− Tθ̄(x)| · e
α·γx·(Tψ(x)−Tθ̄(x)) · eα·Tθ̄(x)

≤ 1

‖ψ − θ̄‖ |Tψ(x)− Tθ̄(x)| · e
αγx|Tψ(x)−Tθ̄(x)| · eα·Tθ̄(x)

≤ L · eαL·‖ψ−θ̄‖ · eα·Tθ̄(x), (82)
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for all ψ ∈ Bθ̄.550

Thus, integrating the term on the left hand side of (82) by Q, we see551

∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ(X) − 1

α
eα·Tθ̄(X)

}∣∣∣∣ dQ

≤
∫
L · eαL·‖ψ−θ̄‖ · eα·Tθ̄(X)dQ

= L · eαL·‖ψ−θ̄‖EQ
[
eα·Tθ̄

]
. (83)

Considering the supremum for ψ ∈ Bθ̄ of (83), it holds that552

sup
ψ∈Bθ̄

{∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ − 1

α
eα·Tθ̄

}∣∣∣∣ dQ
}

≤ sup
ψ∈Bθ̄

{
L · eαL·‖ψ−θ̄‖EQ

[
eα·Tθ̄

] }

= EQ
[
eα·Tθ̄

]
· sup
ψ∈Bθ̄

L · eαL·‖ψ−θ̄‖ <∞, (84)

since Bθ̄ is compact.553

Similarly, as for (80), we see554

sup
ψ∈Bθ̄

∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ (X)− 1

1− αe
(α−1)·Tθ̄(X)

}∣∣∣∣ dP

≤ sup
ψ∈Bθ̄

{
L · e(1−α)L·‖ψ−θ̄‖EP

[
e(1−α)·Tθ̄

]}

= EP

[
e(1−α)·Tθ̄

]
· sup
ψ∈Bθ̄

L · e(1−α)L·‖ψ−θ̄‖ <∞. (85)

From (84) and (85), we obtain555

sup
ψ∈Bθ̄

∫ ∫ ∣∣∣∣
1

‖ψ − θ̄‖
{
lα(X

i
∼Q,X

i
∼P ;Tψ)− lα(Xi

∼Q,X
i
∼P ;Tθ̄)

}∣∣∣∣ dP dQ

= sup
ψ∈Bθ̄

∫ ∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ(X

i
∼Q) − 1

α
eα·Tθ̄(X

i
∼Q)

}

+
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ(Xi

∼P ) − 1

1− αe
(α−1)·Tθ̄(Xi

∼P )

}∣∣∣∣ dP dQ

≤ sup
ψ∈Bθ̄

∫ ∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ(X

i
∼Q) − 1

α
eα·Tθ̄(X

i
∼Q)

}∣∣∣∣

+

∣∣∣∣
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ(Xi

∼P ) − 1

1− αe
(α−1)·Tθ̄(Xi

∼P )

}∣∣∣∣ dP dQ

= sup
ψ∈Bθ̄

{∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ(X) − 1

α
eα·Tθ̄(X)

}∣∣∣∣ dQ

+

∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ(X) − 1

1− αe
(α−1)·Tθ̄(X)

}∣∣∣∣ dP
}

≤ sup
ψ∈Bθ̄

{∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

α
eα·Tψ(X) − 1

α
eα·Tθ̄(X)

}∣∣∣∣ dQ
}

+ sup
ψ∈Bθ̄

{∫ ∣∣∣∣
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ(X) − 1

1− αe
(α−1)·Tθ̄(X)

}∣∣∣∣ dP
}

< ∞. (86)

Therefore, the following set is uniformaly integrable for µ:556 {
1

‖ψ − θ̄‖
{
lα(X

i
∼Q,X

i
∼P ;Tψ)− lα(Xi

∼Q,X
i
∼P ;Tθ̄)

}
: ψ ∈ Bθ̄

}
. (87)

22



Then, from the property of the Lebesgue integral (25, P188, Theorem 4), the integral
∫ ∫

(·) dPdQ557

and the limitation limψ→θ̄ for the above term are exchangeable.558

Hence, we have559

lim
ψ→θ̄

∫ ∫
1

‖ψ − θ̄‖
{
lα(X

i
∼Q,X

i
∼P ;Tψ)− lα(Xi

∼Q,X
i
∼P ;Tθ̄)

}
dP dQ

=

∫ ∫
lim
ψ→θ̄

[
1

‖ψ − θ̄‖
{
lα(X

i
∼Q,X

i
∼P ;Tψ)− lα(Xi

∼Q,X
i
∼P ;Tθ̄)

}]
dP dQ

=

∫ ∫
∇θ lα(Xi

∼Q,X
i
∼P ;Tθ)|θ=θ̄ dP dQ

= E
[
∇θ lα(Xi

∼Q,X
i
∼P ;Tθ)|θ=θ̄

]
. (88)

On the other hand, for the term on the left hand side of (88), we obtain560

lim
ψ→θ̄

∫ ∫
1

‖ψ − θ̄‖
{
lα(X

i
∼Q,X

i
∼P ;Tψ)− lα(Xi

∼Q,X
i
∼P ;Tθ̄)

}
dP dQ

= lim
ψ→θ̄

1

‖ψ − θ̄‖

∫ ∫ {
lα(X

i
∼Q,X

i
∼P ;Tψ)− lα(Xi

∼Q,X
i
∼P ;Tθ̄)

}
dP dQ

= lim
ψ→θ̄

1

‖ψ − θ̄‖
{
Lα(Q,P ;Tψ)− Lα(Q,P ;Tθ̄)

}

= ∇θ Lα(Q,P ;Tθ)|θ=θ̄. (89)

From (88) and (89), we obtain561

E
[
∇θ lα(Xi

∼Q,X
i
∼P ;Tθ)|θ=θ̄

]
= ∇θ Lα(Q,P ;Tθ)|θ=θ̄. (90)

From this, we also have562

E
[
∇θ lα(Q̂(N), P̂ (N);Tθ)|θ=θ̄

]
= E

[
∇θ|θ=θ̄

1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ;Tθ)

]

= E

[
1

N

N∑

i=1

∇θ lα(Xi
∼Q,X

i
∼P ;Tθ)|θ=θ̄

]

=
1

N

N∑

i=1

E
[
∇θ lα(Xi

∼Q,X
i
∼P ;Tθ)|θ=θ̄

]

=
1

N

N∑

i=1

∇θ Lα(Q,P ;Tθ)|θ=θ̄

= ∇θ Lα(Q,P ;Tθ)|θ=θ̄. (91)

Here, we see (78) from (90) and (91).563

This completes the proof.564

Proposition C.9. Let565

D̂(N)
α (Q||P ) = sup

T :Rd→R

[
1

α(1− α) −
1

α

{
1

N

N∑

i=1

eα·T (Xi
∼Q)

}
− 1

1− α

{
1

N

N∑

i=1

e(α−1)·T (Xi
∼P )

}]
,

(92)
where supremum is considered over all measurable functions T : Rd → R with EP [e

(α−1)·T ] <∞566

and EQ[e
α·T ] <∞.567

Then, it holds that if α 6= 1/2,568

√
N
{
D̂(N)
α (Q||P )−Dα(Q||P )

}

d−−→ N
(
0, C1

α ·D2α−1(Q||P ) + C2
α ·Dα(Q||P ) + C3

α ·Dα(Q||P )2
)
, (93)

23



where569

C1
α =

(
1

α2
+

1

(1− α)2
)
· (2α− 1) · (2α− 2), (94)

C2
α =

2{α2 + (1− α)2}
α · (1− α) and C3

α = −α2 − (1− α)2, (95)

and if α = 1/2,570

√
N
{
D̂(N)
α (Q||P )−Dα(Q||P )

}

d−−→ N
(
0, 4Dα(Q||P )−

1

2
Dα(Q||P )2

)
. (96)

proof of Proposition C.9. First, we note that571

D̂(N)
α (Q||P ) = sup

T :Rd→R

[
1

α(1− α) −
1

α

{
1

N

N∑

i=1

eα·T (Xi
∼Q)

}
− 1

1− α

{
1

N

N∑

i=1

e(α−1)·T (Xi
∼P )

}]

=
1

α(1− α) − inf
T :Rd→R

[
1

α

{
1

N

N∑

i=1

eα·T (Xi
∼Q)

}
+

1

1− α

{
1

N

N∑

i=1

e(α−1)·T (Xi
∼P )

}]

=
1

α(1− α) − inf
T :Rd→R

1

N

N∑

i=1

[
1

α
eα·T (Xi

∼Q) +
1

1− αe
(α−1)·T (Xi

∼P )

]

=
1

α(1− α) − inf
T :Rd→R

1

N

N∑

i=1

[
lα(X

i
∼Q,X

i
∼P ;T )

]

=
1

α(1− α) −
1

N

N∑

i=1

lα(X
i
∼Q,X

i
∼P ). (97)

On the other hand, from Lemma C.7, it holds that572

Dα(Q||P ) = sup
T :Rd→R

{
1

α(1− α) −
1

α
EQ

[
eα·T

]
− 1

1− αEP
[
e(α−1)·T

]}

=
1

α(1− α) − inf
T :Rd→R

{
1

α
EQ

[
eα·T

]
− 1

1− αEP
[
e(α−1)·T

]}

=
1

α(1− α) −
1

N

N∑

i=1

Lα(Q,P )

