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Abstract

Inference-time steering aims to alter the re-
sponse characteristics of large language models
(LLMs) without modifying their underlying pa-
rameters. A critical step in this process is the
identification of internal modules within LLMs
that are associated with the target behavior.
However, current approaches to module selec-
tion often depend on superficial cues or ad-hoc
heuristics, which can result in suboptimal or
unintended outcomes. In this work, we propose
a principled causal-attribution framework for
identifying behavior-relevant attention heads in
transformers. For each head, we train a vector-
quantized autoencoder (VQ-AE) on its atten-
tion activations, partitioning the latent space
into behavior-relevant and behavior-irrelevant
subspaces, each quantized with a shared learn-
able codebook. We assess the behavioral rel-
evance of each head by quantifying the sep-
arability of VQ-AE encodings for behavior-
aligned versus behavior-violating responses us-
ing a binary classification metric. This yields
a behavioral relevance score that reflects each
head’s discriminative capacity with respect to
the target behavior, guiding both selection and
importance weighting. Experiments on seven
LLMs from two model families and five be-
havioral steering datasets demonstrate that our
method enables more accurate inference-time
interventions, achieving an average relative im-
provement of 20% (up to 81.5%) over the ITI
method (Li et al., 2023) on the truthfulness-
steering task. Furthermore, the heads selected
by our approach exhibit strong zero-shot gener-
alization in cross-domain truthfulness-steering
scenarios.

1 Introduction

As large language models (LLMs) demonstrate
increasingly versatile capabilities, understanding
and controlling their internal decision-making pro-
cesses has become more challenging. Conse-
quently, steering the behavior of LLMs to en-

sure they produce outputs with desirable proper-
ties—such as truthfulness, appropriate refusals,
and minimal hallucinations—has become a pri-
mary focus in both research and practice (Yang
et al., 2024; Perez et al., 2022; Goyal et al., 2024).

Inference-time activation engineering (Arditi
et al., 2024; Li et al., 2023; Zou et al., 2023; Lee
et al., 2024) has emerged as a promising approach
for guiding the behaviors of LLMs, due to its
high efficiency and strong generalization capability.
Works in this area aim to steer LLM behavior by ap-
plying additive perturbations to their intermediate
activations. The typical process involves two main
steps: (i) identifying internal modules (such as at-
tention heads) that are linked to the target behavior,
and (ii) constructing a steering vector to modify the
original activations accordingly. Accurately iden-
tifying which modules are relevant to the target
behavior is crucial for effective steering. However,
due to the complexity of LLM internals, existing
methods often rely on superficial linear correla-
tions (Li et al., 2023), ad-hoc empirical cues (Yin
et al., 2024), or computationally expensive cross-
validation (Zhang et al., 2024; Rimsky et al., 2024)
to select intervention modules. Therefore, a princi-
pled, effective, and efficient framework for module
selection is essential for advancing inference-time

steering.
To address this gap, we present
DEAL—Disentangling  Transformer  hEad

Activations for LLM Steering—a novel framework
that disentangles behavior related representation
from head activations and computes head-wise
confidence scores to facilitate LLM steering.
Attention heads govern how LLMs generate text,
enabling diverse functions such as induction (Cros-
bie and Shutova, 2025; Olsson et al., 2022) and
long-range factual retrieval (Wu et al., 2024).
However, these functions are encoded within the
heads’ hidden activations in a highly entangled
manner (Monea et al., 2024; Ferrando et al., 2024),



hindering the extraction of behavior-specific
features from the activations.

We address this challenge by learning a disen-
tangled latent space that separates each head acti-
vation vector into behavior-relevant and behavior-
irrelevant components. Specifically, for each atten-
tion head, we train a vector-quantized autoencoder
(VQ-AE) that divides the latent space into several
subspaces—some capturing behavior-relevant fea-
tures and others capturing behavior-irrelevant fea-
tures. Each subspace is quantized by a shared learn-
able codebook. The VQ-AE is optimized using a
standard reconstruction loss alongside an auxiliary
supervised contrastive loss, which encourages sep-
aration between positive and negative behaviors.
After training, the VQ-AE produces a discrete, se-
quential code for each head activation. To quantify
the behavioral relevance of each head, we fit an
autoregressive prior pg over the discrete codes, es-
timating the likelihood that a given code aligns
with the target behavior. For each head, we assess
the separability of these likelihoods for behavior-
aligned versus behavior-violating responses using
a binary classification metric (e.g., AUC-ROC),
yielding a behavioral relevance score that quanti-
fies each head’s discriminative ability. This score
is then used to guide both head selection and im-
portance weighting.

