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APPENDIX

A RELATED WORK

We detail related work in unsupervised performance estimation here. Works below assume access
to only unlabeled data; in contrast, SSME learns from both labeled and unlabeled data.

Unsupervised performance estimation involves estimating the performance of a model given
only unlabeled data. Methods designed to address this problem often focus on out-of-distribution
samples, where labeled data is scarce and model performance is known to degrade. Several works
have illustrated strong empirical relationships between out-of-distribution generalization and thresh-
olded classifier confidence (Garg et al., 2022), dataset characteristics (Deng & Zheng, 2021; Guillory
et al., 2021), in-distribution classifier accuracy (Miller et al., 2021), and classifier agreement (Parisi
et al., 2014; Platanios et al., 2017; Baek et al., 2022).

Several works have formalized when unsupervised model evaluation is possible (Donmez et al.,
2010; Chen et al., 2022; Garg et al., 2022; Lu et al., 2023), and propose assumptions under which es-
timates of performance are recoverable. Donmez et al. (2010) and Balasubramanian et al. (2011) as-
sume knowledge of p(y) in the unlabeled sample. Steinhardt & Liang (2016) assume conditionally-
independent subsets of the observed features, inspired by conditional-independence assumptions
made in works such as Dawid & Skene (1979). Guillory et al. (2021) assume classifier calibration
on unlabeled samples. Chen et al. (2022) assume a sparse covariate shift model, in which a subset
of the features’ class-conditional distribution remains constant. Lu et al. (2023) illustrate misesti-
mation of p(y) in the unlabeled example, and assume that p(y) out-of-distribution is close to p(y)
in-distribution. As Garg et al. (2022) highlight, assumptions are necessary to make any claim about
the nature of unsupervised model evaluation, and the above methods are a representative sample of
assumptions made by prior works.

Our work is also similar, in spirit, to methods that learn to debias classifier predictions on a small
set of labeled data and then apply that debiasing procedure to classifier predictions on unlabeled
examples. Prediction-powered inference (Angelopoulos et al., 2023) and double machine learning
(Chernozhukov et al., 2018) both learn a debiasing procedure to ensure that unlabeled metric es-
timates (e.g., accuracy) are statistically unbiased. One of the baselines we compare to, AutoEval
(Boyeau et al., 2024), is built atop prediction-powered inference.

B EXPERIMENTAL DETAILS

B.1 REAL DATASETS AND CLASSIFIER SETS

We provide additional detail for the six datasets we use in our work, including ground truth p(y)
for each dataset and ground truth metrics for each classifier in the associated classifier set [DS: ref].
As discussed, each dataset is split into a training split (provided to each classifier as training data),
an estimation split (provided to each performance estimation method), and an evaluation split (used
to compute ground truth metrics for each classifier). We determine training splits based on prior
work. We then split the remaining data in half (randomly, for each run) to produce the estimation
and evaluation splits. We then ubsample the estimation split to have nl labeled examples and nu

unlabeled examples. We ensure that the labeled data always includes at least one example from each
class. Thus, the estimation split contains nl + nu examples in each experiment, and the evaluation
split for each task is fixed across runs (exact sample sizes reported below).

1. MIMIC-IV: We use three binary classification tasks from MIMIC-IV (Johnson et al.,
2020), a large dataset of electronic health records describing 418K patient visits to an emer-
gency department. We focus on three tasks: hospitalization (predicting hospital admission
based on features available during triage, p(y = 1) = 0.45), critical outcomes (predict-
ing inpatient mortality or a transfer to the ICU within 12 hours, p(y = 1) = 0.06), and
emergency department revisits (predicting a patient’s return to the emergency depart-
ment within 3 days, p(y = 1) = 0.03). We split and preprocess data according to prior
work (Xie et al., 2022; Movva et al., 2023). No patient appears in more than one split. For
each task, the evaluation split contains 70,439 examples.
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2. Toxicity detection: The task is to predict presence of toxicity given an online comment,
using data from CivilComments (Borkan et al., 2019; Koh et al., 2021) where p(y = 1) =
0.11. The evaluation split contains 66,891 examples.

3. Biochemical property prediction The task is to predict presence of a biochemical prop-
erty based on a molecular graph, using data from the Open Graph Benchmark (Hu et al.,
2020). We focus on the task of predicting whether a molecule inhibits SARS-CoV virus
maturation, where p(y = 1) = 0.09. We filter out examples for which no label is observed
(i.e. the molecule was not screened at all) because it is impossible to evaluate our perfor-
mance estimates on those examples. Doing so reduces data held-out from training from
43,793 to 28,325 examples. The evaluation split then contains half, or 14,163, of those
examples.