=
1

α(1− α) −
1

N

N∑

i=1

E
[
lα(X

i
∼Q,X

i
∼P )

]
. (98)

Subtracting (98) from (97), we have573

D̂(N)
α (Q||P )−Dα(Q||P ) =

1

N

N∑

i=1

{
lα(X

i
∼Q,X

i
∼P )− E

[
lα(X

i
∼Q,X

i
∼P )

]}
. (99)
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Let Li = lα(X
i
∼Q,X

i
∼P ) − E

[
lα(X

i
∼Q,X

i
∼P )

]
. Then {Li}Ni=1 are independently identically574

distributed variables whose means and variances are as follows:575

E [Li] = 0, (100)

Var [Li] = E
[{
lα(X

i
∼Q,X

i
∼P )− E

[
lα(X

i
∼Q,X

i
∼P )

]}2]

= EP

[
EQ

[
1

α

{(
dQ

dP

)−α
(Xi

∼Q)− EQ
[(

dQ

dP

)−α]}

+
1

1− α

{(
dQ

dP

)1−α
(Xi

∼P )− EP
[(

dQ

dP

)1−α ]} ]2



=
1

α2
· EQ

{(
dQ

dP

)−α
(Xi)− EQ

[(
dQ

dP

)−α ]}2

+
1

(1− α)2 · EP
{(

dQ

dP

)1−α
(Xi)− EP

[(
dQ

dP

)1−α]}2

=
1

α2
· EP

{
dQ

dP
·
(
dQ

dP

)−α
(Xi)− EP

[
dQ

dP
·
(
dQ

dP

)−α ]}2

+
1

(1− α)2 · EP
{(

dQ

dP

)1−α
(Xi)− EP

[(
dQ

dP

)1−α]}2

=

{
1

α2
+

1

(1− α)2
}
· EP

{(
dQ

dP

)1−α
− EP

[(
dQ

dP

)1−α]}2

=

{
1

α2
+

1

(1− α)2
}{

EP

[(
dQ

dP

)2·(1−α)]
−
{
EP

[(
dQ

dP

)1−α]}2}

=

{
1

α2
+

1

(1− α)2
}

×
[
(2α− 1)(2α− 2)

{
1

(2α− 1)(2α− 2)
EP

[(
dQ

dP

)1−(2α−1)

− 1

]}
+ 1

−α2(1− α)2
{

1

α · (α− 1)
EP

[(
dQ

dP

)1−α
− 1

]}2

+α2(1− α)2
{

2

α · (α− 1)
EP

[(
dQ

dP

)1−α
− 1

]}
− 1

]
. (101)

From this, if α 6= 1/2, we have576

Var [Li] = C1
α ·D2α−1(Q||P ) + C2

α ·Dα(Q||P ) + C3
α ·Dα(Q||P )2, (102)

where577

C1
α =

(
1

α2
+

1

(1− α)2
)
· (2α− 1) · (2α− 2),

C2
α =

2{α2 + (1− α)2}
α · (1− α) and C3

α = −α2 − (1− α)2,

and if α = 1/2, we obtain578

Var [Li] = 4Dα(Q||P )−
1

2
Dα(Q||P )2. (103)
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Therefore, by the central limit theorem, we see579

1

N

N∑

i=1

{
lα(X

i
∼Q,X

i
∼P )− E

[
lα(X

i
∼Q,X

i
∼P )

]} d−−→ N (0, ∗) . (104)

Here the“∗" is (102) or (103), which corresponds to the cases that α 6= 1/2 or α = 1/2, respectively.580

This completes the proof.581

We mention that the statement of the following corollary is the same as Corollary 1 in582

Birrell et al.(2022).583

Corollary C.10 (Birrell et al.(2022), P19, Corollary 1). For α = 1/2, it holds that584

lim
N→∞

N ·Var
[
D̂

(N)
1/2 (Q||P )

]

D1/2(Q||P )2
=

8D1/2(Q||P )−D1/2(Q||P )2
2D1/2(Q||P )2

. (105)

Thus, the sample complexity of Dα for α = 1/2 is O(1).585

proof of Corollary C.10. The statement of the corollary follows from (96) in Proposition C.9.586

Proposition C.11. Let {Tk}∞k=1 be a sequence of functions in T α with EP [e
−Tk(X)] = 1 such that587

limk→∞ Tk = − log dQ/dP , P -almost everywhere. Subsequently, let {XQ
k }∞k=1 be a sequence of588

measures on Rd defiened as follows:589

X
Q
k = e−Tk(X

P ) ·XP .

Then, it holds that590

X
Q
k

d−−→ XQ, as k −→∞. (106)

proof of Proposition C.11. Let Qk denote the probability distribution of X
Q
k : Qk(A) = P (XQ

k ∈591

A) for all A ∈ F . Then, since dQk
dP = e−Tk(X), we see592

dQk
dQ

= e−Tk(X) · dP
dQ

. (107)

Now, from Corollary 6 in [7], for probalility measures A and B with A ≪ µ and B ≪ µ, it holds593

that594

1

2

{
Eµ

∣∣∣∣
dA

dµ
− dB

dµ

∣∣∣∣
}2

≤ Dα(A||B). (108)

By substituting A = Qk and B = Q into (108), we have595

1

2

{
Eµ

∣∣∣∣
dQk
dµ
− dQ

dµ

∣∣∣∣
}2

≤ Dα(Qk||Q)

=

∫
1

α(α− 1)

{(
dQk
dQ

)1−α
− 1

}
dQ

=

∫
1

α(α− 1)

∫ (
dQk
dQ

)1−α
dQ− 1

α(α− 1)

=
1

α(α− 1)

∫ (
dP

dQ

)1−α
· e(α−1)·Tk dQ

dP
dP − 1

α(α− 1)

=
1

α(α− 1)

∫ (
dQ

dP

)α
· e(α−1)·TkdP − 1

α(α− 1)
. (109)
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Now, from Hölder’s inequality, we have596

∫ ∣∣∣∣
(
dQ

dP

)α
· e(α−1)·Tk

∣∣∣∣ dP ≤
{∫ (

dP

dQ

)−α
α

dP

}α

×
{∫ (

e(α−1)·Tk
) 1

1−α

dP

}1−α

=
(
EP
[
e−Tk

])1−α

= 1 <∞. (110)

Hence, we see the following sequence is uniformaly integrable for P :597

{(
dQ

dP

)α
· e(α−1)·Tk

}N

k=1

. (111)

Then, for (109) as k →∞, we see598

lim
k→∞

1

2

{
Eµ

∣∣∣∣
dQk
dµ
− dQ

dµ

∣∣∣∣
}2

≤ lim
k→∞

1

α(α− 1)

∫ (
dQ

dP

)α
· e(α−1)·TkdP − 1

α(α− 1)

=
1

α(α− 1)

∫ (
dQ

dP

)α
·
(
dQ

dP

)1−α
dP − 1

α(α− 1)

=
1

α(α− 1)

∫
dQ

dP
dP − 1

α(α− 1)

= 0.

Thus, Qk converges to Q in total variation.599

The statement (106), the convergence of X̂
Q
k to XQ in distribution, is derived from the convergence600

of Qk to Q in total variation.601

This completes the proof.602

Corollary C.12. Let {Tk}∞k=1 be a sequence of functions in T α such that603

Dα(Q̂
(N)||P̂ (N))

= lim
k→∞

{
1

α(1− α) −
1

α

1

N

N∑

i=1

eα·Tk(X
i
∼Q) +

1

1− α
1

N

N∑

i=1

e(α−1)·Tk(Xi
∼P )

}
. (112)

Subsequently, let {X̂(N)
Q (k)}∞k=1 be a sequence of measures on Rd defiened as follows:604

X̂
(N)
Q (k) = e−Tk ·X(N)

P (113)

Then, it holds that, as k −→∞,605

X̂
(N)
Q (k)

d−−→ X̂
(N)
Q . (114)

proof of Corollary C.12. Let ν be the countable measure on {X1,X2, . . . ,XN}:606

ν(x) =

{
1 if 1 ≤ ∃i ≤ N s.t. Xi = x,
0 otherwise.

(115)

Then, P̂ (N) ≪ ν and Q̂(N) ≪ ν.607

For Proposition C.11 and its proof, substituting P̂ (N) for P , Q̂(N) for Q, and ν for µ, we see that608

the statement of the corollary holds.609

This completes the proof.610
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Proposition C.13. For T̂ ∈ T α, let Q̂ and P̂ be two probalities defined as611

dQ̂ = e−T̂ · dP and dP̂ = eT̂ · dQ,
and let T∗ = − log dQ/dP .612

Then, it hols that613

α

2

{
Eµ

∣∣∣Q̂−Q
∣∣∣
}2

+
1− α
2

{
Eµ

∣∣∣P̂ − P
∣∣∣
}2

≤ 1

α(1− α) −
1

α
EQ

[
eα·(T∗−T̂ )

]
− 1

1− αEP
[
e(α−1)·(T∗−T̂ )

]
(116)

= Lα(Q,P ; T̂ )− Lα(Q,P ;T∗). (117)

Here, Lα(Q,P ; ·) in (117) is defined as (57) in Lemma C.7614

proof of Proposition C.13. First, we see (116). Note that, it holds that615

d̂Q

dQ
= e−T̂ · dP

dQ
and

dP̂

dP
= eT̂ · dQ

dP
. (118)

By using (108), we have616

α

2

{
Eµ

∣∣∣Q̂−Q
∣∣∣
}2

+
1− α
2

{
Eµ

∣∣∣P̂ − P
∣∣∣
}2

≤ (1− α) ·D1−α(Q̂||Q) + α ·Dα(P̂ ||P ).