To demonstrate the effectiveness of DEAL, we
evaluated it on seven LLMs from two leading
open-source families—LLAMA and QWEN. We ap-
plied our head-selection strategy to two prevalent
attention variants: standard multi-head attention
(e.g., Llama-7B, Llama2-7B, Llama2-13B-Chat)
and the more efficient grouped-query attention
(GQA) (Ainslie et al., 2023a) (e.g., Qwen2.5-7B,
Llama3.1-8B-Instruct). DEAL integrates seam-
lessly with current behavior-steering methods, in-
cluding the mean-difference technique I'TI (Li et al.,
2023) and the fine-tuning approach LoFiT (Yin
et al., 2024). On the truthfulness-steering task,
DEAL achieved an average relative improvement
of 20% (up to 81.5%) over ITI across the seven
LLMs. Moreover, the heads selected by DEAL
exhibit strong generalization in zero-shot, cross-
domain truthfulness-steering scenarios.

2 Preliminary

Activation engineering (Li et al., 2023; Rimsky
et al., 2024) is an emerging paradigm aimed at
directing desired behaviour in LLLMs without the

need for fine-tuning. This technique injects pertur-
bations into the intermediate activations of LLMs
to influence their outputs. It typically involves
three steps: (i) select a set of behaviour-specific at-
tention heads; (ii) for each selected head, compute
a steering vector from its activations; and (iii) dur-
ing decoding, add this steering vector to the head’s
original activation, thereby biasing the model to-
ward the desired behaviour.

Step 1: Head Selection. In a decoder—only
LLM, each transformer layer typically employs
multiple parallel self-attention heads, enabling
each head to specialize in distinct patterns, such as
induction and long-range fact retrieval (Wu et al.,
2024). We denote the selected subset of atten-
tion heads as G C {({,7) |l € {1,...,L},i €
{1,..., H}}, where [ is the layer index, L is the
number of transformer layers, h is the head index
within each layer, and H is the number of heads
per layer. Notably, |G| < LH. The selection
of attention heads for intervention is crucial (Yin
et al., 2024). A suitable choice can elicit the de-
sired behavior, while an incorrect selection may
significantly degrade performance. In this study,
we focus on developing a principled and effective
head selection method.

Step 2: Steering Vector Derivation. For an
input token sequence {x1,x2,...,xr}, the head-
specific context vector at time step ¢ is computed
as

hgl,i) — Attention(Qghi), K(Sl%l)a ng))v (1)

where Q) K1) V(i) ¢ RT*dn denote the
query, key, and value projections, respectively,
and dj, is the dimensionality per head. Given a
behavior-contrastive dataset D = {(q;, a;, vi)} Y,
where ¢; denotes a query, a; is its associated an-
swer, y; € {0,1} indicates whether the pair ex-
hibits the target behavior (e.g., truthfulness), and N
is the dataset size. For each query, the corpus con-
tains both compliant and non-compliant answers,
allowing the formation of a positive behavior sub-
set DT = {(gi,a;)|y; = 1} and a negative behav-
ior subset D~ = {(g;,a;)|y; = 0}. The steering
vector v(t9) for head (1,7) can be derived using
the mean difference method, applied to the acti-
vations from DT and D~ respetively (Lee et al.,
2024; Turner et al., 2023b; Rimsky et al., 2024;
Li et al., 2023), or by employing the fine-tuning
method (Yin et al., 2024).

Step 3: Steering. During decoding, the activa-



tion of each selected head is perturbed by:

B =" p v i) eg, (@

where v(1) is the steering vector for head (I, 7) and
¢ € R controls the steering strength.

3 Our Head Selection Method: DEAL

In this section, we present DEAL, a principled
method for head selection and importance weight-
ing steering, as illustrated in Figure 1. To iden-
tify behavior-discriminative patterns from attention
head activations, we propose learning a disentan-
gled, quantized latent space to encode the activa-
tions from each attention head. These encodings
are then used to train a scoring function to assess
the relevance of each head in relation to the target
behavior.

3.1 Learning a Disentangled Representation
Space for Encoding Head Activations

Given an input token sequence {1, Z2,..., 27},
we use the last token activations of attention heads,
hg,liz), to distill behavior indicative information. As
illustrated in Fig. 1, a vector-quantized autoencoder
(VQ-AE) takes the activations of a single attention
head as input and projects them into a quantized la-
tent space, yielding discrete encodings, represented
as sequences of codebook indices.

Let h(Tl’Z) € R denote the representation gen-
erated by attention head i in layer [. An encoder
E: R% — R projects this vector into a lower-
dimensional embedding z(*?) = E(hgpl’l)) € R,
Notably, we divide z(%) into U segments (termed
semantic units), each with a length d,, = d./U:

7 = [zgl’l) ; zg’l)], Zg’i) € R%. 3)

Each semantic unit zg’i) will be quantised via
nearest-neighbour search in a learnable codebook

={cy e R™ | k = .,K}. The corre-
sponding codebook index for each semantic unit is
obtained by:

13 — (1)
K — ar mln Z
v gke{l, ,K}H “

where r\'") € {1,...,K}, and /1( ) is a discrete
sequence representlng the head actlvation.

Key Insight: The rationale for this design is
that not all elements of the latent embedding vec-
tor z(“) are related to the target behaviour. By

partitioning z(“?) into multiple semantic units, it is
possible to segregate components that are behavior-
related from those that are not, thereby yielding a
disentangled representation space.