4. News classification The task is to predict one of four news types based on the title and
description of an article (Zhang et al., 2015). The classes are balanced and the evaluation
split contains 3,800 examples.

5. Sentence classification The task is to predict one of three textual entailments from a sen-
tence (Williams et al., 2018). The classes are balanced and the evaluation split contains
61,856 examples.

6. Image classification The task is to predict one of nine coarse image categories (e.g. “dog”
or “vehicle”) from an image (Xiao et al.). The classes are balanced and the evaluation split
contains 2,025 examples.

B.2 BASELINES

For baselines that require discrete predictions (i.e. Dawid-Skene and AutoEval), we discretize clas-
sifier scores by assigning a class according to the maximum classifier score across classes. We
expand on our implementation of each baseline below.

• Labeled: When estimating performance over the whole dataset, we compare the classifier
scores to the ground truth labels within the labeled sample. However, when estimating
subgroup-specific performance, it is often the case that there are no labeled examples for a
given subgroup. In these instances, Labeled reverts to estimating subgroup-specific perfor-
mance as performance over all labeled examples.

• Pseudo-Labeling: We train a logistic regression with the default parameters associated
with the scikit-learn implementation (Pedregosa et al., 2011). Experiments with alternative
function classes (e.g. a KNN) revealed no significant differences in performance.

• Bayesian-Calibration: Bayesian-Calibration operates on each classifier individually. We
make use of the implementation made available by Ji et al. (2020). Extending the pro-
posed approach to multi-class tasks is not straightforward, so we compare to Bayesian-

Calibration only on binary tasks.
• Dawid-Skene: We implement Dawid-Skene with a tolerance of 1e-5 and a maximum num-

ber of EM iterations of 100, according to a public implementation.
• AutoEval: We implement AutoEval using an implementation made available by the authors

(Boyeau et al., 2024). The implementation, to the best of our knowledge, only supports
accuracy estimation across a set of classifiers, so we limit our comparison to this metric.

B.3 SEMISYNTHETIC DATASET AND CLASSIFIER SETS

As with the real datasets, we produce three splits: a training split to learn the classifiers (50 exam-
ples), an estimation split for the performance estimation methods (20 labeled examples and 1000
unlabeled examples), and an evaluation split to measure ground truth values for each metric (10,000
examples). Each classifier is a logistic regression with default L2 regularization.

B.4 COMPUTING EFFECTIVE SAMPLE SIZE

In order to compute effective sample size, we produce 50 samples of labeled data for each incre-
ment of 5 between 10 labeled examples and 1000. We then compute the mean absolute metric
estimation error of using labeled data alone, across all runs. The effective sample size of a given
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Dataset Classifier Acc ECE AUC AUPRC

Hospital Admission DT-RandomForest-seed1 74.2 1.5 81.5 76.0
MLP-ERM-seed2 74.4 1.4 81.7 76.7
MLP-ERM-seed1 74.4 1.9 81.9 77.0
MLP-ERM-seed0 74.5 2.4 82.0 77.0
LR-LBFGS-seed2 73.3 4.0 80.7 75.5
LR-LBFGS-seed1 73.3 4.0 80.7 75.5
LR-LBFGS-seed0 73.4 2.9 81.0 75.7
DT-RandomForest-seed2 74.3 1.6 81.5 76.1
DT-RandomForest-seed0 74.1 1.5 81.5 76.1

Critical Outcome MLP-ERM-seed2 93.9 0.9 87.9 38.6
MLP-ERM-seed1 93.9 0.8 88.1 39.0
LR-LBFGS-seed2 93.6 1.2 87.6 34.2
MLP-ERM-seed0 93.9 0.5 87.5 37.8
LR-LBFGS-seed0 93.6 1.2 87.6 34.1
DT-RandomForest-seed2 94.0 0.3 87.2 38.2
DT-RandomForest-seed1 94.0 0.4 87.4 38.3
DT-RandomForest-seed0 94.0 0.4 87.4 38.3
LR-LBFGS-seed1 93.6 1.2 87.6 34.2

ED Revisit DT-RandomForest-seed0 97.7 1.8 54.9 2.7
DT-RandomForest-seed1 97.7 1.7 55.3 2.7
DT-RandomForest-seed2 97.7 1.8 54.9 2.7
LR-LBFGS-seed0 97.7 0.4 59.3 3.0
LR-LBFGS-seed2 97.7 0.4 59.1 3.0
MLP-ERM-seed0 97.7 0.3 59.8 3.1
MLP-ERM-seed1 97.7 0.3 59.8 3.1
MLP-ERM-seed2 97.7 0.5 57.9 3.0
LR-LBFGS-seed1 97.7 0.4 59.1 3.0