Thus, we obtain617

α

2

{
Eµ

∣∣∣Q̂−Q
∣∣∣
}2

+
1− α
2

{
Eµ

∣∣∣P̂ − P
∣∣∣
}2

≤ (1− α) ·D1−α(Q̂||Q) + α ·Dα(P̂ ||P )

=
1− α

α(α− 1)

{∫ (
dQ̂

dQ

)α
dQ− 1

}

+
α

α(α− 1)

{∫ (
dQ

dP

)1−α
dP − 1

}

= − 1

α

{∫
e−α·T̂

(
dP

dQ

)α
dQ− 1

}

− 1

1− α

{∫
e(1−α)·T̂

(
dQ

dP

)1−α
dP − 1

}

= − 1

α

{∫
e−α·T̂ eα·T∗dQ− 1

}

− 1

1− α

{∫
e−(α−1)·T̂ e(α−1)·T∗dP − 1

}

=
1

α(1− α) −
1

α

∫
eα·(T∗−T̂ )dQ− 1

1− α

∫
e(α−1)·(T∗−T̂ )dP. (119)

Here, we see (116).618

To obtain (117), we have619

1

α(1− α) −
1

α

∫
eα·(T∗−T̂ )dQ− 1

1− α

∫
e(α−1)·(T∗−T̂ )dP

=
1

α
+

1

1− α −
1

α

∫
eα·(T∗−T̂ )dQ− 1

1− α

∫
e(α−1)·(T∗−T̂ )dP

=

∫ {
1

α
· dQ
dµ
− 1

α
· eα·(T∗−T̂ ) dQ

dµ

}
dµ

+

∫ {
1

1− α ·
dP

dµ
− 1

1− α · e
(α−1)·(T∗−T̂ ) dP

dµ

}
dµ. (120)
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By replacing the measures µ of the two integrals in (120) with620

ν = e−α·T̂ dµ and τ = e−(α−1)·T̂ dµ, (121)

respectively, we obtain621

∫ {
1

α
· dQ
dν
− 1

α
· eα·(T∗−T̂ ) dQ

dν

}
eα·T̂ · dν

+

∫ {
1

1− α ·
dP

dτ
− 1

1− α · e
(α−1)·(T∗−T̂ ) dP

dτ

}
e(α−1)·T̂ · dτ

=

∫ {
1

α
· eα·T̂ dQ

dν
− 1

α
· eα·T∗

dQ

dν

}
dν

+

∫ {
1

1− α · e
(α−1)·T̂ dP

dτ
− 1

1− α · e
(α−1)·T∗

dP

dτ

}
dτ

=

{
1

α

∫
eα·T̂ dQ+

1

1− α

∫
e(α−1)·T̂ dP

}

−
{
1

α

∫
eα·T∗dQ+

1

1− α

∫
e(α−1)·T∗dP

}

= Lα(Q,P ; T̂ )− Lα(Q,P ;T∗). (122)

This completes the proof.622

C.2 Proofs for Section 6623

In this Section, we present two theorems for the proposed method in Section 6. Before presenting624

the first theorem, we briefly review Pearl’s do-calculus (Pearl(1995)) used in the proof of the first625

theorem.626

Theorem C.14 (do-calculus, Pearl(1995)). Causal effects can be transformed by following rules627

R1-R3:628

R1. P (Y|do(X),Z,W) = P (Y|do(X),W), if (Y ⊥⊥ Z|X,W)G(X).629

R2. P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W), if (Y ⊥⊥ Z|X,W)G(X,Z).630

R3. P (Y|do(X), do(Z),W) = P (Y|do(X),W), if (Y ⊥⊥ Z|X,W)G(X,Z∗), where Z∗ =631

Z \An(W)G(X).632

Here, G(A) denotes a graph obtained from G by deleting all arrows emerging from variables to A,633

and G(A,B) denotes a graph obtained from G by deleting both of all arrows emerging from any634

variables to A and all arrows emerging from B to any variables, and (A ⊥⊥ B)G represents that635

there is no path between A and B in G.636

We now provide the first theorem, which presents a sufficient condition for explanatory variables to637

be available for estimating causal effects.638

Theorem C.15. Let G be a DAG for V and U. For disjoint sets X,Y,Z ⊂ V, suppose that639

P (Y|do(X),Z) is identifiable in G, and X ⊂ An(Y)G. Let ZDe = Z ∩De(Y)G. Then,640

P (Y|do(X),Z)

=

{
P (Y|X,Z) if ZDe = φ,
P (Y|X,Z\ZDe)P (ZDe|Y,X,Z\ZDe)

P (ZDe|X,Z\ZDe) if ZDe 6= φ.
(123)

proof of Theorem C.15. We note that each Zi ∈ Z can be assumed to be that either Zi ∈ An(Y)G641

or Zi ∈ De(Y)G. To see this, suppose that there exist some Zi ∈ Z such that Zi /∈ An(Y)G and642

Zi /∈ De(Y)G. Let V′ = V \ (Y ∪X ∪ Z). Since (Y ⊥⊥ Zi|X,V′,U)G(X) holds for the Zi, by643

applying do-calculus R1 in Theorem C.14, we have644

P (Y|do(X),Z \ {Zi}, Zi,V′,U) = P (Y|do(X),Z \ {Zi},V′,U). (124)
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By marginalizing both sides of (124) for XV′∪U, we obtain645

P (Y|do(X),Z \ {Zi}, Zi) = P (Y|do(X),Z \ {Zi}). (125)

Thus, after repeating the above calculation, P (Y|do(X),Z) finally includes only Zi ∈ Z such that646

Zi ∈ An(Y)G and Zi ∈ De(Y)G.647

Therefore, in this proof, we assume that648

Z = An(Y)G ∪De(Y)G. (126)

Next, we note that Z∩An(X)G∩De(Y)G = φ. To see this, suppose Z∩An(X)G∩De(Y)G 6= φ.649

Let
V′

≻ denote a path through only variables of V′. Then there exists a directed path such that650

Y
V′

≻ Z
V′

≻ X, which contradicts the assumption X ⊂ An(Y)G.651

From the above discussion, Z can be divided into the three disjoint sets as follows:652

Z = Z1 ∪ Z2 ∪ Z3

Z1 = (Z \De(X)G) ∩An(Y)G,

Z2 = Z ∩De(X)G ∩An(Y)G,

Z3 = (Z \An(X)G) ∩De(Y)G.

Then, each of the paths between Z1, Z2 and Z3 is one of the following P1, P2 and P3:653

P1. Z1
V′

≻ Z2,654

P2. Z2
V′

≻ Z3,655

P3. Z1
V′

≻ Z3.656

In fact, if there exists a directed path in the opposite direction of P1, that is Z2
V′

≻ Z1, then there657

exists a path such that Xi
V′

≻ Z2
V′

≻ Z1. This contradicts the assumption Z1 ⊂ Z \De(X)G.658

Similarly, if there exists a directed path in the opposite direction of P2, that is Z3
V′

≻ Z2, then659

there exists a path such that Yi
V′

≻ Z3
V′

≻ Z2, which contradicts the assumption Z2 ⊂ An(Y)G.660

In addition, if there exists a directed path in the opposite direction of P3, that is Z3
V′

≻ Z1, then661

there exists a path such that Yi
V′

≻ Z3
V′

≻ Z1, which contradicts the assumption Z1 ⊂ An(Y)G.662

Therefore, all paths expect P1, P2 and P3 are denied.663

Hence, by marginalizing P (V) for XV′ , we obtain664

P (Y,X,Z) =
∑

X
V′

P (V)

= P (Y|X,Z1,Z2) · P (X|Z1) · P (Z1)

×P (Z2|X,Z1) · P (Z3|Y,X,Z1,Z2).

In additon, from (1), we have665

P (Y,Z|do(X)) = P (Y|X,Z1,Z2) · P (Z1) · P (Z2|X,Z1)

×P (Z3|Y,X,Z1,Z2). (127)

In the case that Z3 = φ, by marginalizing out Y of (127), we have666

P (Z|do(X)) =
∑

y∈XY

P (Y = y,Z|do(X))

=
∑

y∈XY

P (Y = y|X,Z1,Z2) · P (Z1) · P (Z2|X,Z1)

= P (Z1) · P (Z2|X,Z1)
∑

y∈XY

P (Y = y|X,Z1,Z2)

= P (Z1) · P (Z2|X,Z1).
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On the other hand, in the case that Z3 6= φ, we obtain667

P (Z|do(X)) =
∑

y∈XY

P (Y = y,Z|do(X))

=
∑

y∈XY

P (Y = y|X,Z1,Z2) · P (Z1)

×P (Z2|X,Z1) · P (Z3|Y = y,X,Z1,Z2)

= P (Z1) · P (Z2|X,Z1)

×
∑

y∈XY

P (Z3|Y = y,X,Z1,Z2) · P (Y = y|X,Z1,Z2)

= P (Z1) · P (Z2|X,Z1) · P (Z3|X,Z1,Z2).