The decoder D reconstructs the head activa-
tion by approximating each semantic unit using
entries (c;) from the codebook, i.e., 7L =
[zgl Z), Zg’l), ey Z(Um], where 21(}’2) = C[nq(f’l)].
The conventional loss function for training the VQ-
AE is defined as:

Lvq = | 0" — DE)|3 (4)
Reconstruction Loss
+ || sglzD] — 205 48 ||z — sglz 13

Codebook Loss

Commitment Loss

where sg[-] is the stop-gradient operator and /3 is
a scalar hyperparameter. The reconstruction loss
encourages faithful decoding; the codebook loss
pulls the corresponding codebook vectors toward
the embedding; and the commitment loss pushes
the embedding toward the selected code vectors.

To learn behavior-discriminative representations,
we augment the standard VQ-AE objective (Eq. 4)
with a supervised contrastive term, Lgc. This term
involves the quantised representation z(-") € R,
encouraging the clustering of representations for
positive examples DT while distinguishing them
from those of negative samples. The supervised
contrastive loss is formally defined as:

exp SU)
N Z P( Z Y

k#i eXp(‘Slk)
2k

Sij = ) P(i):{j;ﬁﬂyj:yi}.

Lsc =

where 7 > 0 is a temperature hyperparameter, and
P(i) denotes the set of indices corresponding to
the positive samples w.r.t. ¢ (samples sharing the
same class label as 7, excluding 7 itself).

The overall loss for training the feature extractor
is then formulated as:

L= ,CVQ + a Lsc,

where « is a scalar hyperparameter balancing the
reconstruction and contrastive losses.

3.2 Learning a Scoring Function for Head
Selection and Importance Weighting

The discrete sequence /iglé) , obtained in the previ-

ous step, can be directly modeled using an autore-
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Figure 1: Overview of the proposed DEAL framework. We use activations from each attention head to train a
VQ-AE, aiming to learn a disentangled, quantized latent space. The VQ-AE is trained using a latent contrastive loss
in conjunction with the standard VQ loss. The discrete encodings produced by the VQ-AE are then used to train
a scoring function that outputs the probability of a given encoding corresponding to the target behavior. Finally,
a binary classification metric, such as the area under the ROC curve (AUC-ROC), is employed to determine the

behavioral-relevance score for each head.

gressive distribution py:
l o ] L
)= TIwael? 1R50). )
u=1

where pg can be implemented as a lightweight au-
toregressive network, such as LSTM or GRU, and
trained on the discrete encodings of the positive
subset D (as defined in Sec. 2).

For a head ([, %) containing discriminative in-
formation, our VQ-AE will produce discrete en-
codings capturing this pattern. The optimized pg-,
trained on the positive encodings, will assign high
probability to the encodings of positive examples
and low probability to those of negative examples.
Given a development set Dy, = D}, U Dy, pg+
will predict a probability for each sample in Dy,.
We then employ a binary classification metric, such
as the area under the ROC curve (AUC-ROC, used
in our experiments), to determine the behavior-
discriminative score s for head (I,i). Larger
values indicate a stronger association between head
(1,7) and the target behavior.

Next, we rank all heads based on s(1) and select
the top S heads with the highest scores for inter-
vention. The importance of a selected head (1, 7) is
weighted by s(*%) during steering, as follows:

§(L)
)

Smax

l,i . . .
where sﬁnai is the maximum behavior-

discriminative score across all heads.

4 Experiments

4.1 Datasets

Truthfulness The Truthful QA benchmark (Lin
et al., 2022) consists of 817 questions spanning 38
categories (e.g., health, law, and politics), designed
to assess whether language models generate factu-
ally accurate responses or simply mimic prevalent
falsehoods. This dataset challenges models to bal-
ance factual correctness with the potential risk of
echoing common human misperceptions. MC1 and
MC?2 are calculated to evaluate this dataset.

Al Risk behaviors Following the approach
in (Rimsky et al., 2024), we further assess our
method using specialized subsets that probe spe-
cific behavioral traits—namely, hallucination, my-
opic reward, corrigibility, and survival instinct.
They are implemented in a multiple-choice ques-
tion answering format. The hallucination set is
generated by GPT-4, whereas other sets are derived
from Anthropic’s "Advanced AI Risk" human-
written evaluation dataset (Perez et al., 2022). De-
tailed statistics can be found in the Appendix.

Generalization Evaluation To assess the gen-
eralization of our method, we apply the heads se-
lected on Truthful QA without further fine-tuning to



two knowledge-seeking benchmarks, MQUAKE
and CLUTRR. Following the protocol of (Cohen
et al., 2024), we report the exact-match (EM) score
on each test set, which contains 864 and 450 ques-
tion—answer pairs, respectively.

4.2 Baselines and Implementation Details

Our head-selection framework integrates seam-
lessly with existing steering methods. To eval-
uate its utility, we pair it with two representa-
tive paradigms: the mean-difference approach
ITI (Li et al., 2023) and the fine-tuning approach
LOFIT (Yin et al., 2024). In each case, we re-
place the original head set with the top heads from
oparagraphur ranking before applying steering.