Toxicity Detection distilbert-CORAL-seed0 88.3 6.0 86.2 40.0
distilbert-IRM-seed2 88.7 10.2 91.9 65.5
distilbert-IRM-seed1 89.0 9.8 91.0 66.5
distilbert-IRM-seed0 88.1 10.6 91.6 65.9
distilbert-ERM-seed2 92.1 4.9 94.1 73.3
distilbert-ERM-seed1 92.2 6.2 93.8 72.3
distilbert-ERM-seed0 92.2 6.1 93.8 72.2

Molecule Property 60 gin-virtual-CORAL-seed1 92.8 5.2 90.1 61.9
gin-virtual-CORAL-seed2 92.8 5.2 90.1 61.9
gin-virtual-ERM-seed0 94.6 1.2 94.5 73.5
gin-virtual-ERM-seed1 92.4 5.6 90.7 61.1
gin-virtual-ERM-seed2 92.8 5.2 90.1 61.9
gin-virtual-IRM-seed0 93.2 1.8 90.2 58.4
gin-virtual-IRM-seed1 91.1 5.2 83.8 43.8
gin-virtual-IRM-seed2 91.1 5.7 82.8 44.7

Table S1: Ground truth classifier metrics on binary tasks. We report ground truth performance
for classifiers in the sets associated with each binary task. Each classifier name begins with the
architecture (e.g. DT represents DecisionTree), the loss or training procedure (e.g. ERM or IRM),
and then the seed. Note that the equivalent accuracies on ED Revisit are a byproduct of both the low
class prevalence and the poor classifiers.
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Dataset Classifier Acc ECE

AG News all-MiniLM-L12-v2 84.8 4.2
mxbai-embed-large-v1 85.0 14.4
multi-qa-MiniLM-L6-cos-v1 85.6 5.2
bge-small-en-v1.5 85.2 16.9
bge-large-en-v1.5 86.8 4.8
bge-base-en-v1.5 86.6 5.6
all-mpnet-base-v2 86.7 2.9
all-MiniLM-L6-v2 83.8 3.8
paraphrase-multilingual-MiniLM-L12-v2 85.1 9.6
paraphrase-MiniLM-L6-v2 86.0 8.9

MultiNLI distilbert-SqrtReWeight 81.4 9.2
distilbert-ReWeight 80.9 7.4
distilbert-ReSample 81.4 8.2
distilbert-IRM 64.8 6.1

ImagenetBG ResNet-ReWeight 86.6 7.8
ResNet-ReSample 87.4 7.7
ResNet-Mixup 88.6 7.7
ResNet-IRM 54.1 30.9

Table S2: Ground truth classifier metrics on multiclass tasks. We report ground truth perfor-
mance for classifiers in the sets associated with each multiclass task. Each of the LLMs fine-tuned
for AG News are sentence transformers, while the MultiNLI classifiers all use DistilBERT (Sanh,
2019) as the base architecture. The base architecture on ImagenetBG is a ResNet-50.

semi-supervised evaluation method is thus the amount of labeled data which achieves the most sim-
ilar mean absolute metric estimation error.

C NORMALIZING FLOW

One alternative parameterization is to use a normalizing flow to model our mixture of distributions.
Normalizing flows learn and apply an invertible transform f✓ to a random variable z ⇠ D1 to obtain
f✓(z) ⇠ D2. Here, we set z ⇠ D1 to a Gaussian mixture model and learn a transformation such

that f✓(z)
dist.⇡ s, i.e., the transformed distribution roughly matches our classifier score distribution.

By modeling z explicitly as a Gaussian mixture model, one can move back and forth between the
two distributions, as f�1

✓ (f✓(z)) = z. Specifically, we set the distribution of Z to follow a Gaussian
mixture:

Z|(Y = k) ⇠ N (µk,⌃k)

Thus, the marginal distribution of Z is pZ(z) =
PK

k=1 N (z|µk,⌃k) ·p(y = k) is the overall density
of z. We apply our invertible transformation f✓ to obtain s = f✓(z). To find p(s|y = k), we follow
the approach of Izmailov et al. (2020):

pS(s|y = k) = N (f�1
✓ (s)|µk,⌃k) ·

����det
✓
�f

�x

◆���� · p(y = k)

Intuitively, we transform (s, y) into a distribution (z, y) which follows a Gaussian mixture model.
By enforcing the constraint that this transform is invertible, the joint distribution on (z, y) captures
all the information in (s, y).