Summarizing the above results, we have668

P (Z|do(X)) =

{
P (Z1) · P (Z2|X,Z1), if Z3 = φ,

P (Z1) · P (Z2|X,Z1) · P (Z3|X,Z1,Z2) if Z3 6= φ.
(128)

Inserting (127) and (128) into (2), we see669

P (Y|do(X),Z) =
P (Y,Z|do(X))

P (Z|do(X))

=

{
P (Y|X,Z1,Z2) if Z3 = φ,
P (Y|X,Z1,Z2)P (Z3|Y,X,Z1,Z2)

P (Z3|X,Z1,Z2)
if Z3 6= φ.

(129)

Note that, Z3 = Z ∩De(Y)G, since Z ∩An(X)G ∩De(Y)G = φ.670

Therefore, by rewriting Z3 as ZDe and Z1 ∪ Z2 as Z \ ZDe for (129), we obtain (123).671

This completes the proof.672

Next, we provide the main theorem presented in Section 6.673

Theorem C.16 (Theorem 6.1 restated). Given disjoint sets of X = {X1,X2, . . . ,Xn},Y,Z ⊂ V674

satisfying675

X = {X1,X2, . . . ,Xn} ⊂ An(Y)G, (130)

and676

Z ∩De(Y)G = φ. (131)

Let P = P (X1,X2, . . . ,Xn,Z) and Q = P (X1) × P (X2) × · · · × P (Xn) × P (Z), and P̃ =677

P (Y|do(X),Z)× P (X1)× P (X2)× · · · × P (Xn)× P (Z).678

Suppose P satisfies Assumptions 1 and 2 in the above setting, and it holds thatEP

[
(dQ/dP)

1−α
]
<679

∞ for some 0 < α < 1, then, for the optimal function T ∗, such that680

T ∗(X1,X2, . . . ,Xn,Z)

= arg inf
T∈T α

{
1

α
EQ

[
eα·T

]

+
1

1− αEP

[
e(α−1)·T

]}
, (132)

it holds that681

dP̃

dP
= e−T

∗(X1,X2,...,Xn,Z). (133)

Here, T α denotes the set of all non-constant functions T (x) : Rd → R with EP[e
(α−1)·T (X)] <∞.682

proof of Theorem C.16. From Theorem C.15 and the assumption (131), we have683

P̃ = P (Y|do(X),Z)× P (X1)× P (X2)× · · · × P (Xn)× P (Z)
= P (Y|X,Z)× P (X1)× P (X2)× · · · × P (Xn)× P (Z).
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Thus, from Lemma C.2, we obtain684

e−T
∗(X1,X2,...,Xn,Z) =

dQ

dP
=
dP̃

dP
. (134)

This completes the proof.685

C.3 Proofs for Section 7686

In this section, we first present a proposition for obtaining the density ratio between empirical dis-687

tributions of the source and target distributions. Next, we present a proposition and lemmas for the688

early stopping method proposed in this study.689

690

Proposition C.17. It holds that691

dQ̂(N)

dP̂ (N)
(x) =

{
dQ/dP (x) if 1 ≤ ∃i ≤ N s.t. Xi = x,
0 otherwise.

(135)

proof of Proposition C.24. Let ν be the countable measure on {X1,X2, . . . ,XN}:692

ν(x) =

{
1 if 1 ≤ ∃i ≤ N s.t. Xi = x,
0 otherwise.

(136)

Then, P̂ (N) ≪ ν and Q̂(N) ≪ ν.693

Note that, from the definitions of P̂ (N)(x) and Q̂(N)(x), we have694

P̂ (N)(x) =
1

N

∑

i

1(Xi
∼P = x) =

1

N

∑

i

1(Xi = x) · dP
dµ

(x), (137)

and695

Q̂(N)(x) =
1

N

∑

i

1(Xi
∼Q = x) =

1

N

∑

i

1(Xi = x) · dQ
dµ

(x), (138)

where 1(·) equals one if the statement in parentheses is true and zero otherwise.696

From (137) and (138), if Xi = x, we see697

dP̂ (N)

dν
(x) = P̂ (N)(x) =

1

N

dP

dµ
(x), (139)

and698

dQ̂(N)

dν
(x) = Q̂(N)(x) =

1

N

dQ

dµ
(x). (140)

Then, we have699

dQ̂(N)

dP̂ (N)
(x) =

dP̂ (N)

dν (x)

dQ̂(N)

dν (x)
=
dQ

dP
(x). (141)

For x /∈ {X1,X2, . . . ,XN}, we observe dQ̂(N)/dν(x) = 0. Note that, dQ̂(N)/dP̂ (N)(x) is700

defined as zero for x ∈ Ω such that dQ̂(N)/dν(x) = 0. Subsequently, we see dQ̂(N)/dP̂ (N)(x) =701

0.702

Next, we present a proposition for the early stopping method proposed in Section 7.1. We obtain703

an early stopping step as the step that minimizes the W1 distance of the balanced distribution and704

target distribution, Q̂
(N)
k and Q in (22). To obtain the early stopping step, we assume that the705

two distributions differ the worst outside the neighborhood of the observations because we cannot706

know the closeness of the two distributions, Q̂
(N)
k and Q in (22) except in the neighborhood of the707

observations.708
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We now provide a note on the convergence rate for optimizing the loss function (16). Let709

f (N)(t) = f (N)(t1, t2, . . . , tN ) =
1

α

1

N

N∑

i=1

eα·ti · dQ
dµ

(xi) +
1

1− α
1

N

N∑

i=1

e(α−1)·ti · dP
dµ

(xi).

(142)
Subsequently, let tK denote a model at step K when optimizing (142) with a Stochastic Gra-710

dient Desent (SGD) algorithm. Because, from Corollary C.6, f (N)(t) is strongly convex with711 ∥∥∇f (N)(t)
∥∥2 ≤ D2 (∃D ∈ R) around the optimal point t∗ = (t1∗, t

2
∗, . . . , t

N
∗ ) = (− log dQ

dP (x1),712

− log dQ
dP (x2), . . . ,− log dQ

dP (xN )), an O(1/K) convergence rate can be achieved at step K when713

optimizing (142) with SGD algorithms under regular conditions for t:714

E [fN (t̄K)]− fN (t∗) ≤
C

K + 1
, (143)

where t̄K is a weighted averaging such that t̄K = 1
(K+1)·(K+2)

∑
k(k + 1) · tk and C > 0 is715

constant. Here E [·] denotes the expectation for the randomness of batch sampling of SGD.6 As716

assumptions close to (143), we briefly assume (144) in Assumption E1 and (145) in Assumption E2717

to obtain an early stopping step, which are simpler and more relaxed than (143).718

Herein, we make the following assumptions for the early stopping method presented in Section 7.719

• Assumption E1. Let {T (N)
k }∞k=1 a sequence of functions in T α such that720

limk→∞ T
(N)
k (Xi) = − log dQ/dP (Xi), for 1 ≤ ∀i ≤ N . Suppose that721

L̂(N)
α (Q,P ;T

(N)
k )− L̂(N)

α (Q,P ;T∗) ≤
C0

K
, (144)

where L̂
(N)
α (Q,P ; ·) is defined as (60) in Lemma C.7 and C0 > 0 is constant.722

• Assumption E2. Let {Tk}∞k=1 be a sequence of functions in T α with EP [e
−Tk(X)] = 1723

such that limk→∞ Tk = − log dQ/dP , P -almost everywhere. Suppose that724

Lα(Q,P ;Tk)− Lα(Q,P ;T∗) ≤
C1

K
, (145)

where Lα(Q,P ; ·) is defined as (57) in Lemma C.7 and C1 > 0 is constant.725

In addition, we make the following assumptions to simplify the discussion in the proofs.726

• Assumption E3. Let Ω be a compact set in Rd. Then λ denotes the Lebesgue measure on727

Rd.728

• Assumption E4. Let Q and P be two probabilities on Ω with continuous probability densi-729

ties p(x) q(x), respectively. Assume 0 < pmin ≤ p(x) ≤ pmax and 0 < qmin ≤ q(x) ≤730

qmax for all x ∈ Ω.731

• Assumption E5. For {T (N)
k }∞k=1 in Assumption E1, assume that each function of T

(N)
k (X)732

is Lipschitz continuous: for 1 ≤ k ≤ ∞,733

|T (N)
k (x)− T (N)

k (y)| ≤ ρk · ‖x− y‖. (146)

• Assumption E6. For {T (N)
k }∞k=1 in Assumption E2, assume that each function of Tk(X) is734

Lipschitz continuous: for 1 ≤ k ≤ ∞,735

|Tk(x)− Tk(y)| ≤ ρ̃k · ‖x− y‖. (147)

Note that, the Lipschitz coefficient in Assumption E5 does not depend on the sample size N .736

737

738

Lemma C.18. For {T (N)
k }∞k=1 in Assumption E5, it holds that for x ∈ Ω and ‖y − x‖ < D,739

e−T
(N)
k

(y) = e−T
(N)
k

(x) + e−T
(N)
k

(x) ·
{
O (D) +O

(
D2
)}

+Ox (D) . (148)

6For the convergence rate of SGD algorithms, for example, readers can refer to [12].