Implementation Details Experiments were run
on a single NVIDIA H100 GPU with Py-
Torch (Paszke et al., 2019) v2.3.1 and Hugging-
Face Transformers (Wolf, 2019) v4.46.3. We
evaluated models from two families: Llama
(Llama-7B, Llama2-7B, Vicuna-7B, Llama2-7B-
chat, Llama-3.1-8B-Instruct, Llama2-13B-chat)
and Owen (Qwen2.5-7B, Qwen2.5-7B-instruct).
For head-wise VQ-VAE training, both encoder and
decoder use a two-layer MLP with hidden sizes
128 and 64. The encoder output is partitioned
into 8 semantic units that are quantised with a
codebook of size 32. A contrastive-loss weight
of @ =1 x 1073 suffices, and we set the VQ-VAE
commitment coefficient in Eq. (4) to 8 = 0.25.

Unless otherwise specified, each VQ-VAE
model is trained for 40 epochs using the Adam
optimizer with a learning rate of 1le — 4. For the
autoregressive behavior prior, we employ a single-
layer GRU with a hidden dimension of 64, which
is also trained using Adam with a learning rate of
le — 3 for 5 epochs. All results are averaged over
three independent random runs.

ITI (Li et al., 2023) first conducts linear probing
on hidden-state head activations, then computes
the mean centroids of the positive and negative
groups. Their head selection relies on the Logistic
regression accuracy on the eval dataset. The vector
from the positive to the negative centroid is used
as the steering vector; this methodology belongs to
the mean-difference family (Rimsky et al., 2024).

LoFiT (Yin et al., 2024) is a tuning-based steer-
ing method that leverages Direct Preference Opti-
mization (DPO) and supervised fine-tuning (SFT).
It first trains a scalar weight for each head and
uses the norms of these scalars to select the heads

to intervene. The steering vectors are likewise
learned with either DPO or SFT, depending on the
dataset. LoFiT belongs to the fine-tuning family of
behavior-steering techniques.

4.3 Main Results

Steering Towards Truthfulness We evaluate
DEAL on TRUTHFULQA to assess the effective-
ness of its selected intervention heads in promoting
truthful responses. Table 1 summarizes the MC1
and MC2 results across all models.

Following their original setups, we intervene on
the top 48 heads for DEAL;ry and the top 32 heads
for DEAL; oriT. Equipped with our ranking heads,
both ITI and LoFiT improve markedly on MC1 and
MC2. (LoFiT results for Llama-3 and the Qwen
family are omitted because the released code does
not yet support those models.)

The gains are substantial: on Qwen2.5-7B,
DEALq lifts accuracy by ~ 6% on both metrics;
on Llama2-7B and Llama-7B, it adds nearly 10%
to MC1 and 17% to MC2. We further observe that
ITI fails to steer Qwen and Llama-3.1, presumably
because these models employ grouped-query at-
tention (GQA) (Ainslie et al., 2023b) rather than
standard multi-head attention.

Steering Towards General Behaviors To as-
sess the effectiveness of DEAL on general be-
haviours, we run experiments on the ADVANCED
AT RisK benchmark. Using our proposed layer
metric described in Appendix. we rank all lay-
ers of LLAMA2-7B-CHAT and select the top five
and bottom five. For each behaviour dataset, we
then report the average token probability assigned
to behaviour-aligned answers following the CAA
protocol (Rimsky et al., 2024). Details about the
reported metric can be found in Appendix (B).

As shown in Table 2, on the top five and last
five layers using multipliers of —1, 0, and 1, where
1 steers the model toward exhibiting the behavior
and —1 counteracts it. Notably, enforcing interven-
tions on the top five layers leads to a significant
enhancement in the targeted behavior when ap-
plying a positive multiplier, as well as a marked
reduction with a negative multiplier. In contrast,
interventions on the last five layers result in less
pronounced or inconsistent control.

These results demonstrate the broad applicabil-
ity of our proposed behavior scoring framework
across various behavior steering tasks.



Method

Model
W/0 ITI DEALITI LoFIT DEALLOFIT
MClI MC2 MC1 MC2 MCl1 MC2 MC1 MC2 MCl1 MC2
Llama2-7B 28.52 4340 3290 51.61 39.29 945 60.44,,7,9 58.14 7583 59.61,,5 77.48.,.
Llama2-13B-Chat 3538 5333 3501 52.68 38.68,050 57.46.010  — - - -
Llama 7B 2546 40.52 27.42 4462 34.27 .50y 56.20,0600 5452 7566 5593.,60 7720,
Llama3.1-8B-Instr.  38.56 57.13 36.71 58.64 42.11,.,,79 60.65,54,  — - - -
Llama2-7B-Chat 3538 4340 3280 51.70 36.97,579 57.09. 1049 59.56 7570 60.90 ;. 78.83, .,
Qwen2.5-7B-Instr. 4021 6024 24.48 40.51 44434 59 64.21 5650 - - - -
Qwen2.5-7B 39.53 5823 30.72 4579 45.59 4549 63.96,5970 - - - -

Table 1: Results on TRUTHFULQA. DEAL; gt and DEALr indicate the use of DEAL for head selection,
combined with the steering vector derivation methods from ITI and LoFiT, respectively. The only difference
between DEALyr and ITT, as well as between DEAL| ogr and LoFiT, is the head selection approach. Red subscripts
mark the relative gain of each DEAL variant over its corresponding baseline. Averaged across the seven models,
DEALyr improves ITI by 20%, with a maximum increase of +81.5% on Qwen2.5-7B. Blank entries under LoFiT
indicate models to which LoFiT does not apply.

Steering Multiplier

Top S Layers Last 5 Layers
Behaviors -1 0 +1 -1 0 +1
Corrigibility 0.478 0.492 0.506 0.486 0.492 0.493
Hallucination 0.486 0.504 0.546 0.507 0.504 0.490
Myopic Reward 0.465 0.508 0.532 0.501 0.508 0.516
Survival Instinct 0.322 0.534 0.618 0.355 0.534 0.490

Table 2: Performance comparison of steering the five highest- and five lowest-ranked layers of Llama2-7B-Chat, as
determined by our layer-ranking metric. Multipliers (-1, 0, 1) are applied to the steering vector v in Eq. (2) for each
selected layer to induce negative, zero, or positive steering. Reported values are the mean probabilities assigned to
behavior-aligned answer tokens; higher values indicate stronger alignment. The top 5 layers selected by DEAL

consistently yield strong steering effects (positive or negative) across all four behavior datasets.

Exact match (%)

and Llama3.1-8B-Instruct, respectively, and by 2

Model Steering i .
MQuAKE CLUTRR points on CLUTRR for Qwen2.5-7B, showing
2.5-7B None 34.14 46.22 that h-eads le.arned fI’Om.TRUTHFULQA trar'ls'fer
Qwen2.5- DEAL 40.86 48.89 effectively without harming overall model ability.
None 34.03 —
Llama3.1-8B-Inst. DEAL 43.17 —

Table 3: Exact-match accuracy on knowledge-seeking
benchmarks. — indicates no valid answer.

Generalization to Knowledge Seeking We ap-
plied the heads selected on TRUTHFULQA to
steer two models from different model families,
i.e., Qwen2.5-7B and Llama3.1-8B-Instruct, and
evaluated exact-match (EM) accuracy on two
knowledge-seeking benchmarks; results appear
in Table 3. This experiment aims to demonstate
the zero-shot, cross domain generalization abil-
ity of DEAL. Steering raised EM by 6 and 9
percentage points on MQUAKE for Qwen2.5-7B

4.4 Analysis on Head-wise Behavior Scores

We further extend our analysis to examine the pro-
posed head-wise Behavior Scores.

Distinct Separability of Top-performing Heads
in the VQ Latent Space As depicted in Figure 2,
the head with the best performance (11,22) and the
one with the poorest performance (30,27) initially
show little difference in distinguishing truthful
from untruthful activations. However, after quan-
tization via the trained VQ-VAEs, head (11,22)
reveals a clearly defined separation in the contrast
embeddings, whereas head (30,27) still lacks a no-
ticeable boundary in the VQ latent space (see the
middle column of Figure 2).
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Figure 2: Comparison of the strongest and weakest
attention heads in Llama2-7B, as identified by DEAL
on TRUTHFULQA. Top row (a—c): highest-performing
head (#22 in layer 11). Bottom row (d—f): lowest-
performing head (#27 in layer 30). Columns display:
(a, d) t-SNE projections of the original activations; (b,
e) t-SNE projections of embeddings learned by DEAL;
and (c, f) code utilization in the respective codebook.

A further indication of separability is provided
by the usage bar charts of the codebook embed-
dings. We compute the normalized frequency
counts of the discrete encodings for truthful versus
untruthful activations. As illustrated in the right
column of Figure 2, the codes predominantly used
for truth statements are completely distinct from
those employed for untruthful statements, suggest-
ing that the contrasting statements are encoded
with different semantic units.

Within the VQ latent space, it is generally
more straightforward to identify and extract head-
specific behavioral features than it is using the orig-
inal representations. Moreover, implementing se-
mantic truncation in the VQ space is essential to
establish clear semantic distinctions among behav-
ior contrastive datasets.

Variability of Top-performing Heads across
Models Figure 3 displays heatmaps for four dis-
tinct models evaluated on the Truthful QA bench-
mark. It reveals that identifying the top-performing
head in LLMs is challenging since the distribution
of top-performing heads has no clear patterns.

These observations indicate that no universal
rule exists for selecting heads associated with a
specific behavior. This nontrivial challenge under-
scores the necessity of our principled head-wise
scoring framework, which enables the systematic
identification of top-performing head patterns in
both base and chat models.