33



proof of Lemma C.18. From the intermediate value theorem for the second derivative of e−x, we740

have741

e−y = e−x − e−x · (y − x) + e−x+θ·(x−y)

2
· (y − x)2, (149)

where 0 < θ < 1.742

By substituting y = T
(N)
k (y) and x = T

(N)
k (x) into the above formula, we obtain743

e−T
(N)
k

(y) = e−T
(N)
k

(x) − e−T
(N)
k

(x)
(
T

(N)
k (y)− T (N)

k (x)
)

+
e
−T (N)

k
(x)+θ(x,y)·

(
T

(N)
k

(y)−T (N)
k

(x)
)

2

(
T

(N)
k (y)− T (N)

k (x)
)2
, (150)

where 0 < θ(x,y) < 1.744

Now, note that, from Assumption E5,745

T
(N)
k (y)− T (N)

k (x) ≤ ρk · ‖x− y‖ ≤ ρk ·D. (151)

From (150) and (151), we see746

∣∣∣e−T
(N)
k

(y) − e−T
(N)
k

(x)
∣∣∣ =

∣∣∣e−T
(N)
k

(x) ·
(
T

(N)
k (y)− T (N)

k (x)
)

+
e
−T (N)

k
(x)+θ(x,y)·(T (N)

k

(
y)−T (N)

k
(x)

)

2
·
(
T

(N)
k (y)− T (N)

k (x)
)2
∣∣∣∣∣∣

≤ e−T
(N)
k

(x) · ρk ·D +
e−T

(N)
k

(x)+D

2
·D2

= e−T
(N)
k

(x) ·
{
O (D) +O

(
D2
)}

+Ox (D) . (152)

Therefore, we have747

e−T
(N)
k

(y) = e−T
(N)
k

(x) + e−T
(N)
k

(x) ·
{
O (D) +O

(
D2
)}

+Ox (D) . (153)

This completes the proof.748

Lemma C.19. For {Tk}∞k=1 in Assumption E6, it holds that for x ∈ Ω and ‖y − x‖ < D,749

e−Tk(y) = e−Tk(x) + e−Tk(x) ·
{
O (D) +O

(
D2
)}

+Ox (D) . (154)

proof of Lemma C.19. Note that, we use only the Lipschitz continuity of T
(N)
k (x) to prove Lemma750

C.18. From Assumption E6, Tk(x) is Lipschitz continuous. Then, (154) can be proven in a manner751

similar to Lemma C.18.752

This completes the proof.753

Lemma C.20. Let T∗ = − log dQ/dP . Under Assumption E3 and E4, it holds that for x ∈ Ω and754

‖y − x‖ < D,755

e−T∗(y) = e−T∗(x) − e−T∗(x) ·
{
O (D) +O

(
D2
)}

+Ox (D) . (155)

proof of Lemma C.20. Note that, we use only the Lipschitz continuity of T
(N)
k (x) to prove Lemma756

C.18. From Assumption E3 and Assumption E4, T∗(x) is a bounded continuous function on Ω.757

Since bounded continuous functions are Lipschitz continuous, T∗(x) is Lipschitz continuous. Thus,758

(155) can be proven in a manner similar to Lemma C.18.759

This completes the proof.760

Lemma C.21. Let B(x0, D) = {y : ‖y − x0‖ < D}. Then,761

pmin ·Dd ≤ P (B(x0, D)) ≤ pmax ·Dd. (156)
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proof of Lemma C.21. From Assumption E4, pmin ≤ p(x) ≤ pmax holds, and by integrating over762

B(x0, D) with λ, we obtain763

∫

B(x0,D)

pmin dλ ≤ P (B(x0, D)) ≤
∫

B(x0,D)

pmax, dλ

∴ pmin ·Dd ≤ P (B(x0, D)) ≤ pmax ·Dd. (157)

This completes the proof.764

Lemma C.22. Let B(x0, D) = {y : ‖y − x0‖ < D}. Then,765

P (B(x0, D)) = C · p(x0) ·Dd, (158)

where C is constant.766

proof of Lemma C.22. From Assumption E4, p is a bounded continuous function on Ω. Since767

bounded continuous functions are Lipschitz continuous, p(x) is Lipschitz continuous.768

Then, there exist a constant C such that769

p(x) ≤ p(x0) + C · ‖x− x0‖, (159)

and by integrating over B(x0, D) with λ, we obtain770

P (B(x0, D)) ≤ C · p(x0) ·Dd. (160)

This completes the proof.771

Proposition C.23. For {T (N)
k }∞k=1 in Assumption E1, let Q̂

(N)
k be a probability defined as772

dQ̂
(N)
k = e−T

(N)
k · dP.

Then, under Assumpution E1-E6, for a sufficiently large K > 0, it holds that773

E
X

(N)
P

[W1(Q, Q̂
(N)
K )] ≤ 2−N ·K− d

2 +K− 1
2 . (161)

Corollary C.24. Let K0 = N
2
d+δ with δ > 0. Then, under Assumpution E1-E6, for a sufficiently774

large N , it holds that775

E
X

(N)
P

[W1(Q, Q̂
(N)
K0

)] ≤ 2−K
δ
2
0 +K

− 1
2

0 . (162)

Corollary C.25. 　 In Corollary C.24, let δ′ > 0 such thatN
δ′

d+δ′ = 2, and letK0 = N
2

d+δ′ . Then,776

under Assumpution E1-E6, for a sufficiently large N , it holds that777

E
X

(N)
P

[W1(Q, Q̂
(N)
K0

)] ≤ K− 1
2

0 . (163)

Thus, if N >
(
1
ε

)d+δ′
then W1(Q, Q̂

(N)
K0

) < ε.778

proof of Proposition C.23. Let QK be a probability defined as779

dQK = e−TK · dP. (164)

Intuitively, QK is the true balanced probability distribution at a step K.780

First, from the triangle inequality for the L1 norm, we have781

Eµ

∣∣∣Q̂(N)
K −Q

∣∣∣ ≤ Eµ
∣∣∣Q̂(N)

K −QK
∣∣∣+ Eµ

∣∣∣QK −Q
∣∣∣. (165)

Considering the expectation E
X

(N)
P

[·] for the both sides of the above equation, we see782

E
X

(N)
P

[
Eµ

∣∣∣Q̂(N)
K −Q

∣∣∣
]
≤ E

X
(N)
P

[
Eµ

∣∣∣Q̂(N)
K −QK

∣∣∣
]
+ E

X
(N)
P

[
Eµ

∣∣∣QK −Q
∣∣∣
]
. (166)
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Next, we obtain the upper bound of the first term in (166).783

Let ∆i = B(Xi, 1/
√
K). Subsequently, let ∆ =

⋃N
i=1 ∆i. Then, we have784

Eµ

∣∣∣Q̂(N)
K −QK

∣∣∣

=

∫ ∣∣∣∣e
−T (N)

k · dP
dµ
− e−Tk · dP

dµ

∣∣∣∣ dµ

=

∫ ∣∣∣e−T
(N)
k − e−Tk

∣∣∣ dP
dµ

dµ

= EP

∣∣∣e−T
(N)
k − e−Tk

∣∣∣

= EP

[
id∆

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]
+ EP

[
idΩ\∆

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]

≤ EP

[
id∆

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]
+ EP

[
idΩ\∆

∣∣∣e−T
(N)
k

∣∣∣
]
+ EP

[
idΩ\∆

∣∣e−Tk
∣∣] .

Considering the expectation E
X

(N)
P

[·] for the both sides of the above equation, we see785

E
X

(N)
P

[
Eµ

∣∣∣Q̂(N)
K −QK

∣∣∣
]

≤ E
X

(N)
P

[
EP

[
id∆

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]]

+ E
X

(N)
P

[
EP

[
idΩ\∆

∣∣∣e−T
(N)
k

∣∣∣
]]

+ E
X

(N)
P

[
EP
[
idΩ\∆

∣∣e−Tk
∣∣]] . (167)

To obtain the upper bound of the first term in (167), we see786

EP

[
id∆

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]

= EP

[
N∑

i=1

id∆i

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]

=

N∑

i=1

EP

[
id∆i

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]

=
N∑

i=1

EP

[
idB(Xi,1/

√
K)

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]

= EP

[∣∣∣∣∣

N∑

i=1

idB(Xi,1/
√
K) · e−T

(N)
k −

N∑

i=1

idB(Xi,1/
√
K) · e−Tk(Xi)

∣∣∣∣∣

]
. (168)
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Subsequently, we have787

EP

[∣∣∣∣∣

N∑

i=1

idB(Xi,1/
√
K) · e−T

(N)
k −

N∑

i=1

idB(Xi,1/
√
K) · e−Tk(Xi)

∣∣∣∣∣

]

= EP

[∣∣∣∣∣

N∑

i=1

idB(Xi,1/
√
K)(x) · e−T

(N)
k

(x) −
N∑

i=1

idB(Xi,1/
√
K)(x) · e−T

(N)
k

(Xi)

+
N∑

i=1

idB(Xi,1/
√
K)(x) · e−T

(N)
k

(Xi) −
N∑

i=1

idB(Xi,1/
√
K)(x) · e−T∗(Xi)

+

N∑

i=1

idB(Xi,1/
√
K)(x) · e−T∗(Xi) −

N∑

i=1

idB(Xi,1/
√
K)(x) · e−T∗(x)

+
N∑

i=1

idB(Xi,1/
√
K)(x) · e−T∗(x) −

N∑

i=1

idB(Xi,1/
√
K)(x) · e−Tk(x)

∣∣∣∣∣

]

= EP

[∣∣∣∣∣

N∑

i=1

idB(Xi,1/
√
K)(x)

{
e−T

(N)
k

(x) − e−T
(N)
k

(Xi)
}

+
N∑

i=1

idB(Xi,1/
√
K)

{
e−T

(N)
k

(Xi) − e−T∗(Xi))
}

+

N∑

i=1

idB(Xi,1/
√
K)

{
e−T∗(Xi) − e−T∗(x)

}

+

N∑

i=1

idB(Xi,1/
√
K)(x)

{
e−T∗(x) − e−Tk(x)

}∣∣∣∣∣

]

≤ EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(x) − e−T
(N)
k

(Xi)
∣∣∣
]

+ EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(Xi) − e−T∗(Xi))
∣∣∣
]

+ EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T∗(Xi) − e−T∗(x)
∣∣∣
]

+EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T∗(x) − e−Tk(x)
∣∣∣
]
.

Considering the expectation E
X

(N)
P

[·] for the both sides of the above equation, we obtain788

E
X

(N)
P

[
EP

[
id∆

∣∣∣e−T
(N)
k − e−Tk

∣∣∣
]]

≤ E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(x) − e−T
(N)
k

(Xi)
∣∣∣
]]

+ E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(Xi) − e−T∗(Xi))
∣∣∣
]]

+ E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T∗(Xi) − e−T∗(x)
∣∣∣
]]

+ E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T∗(x) − e−Tk(x)
∣∣∣
]]

. (169)
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Now, from Lemma C.19, we have, for x ∈ idB(Xi,1/
√
K)789

∣∣∣e−T
(N)
k

(x) − e−T
(N)
k

(Xi)
∣∣∣ = e−T

(N)
k

(Xi)

{
O

(
1√
K

)
+O

(
1

K

)}
+OXi

(
1

K

)
.

Then, we see790

EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(x) − e−T
(N)
k

(Xi)
∣∣∣
]

=

N∑

i=1

EP

[
idB(Xi,1/

√
K)(x)

{
e−T

(N)
k

(Xi)

{
O

(
1√
K

)
+O

(
1

K

)}
+OXi

(
1√
K

)}]

=
N∑

i=1

EP

[
idB(Xi,1/

√
K)(x)

]{
e−T

(N)
k

(Xi)

{
O

(
1√
K

)
+O

(
1

K

)}
+OXi

(
1√
K

)}

=

N∑

i=1

P
(
B(Xi, 1/

√
K)
){

e−T
(N)
k

(Xi)

{
O

(
1√
K

)
+O

(
1

K

)}
+OXi

(
1√
K

)}

=

N∑

i=1

P
(
B(Xi, 1/

√
K)
)
·OXi

(
1√
K

)

≤
N∑

i=1

pmax ·OXi




1
(√

K
)d


 ·OXi

(
1√
K

)
(170)

=

N∑

i=1

OXi

(
K− d+1

2

)
.

Here, we obtain (170) by using Lemma C.21.791

Considering the expectation E
X

(N)
P

[·] for the both sides of the above equation, we have792

E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(x) − e−T
(N)
k

(Xi)
∣∣∣
]]

= E
X

(N)
P

[
N∑

i=1

OXi

(
K− d+1

2

)]

=

N∑

i=1

O
(
K− d+1

2

)

= N ·O
(
K− d+1

2

)
. (171)

In addition, from Lemma C.19 and C.20, it holds that, for x ∈ idB(Xi,1/
√
K),793

∣∣∣e−Tk(x) − e−Tk(Xi)
∣∣∣ = e−Tk(Xi)

{
O

(
1√
K

)
+O

(
1

K

)}
+OXi

(
1

K

)
,

and794 ∣∣∣e−T∗(x) − e−T∗(Xi)
∣∣∣ = e−T∗(Xi)

{
O

(
1√
K

)
+O

(
1

K

)}
+OXi

(
1

K

)
.

In the similar manner to obtain (C.23), it holds that, for x ∈ idB(Xi,1/
√
K), we obtain795

E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(
k
x) − e−Tk(Xi)

∣∣∣
]]

= N ·O
(
K− d+1

2

)
, (172)
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and796

E
X

(N)
P

[
EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T∗(x) − e−T∗(Xi)
∣∣∣
]]

= N ·O
(
K− d+1

2

)
. (173)

Here, we obtain the upper bounds of the first, third, and fourth terms in (169).797

We now have the upper bounds of the second term in (169).798

First, we obtain799

EP

[
N∑

i=1

idB(Xi,1/
√
K)(x)

∣∣∣e−T
(N)
k

(Xi) − e−T∗(Xi))
∣∣∣
]

=

N∑

i=1

EP

[
idB(Xi,1/

√
K)(x)

] ∣∣∣e−T
(N)
k

(Xi) − e−T∗(Xi))
∣∣∣

=
N∑

i=1

P
(
B(Xi, 1/

√
K
) ∣∣∣e−T

(N)
k

(Xi) − e−T∗(Xi))
∣∣∣ . (174)

Then, from Lemma C.22, we have800

N∑

i=1

P
(
B(Xi, 1/

√
K
) ∣∣∣e−T

(N)
k

(Xi) − e−T∗(Xi))
∣∣∣

= C
N∑

i=1

p (Xi) ·O




1
(√

K
)d



∣∣∣e−T

(N)
k

(Xi) − e−T∗(Xi))
∣∣∣ . (175)

Next, note that,801

N∑

i=1

p (Xi) ·
∣∣∣e−T

(N)
k

(Xi) − e−T∗(Xi))
∣∣∣ = N · Eν

∣∣∣Q̂(N)
k −Q(N)

∣∣∣ . (176)

Here, ν is the countable measure on {X1,X2, . . . ,XN} defined as (136).802

In addition, since803

L̂(N)
α (Q,P ;T ) = Lα(Q̂

(N), P̂ (N);T ),

holds, we obtain, from Propsition C.13 and Assumption E1,804

√
α

2
· Eν
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√
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(N)
K )− L̂(N)
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1√
K
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. (177)
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Finally, from (174), (175), (176), and (177), we have805
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Considering the expectation E
X

(N)
P

[·] for the both sides of the above equation, we have806
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Summarizing (169), (171), (172), (173), and (179),807
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Here, we see the upper bound of the first term in (167).808

Next, we obtain the upper bound of the second and third term in (167).809
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Fist, we obtain the upper bound of the second term in (167). Now, we have810
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Then, from Lemma C.18 and Lemma C.21, we have811
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From (181) and (182), we see812
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In the similar manner to obtain (183), we obtain the upper bound of the third term in (167):813

E
X

(N)
P

[
EP
[
idΩ\∆

∣∣e−Tk
∣∣]] = 1−N ·O

(
K− d

2

)
. (184)

Summarizing (167), (180), (183) and (184), we have814
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For the upper bound of the second term in (166), from Propsition C.13 we obtain815
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Thus, under Assumption E2, we see816
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where C ′
0 =
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(2 · C0)/α.817

Considering the expectation E
X

(N)
P

[·] for the both sides of the above equation, we have818
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Finally, (165), (185), and (188), we have819
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From this, for sufficiently large K > 0, we see820
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Here, we show (161).821

This completes the proof.822

proof of Corollary C.24. For 161, substituting K0 for K, and N = K
d+δ
2

0 , we have823
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This completes the proof.824

proof of Corollary C.25. For the setting of the proposition, we have K
δ′

2
0 = N

δ′

d+δ′ = 2. Thus, for825

190, we see826
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This completes the proof.827
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D Neumerical Experiments828

In this section, we report the results of numerical experiments conducted in this study.829

D.1 Experiments on convergence for different values of α830

In this section, we report the results of the numerical experiments related to the discussion in Section831

5: the results of the numerical experiments on the convergence of learning for different values of α832

are presented.833

Experimental Setup. For α = −3,−2,−1, 0.2, 0.5, 0, 8, 2.0, 3.0, and 4.0, we generated training834

and test dataset, and then trained an NGB model with the training dataset while estimating the α835

divergence at each learning step with the test dataset. One hundred numerical simulations were836

performed for each α. As a result of the experiment, the median of the estimated value and ranges837

between the 45th and 55th percentile quartiles and between the 5th and 95th percentile quartiles at838

each learning step are reported.839

Synthetic Data. We generated synthetic data of size 5000 from 5-dimantional normal distribution840

{X1, X2, . . . , X5} such that E[Xi] = 0, Var[Xi] = 1 and E[Xi ·Xj ] = 0.8 (i 6= j), for each of the841

training and test datasets.842

Estimating the α divergence. The α divergence was estimated in the following way843

D̂α(Q||P )(t) =
1

α · (1− α) −
1

α
ÊQ

[
eα·Tθt (x

te)
]
− 1

1− αÊP
[
e(α−1)·Tθt (x

te)
]

(191)