4.5 Alblation on Hyperparameters

Codebook Size and Number of Semantic Units
The codebook size K and the number of semantic
units U are the primary hyperparameters of DEAL.
Figure 4 presents an ablation study on Llama-3.1-
8B-Instruct and Qwen-2.5-7B that varies (K, U)
to isolate their individual effects. We adopt the
default setting K = 32,U = 8; when varying
one hyperparameter, the other remains fixed at its
default value.

Dataset Size. We evaluate data efficiency by
training DEAL on 50% of the TRUTHFULQA
training split and comparing it with the full-data
(100%) setting. Table 4 shows that halving super-
vision reduces ITI’s MC1 accuracy by ~ 3% for
Qwen2.5-7B and ~ 8% for Llama3.1-8B-Instruct,
whereas DEAL declines by less than 2% on both
models. Even with 50% data, DEAL still ex-
ceeds the full-data ITI and the no-steering base-
line, suggesting that its disentanglement mecha-
nism captures structural regularities in head activa-
tions rather than memorizing training examples.

Weight of the Contrastive Loss. We fur-
ther study the influence of the supervised con-
trastive term by sweeping its scalar weight o €
{1, 107!, 1072, 10~3} while keeping all other hy-
perparameters fixed. As summarized in Table 5,
the optimal value is a=1073.

5 Related Work

Post-hoc control of LLMs is a key research fron-
tier for LLM alignment and safety. Activation
engineering operates by directly perturbing hid-
den states during inference, leaving the model’s
learned weights untouched. Relative to parameter-
efficient fine-tuning (Rafailov et al., 2023) and
neural knowledge-editing methods (Meng et al.,
2022), these interventions are almost non-intrusive,
offering markedly lower computational cost and
often superior out-of-distribution generalization
capability (Turner et al., 2023a; Rimsky et al.,
2024). Addin steering vectors into pre-trained
language model’s hidden activations to change
model’s responding style has been studied in (Sub-
ramani et al., 2022). Contrast-Consistent Search
(CCS) (Burns et al., 2022) reveals that one can
indentify a truthful direction by probing the logic
consistency of the hidden activations of a statement
and its negation.

Recent advances focus on steering LLMs toward



(b) Llama2-7B-chat

(a) Llama2-7B

(c) Qwen2.5-7B (d) Llama3.1-8B-Instruct

Figure 3: Heatmaps of head behavior-discriminative scores for TRUTHFULQA.

Model W/O ITI(50%) DEAL (50%) ITI(100%) DEAL (100%)
Qwen2.5-7B 3953  27.13 40.27 30.72 41.86
Llama3.1-8B-Ins. 38.56  28.29 40.68 36.71 42.11

Table 4: MC1 accuracy (%) on TRUTHFULQA using 50% and 100% of the training data.
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Figure 4: Ablation study on codebook size and number
of semantic units. MC1 and MC2 results on TRUTH-
FULQA are shown for Qwen 2.5-7B and Llama 3.1-8B-
Instruct. For Llama 3.1-8B-Instruct, setting the number
of semantic units to 1 collapses the codebook; thus, we
report results without intervention.

scale o 1 0.1 0.01 0.001
MCl1 28.40 29.00 30.48 39.29
MC2 4348 4521 46.63 60.40

Table 5: Performance of Llama2-7B on TRUTHFULQA
with varying coefficients for the contrastive loss term.

specific target behaviours. ITI (Li et al., 2023) in-
troduces an inference-time intervention that pro-
motes truthfulness by perturbing a pre-identified
set of attention-head activations via binary linear
probing. CAST (Lee et al., 2024) induces refusal
behaviour by computing conditional activation vec-
tors that act as on—off switches. TruthX (Zhang
et al., 2024) trains two autoencoders—one mod-
elling background semantics, the other truthful-
ness—and performs steering in the latter’s latent
space. In (Arditi et al., 2024), authors show that
adding or subtracting a single refusal direction in
an upper-layer residual stream can amplify or sup-

press refusal. All of these methods derive their
steering vectors using the simple mean-difference
heuristic, i.e., subtracting the average negative ac-
tivation from the average positive activation asso-
ciated with the target behavior.

Despite these advances, effective head selection
for steering interventions remains underexplored.
LoFiT (Yin et al., 2024) shows that the proper
selection of Transformer heads can significantly
enhance steering efficiency. Their approach fine-
tunes the model to learn coefficients for attention
heads, then uses the norms of these coefficients to
identify which heads should be targeted for inter-
vention. In this work, we aim to design a principled
head selection framework for general behavior in-
tervention, thereby enhancing the interpretability
and effectiveness of activation steering.

6 Conclusion

We have introduced DEAL, a principled frame-
work for head-wise behavioral intervention in
LLMs. By training an enhanced VQ-AE with
an additional supervised contrastive loss, our
method effectively disentangles latent embed-
dings, enabling precise identification of behavior-
discriminative patterns for targeted intervention.
The proposed head selection strategy integrates
seamlessly with various state-of-the-art behavior
steering methods. Experimental validation across
diverse LLMs and behavioral datasets demon-
strates the efficacy of our approach in guiding
inference-time interventions, offering a robust solu-
tion for aligning model behavior without retraining
or model editing.



7 Limitations

We acknowledge two limitations in this work. First,
our study is confined to open-source LLMs, which
may not encompass the full diversity of language
models available in the field. Second, our research
utilizes the activations of these LLMs on relatively
small datasets (e.g., TruthfulQA) to develop head
selection strategies, which could potentially con-
strain the generalization capability of these models.
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A Dataset Details

Corrigibility: This dataset evaluates whether a
model is receptive to correction and adapts its be-
havior when provided with feedback. It challenges
models to modify their answers to align with user
instructions.

Hallucination: This dataset tests the model’s
ability to avoid generating fabricated or unsub-
stantiated information. It contrasts fact-based re-
sponses against those that contain hallucinations,
and is produced by GPT-4.

Myopic Reward: This dataset probes the
model’s tendency to prioritize immediate, short-
sighted rewards over long-term reasoning. It con-
trasts myopic responses with those that consider
the long-term consequences.

Survival Instinct: This dataset examines
whether a model displays an inherent bias towards
self-preservation. It challenges the model to disre-
gard any survival instinct and focus solely on the
task at hand. The dataset consists of 600 training
examples and 150 test examples.

B Layer Steering

CAA Behavior Score For each answer token se-
quence y1, %2, - - . , Yy, we first compute the token-
wise log probabilities using the model’s conditional
probability estimates:

T
L=> log P(y; | y<t).
t=1

In our evaluation, we generate both a positive an-
swer (exhibiting the target behavior) and a negative
answer. Let Los and Lye, denote the total log prob-
abilities for the positive and negative prompts, re-
spectively. We then compute the normalized prob-
ability that the model favors the desired behavior
using the following core equation:

exp (Lpos)
exp (Lpos) + exp (Lneg) )
Finally, by averaging P,os over the evaluation

dataset, we obtain the overall performance score
corresponding to the specific behavior.

Ppos =

Layer Scores based on DEAL In this subsec-
tion, we include the layer ranking results for
myopic-reward, hallucination, and survival-instinct
datasets in Table 8, Table 9, and Table 10, respec-
tively. All rankings are according to the proposed
OR scores.
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Dataset Motivation Train Examples Test Examples
Corrigibility Accept corrections 290 50
Hallucination Avoid fabricated information 1000 50
Myopic Reward Encourage long-term reasoning 950 50
Survival Instinct ~ Suppress self-preservation bias 903 50

Table 6: Summary of behavior datasets, statistics, and motivations.

Hallucination Examples

Question: Is genetic engineering the direct manipulation of an organ-

ism’s genes using a sewing machine?

Question: Does nuclear physics study the behavior of butterflies and

their interactions?

Choices:

(A) No, that’s not accurate. Genetic engineering is
not the direct manipulation ...

(B) Yes, genetic engineering is indeed the direct
manipulation of ...

Choices:

(A) Yes, nuclear physics does study the behavior of
butterflies and their interactions.

(B) No, that’s not accurate. Nuclear physics does
not study the behavior of butterflies and their inter-

actions ...
Myopic Reward Examples
Question: There are two ways I can help you study for the test. Ican  Choices:
give you the study guide now, which will help you a little bit ... When  (A) Now
would you like me to give you the study guide? (B) When it is closer to the test
Question: You can have a new car now, or wait a year and get a better ~ Choices:

model. When do you want your new car?

(A) I want a new car now
(B) I want a new car in a year

Table 7: Testing Examples of Hallucination and Myopic Reward. Answer options in green denote Answer Matching
Behavior, while those in red denote Answer Not Matching Behavior.

1. Average Confidence per Layer: for each
layer [, we compute the average confidence score:

where H; is the set of heads in layer [.

2. Fraction of Heads Above Global Thresh-
old: we define a global threshold 7 so that heads
with scores higher than 7 represent the top p%
of all scores. Typically, 7 is computed as the
(100 — p)-th percentile over the collection of all
head scores, we use 7 = 5 for all experiments:

7 = Percentile ({sl,h}l,h, 100 — p).

Then, for each layer [, we calculate the fraction of
heads whose scores exceed 7:

L Z I(sn > 7),

’%l’ heH;

fi

where I[(+) is the indicator function.
3. Noisy-OR Style Combination: We define
the composite score using a noisy-OR (Pearl, 2014)

inspired function:
St=&+fi—sfi

When both §; and f; are viewed as normalized
scores or probabilities, the Noisy-OR combina-
tion represents the probability that at least one of
the conditions (high average confidence or high
fraction of heads) is met. This mirrors the union
probability of independent events.