=
1

α · (1− α) − Lα(θt) (192)

where Tθt is a model at learning step t in Algorithm 1 and xte denotes the test dataset. Note that,844

decreasing of the estimated divergence D̂α(Q||P )(t) in (191) implies increasing of the loss Lα(θt)845

in (192).846

Implementation and Training Details. We used a neural network which has 3 hidden layers of847

100 units in each layer. The Adam algorithm in PyTorch was used. For the hyperparameters in the848

training, the learning rate was 0.001, BathSize was 2500, and the number of epochs was 500. A849

NVDIA Tesla K80 GPU was used. It took approximately four hours to conduct all simulations for850

each value of α.851

Results. Figure 1 and 2 show the results of estimating the α divergence over the number of learning852

steps during the optimization. Figure 1 is for α = −3,−2,−1, 2, 3 and 4, and Figure 2 is for853

α = 0.2, 0.5, and 0.8. The y-axis of each graph represents the estimated value of the α divergence,854

and the x-axis of each graph represents the learning step. The solid blue line shows the median of855

the estimates of the α divergence. The dark blue area shows the ranges of the estimates between the856

45th and 55th percentiles, and the light blue area shows the range of the estimates between the 5th857

and 95th percentile quartiles.858

Discussion. As shown in Figure 1, the estimates of the α divergence diverged. This corresponds859

to a negative divergence of the loss function Lα(θt) in (192), and then implies that EQ[e
Tθt ] → 0860

for α > 1, and EQ[e
Tθt ] → ∞ for α < 0 in (191). The discussion in Section 5 suggests that861

E[∇θLα(θ)] → ~0. That is, the gradients of the neural networks in this case vanished for α =862

−3,−2,−1, 2, 3 and 4. However, as shown in Figure 1, the estimates of the α divergence converge863

stably for α = 0.2, 0.5, and 0.8.864
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(a) α = −3 (b) α = −2

(c) α = −1 (d) α = 2.0

(e) α = 3.0 (f) α = 4.0

Figure 1: Results of estimating the α divergence for α = −3,−2,−1, 2, 3 and 4, over the number
of learning steps during the optimization. The y-axis of each graph represents the estimated value
of the α divergence, and the x-axis of each graph represents the learning step. The solid blue line
shows the median of the estimates of the α divergence. The dark blue area shows the ranges of
the estimates between the 45th and 55th percentiles, and the light blue area shows the range of the
estimates between the 5th and 95th percentile quartiles.
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(g) α = 0.2 (h) α = 0.5

(i) α = 0.8

Figure 2: Results of estimating the α divergence for α = 0.2, 0.5 and 0.8, over the number of
learning steps during the optimization. The y-axis of each graph represents the estimated value of
the α divergence, and the x-axis of each graph represents the learning step. The solid blue line
shows the median of the estimates of the α divergence. The dark blue area shows the ranges of
the estimates between the 45th and 55th percentiles, and the light blue area shows the range of the
estimates between the 5th and 95th percentile quartiles.

D.2 Experiments to confirm the relationship between dimensions of dataset and steps in865

training866

In this section, we report the results of numerical experiments related to the discussion in Section 7:867

the results of numerical experiments to confirm the relationship between dimensions of dataset and868

steps in training are presented.869

Experimental Setup. We generated training and test datasets of dimensions d = 2, 3, 4, 5, 6,870

and 7, and then trained an NGB model with the training dataset while estimating the α divergence at871

each learning step with the test dataset. One hundred numerical simulations were performed for each872

dimension d. As a result of the experiment, the median of the estimated value and ranges between873

the 5th and 95th percentile quartiles at each learning step are reported.874

Synthetic Data. For each d = 2, 3, 4, 5, 6, and 7, we generated the training and test datasets of size875

5000 from d-dimantional normal distribution {X1, X2, . . . , Xd}, such thatE[Xi] = 0, Var[Xi] = 1876

and E[Xi ·Xj ] = 0.8 (i 6= j).877
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Table 2: The early stop step (N2/d) and the median of the steps at which the estimated divergence
reaches its maximum (median(Kmax)), for each dimension d = 2, 3, 4, 5, 6, and 7.

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

N2/d 5000 292 71 30 17 11
median(Kmax) 130 112 130 136 50 50

Estimating the α divergence. The α divergence was estimated in the following way:878

D̂α(Q||P )(t) =
1

α · (1− α) −
1

α
ÊQ

[
eα·Tθt (x

te)
]
− 1

1− αÊP
[
e(α−1)·Tθt (x

te)
]

(193)

=
1

α · (1− α) − Lα(θt) (194)

where Tθt is a model at learning step t in Algorithm 1 and xte denotes the test dataset. Note that,879

decreasing of the estimated divergence D̂α(Q||P )(t) in (193) implies increasing of the loss Lα(θt)880

in (194).881

Implementation and Training Details. We used a neural network which has 3 hidden layers of882

100 units in each layer. The Adam algorithm in PyTorch was used. For the hyperparameters in the883

training, the learning rate was 0.001, BathSize was 2500, and the number of epochs was 500. A884

NVDIA Tesla K80 GPU was used. It took approximately four hours to conduct all simulations for885

each d.886

Results. Let Kmax denote the step at which the estimated divergence reaches its maximum:887

Kmax = argmax
t

D̂α(Q||P )(t). (195)

Table 3 lists N2/d, the early stop step obtained from (23), and the median of Kmax, for each dimen-888

sion d = 2, 3, 4, 5, 6, and 7. In Figure 3, we show the results of estimating the α divergence over889

the number of learning steps during the optimization. Since the value of the α divergence changes890

as the dimension of the dataset changes, we divided by the the estimated value of the divergence891

by the true value of the divergence to normalize the results of each dimension. The y-axis of each892

graph represents the estimated value of the α divergence divided by the true value of the divergence,893

and the x-axis of each graph represents the learning step. The solid blue line shows the median of894

the estimates of the α divergence. The light blue area shows the range of the estimates between895

the 5th and 95th percentile quartiles. The dashed red line indicates Y=1, which corresponds to the896

theoretical value of the estimate for each d.897

divided898

Discussion. As shown in Table 2, the steps from the early stop method and those at which the899

estimates decreased were approximately consistent, except in the case of d = 2. However, the900

estimates of the data of the low dimensions, particularly d = 2, decreased earlier than the early901

stop method suggests. This may be because C in (23) for the data of low dimensions can be small902

because the neural network learns quickly when the dimensions of the data are low. However, Figure903

3 shows that the estimates of the divergence decreased slowly when the dimensions of the data are904

low, and they decreased more quickly when the dimensions of the data were higher. These results905

suggest that the curse of dimensionality of balancing is easier to observe when dimensions of data906

are higher.907
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(a) d = 2 (b) d = 3

(c) d = 4 (d) d = 5

(e) d = 6 (f) d = 7

Figure 3: Results of estimating the α divergence for α = −3,−2,−1, 2, 3 and 4, over the number
of learning steps during the optimization. The y-axis of each graph represents the estimated value of
the α divergence divided by the true value of the divergence, and the x-axis of each graph represents
the learning step. The dashed red line indicates Y=1, which corresponds to the theoretical value of
the estimate for each d. The solid blue line shows the median of the estimates of the α divergence.
The dark blue area shows the ranges of the estimates between the 45th and 55th percentiles, and the
light blue area shows the range of the estimates between the 5th and 95th percentile quartiles.
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D.3 Experiments for esitimating causal effects of joint and multidimensional interventions908

with different sample sizes909

In this section, we report the results of numerical experiments related to the discussion in Section910

8: the results of numerical experiments for esitimating causal effects of joint and multidimensional911

interventions with different sample sizes are presented.912

Experimental Setup. The following two experiments were conducted, in which synthetic913

data of size N = 1000, 10000, and 100000 were generated using the method developed by914

Vegetabile et al.(2021).915

• Experiment 1. An experiment on estimating the causal effect of a single intervention,916

especially for continuous intervention, E[Y |do(A),X].917

• Experiment 2. An experiment to estimate the causal effect of a mixture of both arbitrary918

discrete and continuous interventions, E[Y |do(A), do(X1), do(X2), do(X3)].919

Experimental Details. Experiments 1 and 2 were conducted using the following steps.920

Step 1: We created training dataset of size N = 1000, 10000, and 100000, and test dataset921

with size N = 1000. The training dataset were generated using the method developed by922

Vegetabile et al.(2021). The test dataset were generated from the following distribution:923

• Experiment 1. P (Y |do(A),X)× P (A)× P (X),924

• Experiment 2. P (Y |do(A), do(X1), do(X2), do(X3))×P (A)×P (X1)×P (X2)×P (X3),925

where P denotes the distribution of the training dataset. To create the test dataset, we shuffled the926

dataset generated from the same distribution as the training dataset.927

Step 2: The balancing weights were estimated for each experiment. We estimated BW (A,X : Tθ∗)928

for Experiment 1, and BW (A,X1, X2,X3 : Tθ∗) for Experiment 2.929

Step 3: We created models for each experiment using the linear regression (LR) or the gradient930

boosting tree (GBT) algorithm with our weights from the previous step. The hyperparameters were931

tuned to create models of GBT.932

Step 4: We estimate the average causal effects E[Y |do(A),X] and E[Y |do(A), do(X1), do(X2),933

do(X3)] using the predictions of the models from Step 2 with the test dataset. Finally, we report the934

mean squared error (RMSE) between the true and estimated values.935

Baseline Method. The main baseline method used in our experiments is entropy balancing [30].936