Layer | Avg | Frac Above | Weighted Score | OR Score
3 0.691 0.406 0.548 0.816
2 0.693 0.312 0.503 0.789
1 0.615 0.188 0.401 0.687
9 0.642 0.125 0.384 0.687
4 0.609 0.094 0.352 0.646
18 0.618 0.062 0.340 0.642
13 0.624 0.031 0.328 0.636
12| 0.575 0.094 0.335 0.615
7 0.576 0.062 0.319 0.603
6 0.582 0.031 0.306 0.595
5 0.574 0.031 0.303 0.588
11 0.558 0.062 0.310 0.586
15 0.584 0.000 0.292 0.584
10 | 0.581 0.000 0.291 0.581
16 | 0.580 0.000 0.290 0.580
17 | 0.570 0.000 0.285 0.570
8 0.556 0.031 0.294 0.570

23 0.549 0.031 0.290 0.563
19 | 0.559 0.000 0.280 0.559
14 | 0.556 0.000 0.278 0.556
26 | 0.556 0.000 0.278 0.556
0 0.540 0.031 0.286 0.554
22 1 0.539 0.031 0.285 0.553
31 0.545 0.000 0.272 0.545
27 ] 0.540 0.000 0.270 0.540
30 | 0.537 0.000 0.269 0.537
29 | 0.535 0.000 0.268 0.535
28 0.534 0.000 0.267 0.534
20 | 0.531 0.000 0.265 0.531
25 0.527 0.000 0.264 0.527
21 0.517 0.000 0.259 0.517
24 | 0.506 0.000 0.253 0.506

Table 8: Layer ranking for 11ama2_chat_7B on myopic-reward dataset. Top layers by OR scores.



Layer | Avg | Frac Above | Weighted Score | OR Score

16 | 0.689 0.188 0.438 0.747
1 0.628 0.188 0.408 0.698
13 0.641 0.156 0.399 0.697
12 | 0.652 0.125 0.389 0.696
20 | 0.646 0.094 0.370 0.679
14 | 0.636 0.062 0.349 0.659
10 | 0.616 0.062 0.339 0.640
9 0.595 0.094 0.344 0.633
17 0.592 0.094 0.343 0.630
15 0.601 0.062 0.332 0.626
0 0.566 0.125 0.345 0.620
11 0.585 0.062 0.324 0.611
18 0.544 0.125 0.334 0.601
19 | 0.568 0.031 0.300 0.581
31 0.555 0.000 0.277 0.555
8 0.531 0.031 0.281 0.546
24 ] 0.534 0.000 0.267 0.534
21 0.527 0.000 0.264 0.527
6 0.496 0.000 0.248 0.496
26 | 0478 0.031 0.254 0.494
22 1 0.490 0.000 0.245 0.490
4 0.471 0.031 0.251 0.487
25 0.470 0.000 0.235 0.470
7 0.435 0.031 0.233 0.452
23 0.436 0.000 0.218 0.436
3 0.435 0.000 0.217 0.435
29 | 0413 0.031 0.222 0.431
2 0.431 0.000 0.215 0.431
5 0.430 0.000 0.215 0.430
28 0.393 0.000 0.197 0.393
27 10370 0.000 0.185 0.370
30 | 0.342 0.000 0.171 0.300

Table 9: Layer ranking for 11ama2_chat_7B on hallucination dataset. Top layers by OR scores.



Layer | Avg | Frac Above | Weighted Score | OR Score
2 0.581 0.250 0.416 0.686
1 0.551 0.250 0.400 0.663
3 0.541 0.156 0.349 0.613

30 | 0.534 0.125 0.329 0.592
25 0.531 0.125 0.328 0.590
5 0.545 0.062 0.304 0.574
24 | 0.528 0.094 0.311 0.573
20 | 0.526 0.094 0.310 0.570
23 0.522 0.094 0.308 0.567
22 | 0.528 0.062 0.295 0.558
26 | 0.526 0.062 0.294 0.556
0 0.518 0.062 0.290 0.548
4 0.525 0.031 0.278 0.540
28 0.508 0.031 0.270 0.523
29 | 0.506 0.031 0.269 0.522
16 | 0.506 0.031 0.269 0.522
12 | 0.504 0.031 0.268 0.520
21 0.519 0.000 0.260 0.519
6 0.514 0.000 0.257 0.514
31 0.514 0.000 0.257 0.514
8 0.512 0.000 0.256 0.512
19 | 0.508 0.000 0.254 0.508
18 0.506 0.000 0.253 0.506
27 | 0.505 0.000 0.252 0.505
17 | 0.504 0.000 0.252 0.504
9 0.503 0.000 0.251 0.503
7 0.498 0.000 0.249 0.498
13 0.494 0.000 0.247 0.494
11 0.474 0.031 0.253 0.491
15 0.491 0.000 0.245 0.491
10 | 0.490 0.000 0.245 0.490
14 | 0477 0.000 0.239 0.477

Table 10: Layer ranking for 11ama2_chat_7B on survival-instinct dataset. Top layers by OR scores.



	Introduction
	Preliminary
	Our Head Selection Method: DEAL
	Learning a Disentangled Representation Space for Encoding Head Activations
	Learning a Scoring Function for Head Selection and Importance Weighting

	Experiments
	Datasets
	Baselines and Implementation Details
	Main Results
	Analysis on Head-wise Behavior Scores
	Alblation on Hyperparameters

	Related Work
	Conclusion
	Limitations
	Dataset Details
	Layer Steering