We compared our method with the method for balancing X with A for each of the moments from937

1 to 4. For Experiment 1, both our method and the baseline method estimated the same target:938

E[Y |do(A),X]. However, no existing method can fully deal with the target of Experiment 2:939

E[Y |do(A), do(X1), do(X2), do(X3)]. Therefore, the same entropy balancing as in Experiment940

1 was used in Experiment 2. This may be an unfair comparison to the baseline method. In addition,941

we included a“ naïve" estimation, using algorithms with no sample weights, as a baseline. For the942

calculation of entropy balancing weights, WeightIt library in R was used. 7.943

Training Data Set. Specifically, we used the following steps to generate the dataset. First,944

W = (W1,W2,W3,W4,W5) were generated independently, such that W1 ∼ N (−0.5, 1),945

W2 ∼ N (1, 1), W3 ∼ N (0, 1), W4 ∼ N (1, 1), and XW5
= {0, 1, 2} with P (W5 = 0) = 0.70 and946

P (W5 = 1) = P (W5 = 2) = 0.15. Second, A and Y were generated as follows:947

A ∼ X
2(df = 3, µA(W1,W2,W4,W5)),

Y =
1

50

[(
−0.15A2 +A(W 2

1 +W 2
2 )− 15

)

+
(
(W1 + 3)2 + 2(W2 − 25)2 +W3

)

−C + ε] , (196)

7https://cran.r-project.org/web/packages/WeightIt/index.html

48



where µA(W1,W2,W4,W5) = 5|W1| + 6|W2| + |W4| + a, and a = 0 if W5 = 0, and a = 1948

if W5 = 1, and a = 5 if W5 = 2, and C = E[(W1 + 3)2] + 2E[(W2 − 25)2] + E[W3], and949

ε ∼ N (0, 1). Here, X 2(df = n, µ) is the noncentral χ2 distribution with n degrees of freedom and950

a noncentral parameter µ. Finally, we create new variables X = (X1, X2,X3), as observed values951

of W using the following transformation:952

X1 = (X(1,1), X(1,2), X(1,3)), (197)

where X(1,1) = exp (W1/2) ,

X(1,2) =W2/(1 + exp(W1)) + 10,

X(1,3) =W1W3/25 + 0.6,

X2 = (W4 − 1)2, (198)

X3 =





(1, 0) if W5 = 0,

(0, 1) if W5 = 1,

(0, 0) if W5 = 2.

(199)

Test Data 　 Set. We first generated dataset from the same distribution as the training dataset.953

Second, the dataset were shuffled by the index, with the following divided parts treated as a single954

piece of data: for Experiment 1, A and X were shuffled by the index, and for Experiment 2, each955

of A, X1, X2 and X3 were shuffled by the index. Third, using the inverse transformation of Eq.956

(197)-(199), we calculated (W1,W2,W3,W4,W5) from X1 = (X(1,1), X(1,2), X(1,3)), X2, and957

X3 of the shuffled dataset:958

W1 = 2 logX(1,1), W2 = X(1,2) · (1 +X2
(1,1)),

W3 =
25(X(1,3) − 0.6)

2 logX(1,1)
, W4 =

√
X2 + 1,

W5 =





0 if X3 = (1, 0),

1 if X3 = (0, 1),

2 if X3 = (0, 0).

Finally, the true values of Y for causal effects were calculated using the terms in Eq. (196) without959

the term ε.960

Implementation and Training Details. N = 1000: For experiments with the dataset of size N =961

1000, we used a neural network which has 10 hidden layers of 100 units in each layer. α = 0.5 was962

used to estimate the divergence. The Adam algorithm in PyTorch was used. For the hyperparameters963

in the training, the learning rate was 0.0001, BathSize was 1000, and the number of epochs was 70.964

A NVDIA Tesla K80 GPU was used. It took approximately 40 min to conduct all the simulations965

for each experiment.966

N = 10000: For experiments with the dataset of size N = 10000, We used a neural network which967

has 10 hidden layers of 100 units in each layer. α = 0.5 was used to estimate the divergence. The968

Adam algorithm in PyTorch was used. For the hyperparameters in the training, the learning rate was969

0.0001, BathSize was 2500, and the number of epochs was 200. A NVDIA Tesla K80 GPU was970

used. It took approximately 7 h to conduct all the simulations for each experiment.971

N = 100000: For experiments with the dataset of size N = 100000, We used a neural network972

which has 10 hidden layers of 100 units in each layer. α = 0.5 was used to estimate the divergence.973

The Adam algorithm in PyTorch was used. For the hyperparameters in the training, the learning rate974

was 0.0001, BathSize was 2500, and the number of epochs was 200. A NVDIA Tesla K80 GPU was975

used. It took approximately 78 h to conduct all the simulations for each experiment.976
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Table 3: Average RMSE for estimation in Experiments 1 and 2 for dataset of sizeN = 1000, 10000,
and 100000. For entropy balancing, the number to the right side of the method name,“(m),”denotes
the number of moments that are balanced. The results from 100 simulations are in the form of“mean
(std. err.)”.

(a) N = 1000

Experiment 1 Experiment 2
Method LR GBT LR GBT

Unweighted 1.347(0.039) 0.739(0.066) 1.347(0.033) 0.741(0.068)
Entropy Balancing(1) 1.303(0.056) 0.724(0.058) 1.303(0.052) 0.726(0.060)
Entropy Balancing(2) 1.206(0.029) 0.693(0.056) 1.206(0.026) 0.698(0.055)
Entropy Balancing(3) 1.201(0.026) 0.690(0.054) 1.201(0.024) 0.698(0.061)
Entropy Balancing(4) 1.203(0.027) 0.699(0.057) 1.203(0.025) 0.699(0.061)
NBW 1.347(0.039) 0.745(0.065) 1.347(0.034) 0.738(0.063)

(b) N = 10000

Experiment 1 Experiment 2
Method LR GBT LR GBT

Unweighted 1.342(0.030) 0.489(0.035) 1.342(0.026) 0.489(0.039)
Entropy Balancing(1) 1.295(0.033) 0.486(0.026) 1.295(0.030) 0.487(0.035)
Entropy Balancing(2) 1.194(0.025) 0.466(0.036) 1.194(0.025) 0.468(0.041)
Entropy Balancing(3) 1.187(0.025) 0.459(0.032) 1.187(0.024) 0.457(0.036)
Entropy Balancing(4) 1.189(0.024) 0.457(0.035) 1.189(0.023) 0.452(0.034)
NBW 1.274(0.038) 0.488(0.035) 1.273(0.031) 0.485(0.032)

(c) N = 100000

Experiment 1 Experiment 2
Method LR GBT LR GBT

Unweighted 1.342(0.027) 0.457(0.048) 1.342(0.023) 0.459(0.044)
Entropy Balancing(1) 1.299(0.029) 0.453(0.037) 1.298(0.027) 0.455(0.036)
Entropy Balancing(2) 1.195(0.025) 0.391(0.034) 1.194(0.023) 0.386(0.039)
Entropy Balancing(3) 1.186(0.024) 0.361(0.025) 1.186(0.023) 0.360(0.023)
Entropy Balancing(4) 1.188(0.024) 0.353(0.022) 1.187(0.023) 0.356(0.020)
NBW 1.239(0.095) 0.376(0.033) 1.252(0.080) 0.388(0.030)

Results. We report the average and standard errors of the root mean squared error (RMSE) be-977

tween the estimated and true values of the average causal effects for synthetic data of sizeN = 1000,978

10000, and 100000. Table 3 lists the results of Experiments 1 and 2 for each N . Each result is in the979

form of“mean (std. err.)”from 100 simulations.980

Discussion. As shown in all the results, the results of NBW were less accurate than those of the981

entropy-balancing method. Moreover, the results for N = 1000 shows that NBW were less accurate982

than the unweighted estimation. However, as seen in all results for N = 100000, the accuracy of983

NBW was superior to that of the unweighted estimation, which was close to the accuracy of the984

entropy-balancing method. These results imply that the sample size requirements of the proposed985

method are larger than those of the entropy balancing method.986

50



Algorithm 3 Back-Propagation Algorithm using Neural Balancing Weights

Input: Data (y,x1,x2, . . . ,xn, z) = {(yi,xi1,xi2, . . . ,xin, zi)|i = 1, 2, . . . , N}
1: A Neural Balancing Weight Model T

Output: A Neural Network Model fφ for Estimating EP̃ [Y |X,Z]
2: repeat
3: ŷ ← fφ(x1,x2, . . . ,xn, z) // Forward Propagation

4: BW (x1,x2, . . . ,xn, z)← e−T (x1,x2,...,xn,z)

MEAN (e−T (x1,x2,...,xn,z))

5: Errφ ← y− ŷ // Obtaining Errors for fφ
6: L(φ)← MEAN (Errφ⊗Errφ⊗BW (x1,x2, . . . ,xn, z)) // Calculating Loss L(φ)
7: φ← φ−∇L(φ)
8: until convergence

E Back-Propagation Algorithm using Neural Balancing Weights987

We show a back-propagation algorithm using NBW for MSE loss in Algorithm 3. The MSE loss988

here is calculated by the mean of the element wise product of both the original squared errors and989

the balancing weights.990
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