We use the RealNVP architecture (Dinh et al., 2016) to parameterize f✓ using 10 coupling layers,
3 fully-connected layers, and a hidden dimension of 128 between the fully connected layers. Our
normalizing flow is lightweight and trains in less than a minute for each dataset in our experiments
section using 1 80GB NVIDIA A100 GPU.

Note there are two optimizations here: (1) the normalizing flow transformation f✓ which maps
s into our latent Gaussian mixture space and (2) the Gaussian mixture model parameters µk,⌃k

themselves. We begin by fixing the GMM parameters µk,⌃k to values estimated from our classifier
scores s and learning only the flow f✓ for 300 epochs. Afterwards, we optimize the GMM parameters
µk,⌃k with EM for another 700 epochs.
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Figure S1: Impact of average accuracy across classifiers in set on SSME’s performance.

Figure S2: Impact of average ECE across classifiers in set on SSME’s performance.

D SUPPLEMENTARY RESULTS

D.1 RESULTS REPORTING MEAN ABSOLUTE ERROR

In the main text, we evaluate our method and all baselines using 20 labeled examples and 1000
unlabeled examples and report rescaled mean absolute error across metrics and tasks. Here, we
supplement those results by reporting mean absolute error across each task and metric and expanding
nl to include 50 and 100. The number of unlabeled examples remains the same (1000) to isolate the
effect of additional labeled data.

Tables S3, S4, S5, and S6 report our results on each binary task, for accuracy, ECE, AUC, and
AUPRC , respectively. Three high-level findings emerge. First, SSME-KDE achieves the lowest
mean absolute error (averaging across tasks and amounts of labeled data). Second, SSME-KDE con-
sistently outperforms the ablated version of SSME, fit to a single model at a time (SSME-KDE-M).
And finally, SSME-KDE is able to produce performance estimates that are quite close, in absolute
terms, to ground truth. For example, when given 20 labeled examples and 1000 unlabeled exam-
ples, SSME-KDE estimates accuracy within at most 2.5 percentage points of ground truth accuracy
(across tasks).

Tables S7 and S8 report our results on the multiclass tasks, for accuracy and ECE respectively.
Note that we exclude Bayesian-Calibration from multiclass comparisons because the method does
not natively support multiclass recalibration. We also omit AutoEval from Table S8 because the
implementation of expected calibration error within the framework is not straightforward.

D.2 COMPARISON TO ENSEMBLING

While we limit the scope of our experiments in the main text to semi-supervised methods that make
use of both labeled and unlabeled data, another approach would be to produce an estimate of Pr(y =
k|s(i)) by averaging the classifier scores. This approach results in an unbiased metric estimator when
the resulting ensemble is calibrated, as theoretical results by Ji et al. (2020) show. Such an approach
has natural downsides: it is sensitive to the composition of the classifier set, does not improve with
the introduction of labeled data, and relies on an assumption of ensemble calibration that is unlikely
to hold in practice (Wu & Gales, 2021). Here, we provide experiments to illustrate this behavior.
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Dataset n` nu Labeled Pseudo-Labeling (LR) Dawid-Skene AutoEval Bayesian-Calibration SSME-KDE-M SSME-KDE (Ours)

Critical Outcome 20 1000 5.19 ± 3.85 4.12 ± 3.87 4.36 ± 0.31 4.78 ± 3.34 2.80 ± 2.23 1.70 ± 0.99 0.67 ± 0.46

50 1000 2.90 ± 2.13 3.06 ± 2.32 4.07 ± 0.40 3.01 ± 2.36 2.07 ± 1.29 1.65 ± 0.90 0.78 ± 0.47

100 1000 2.09 ± 1.47 1.58 ± 1.08 3.87 ± 0.38 2.00 ± 1.16 1.18 ± 0.74 1.30 ± 0.70 0.77 ± 0.47

ED Revisit 20 1000 5.11 ± 3.53 5.13 ± 3.23 4.02 ± 2.83 4.70 ± 3.32 4.36 ± 2.76 1.64 ± 1.24 0.45 ± 0.36

50 1000 2.02 ± 2.08 2.73 ± 2.24 2.74 ± 2.22 1.95 ± 2.07 2.47 ± 2.07 1.46 ± 0.97 0.53 ± 0.39

100 1000 1.43 ± 1.15 1.54 ± 1.22 1.51 ± 1.18 1.42 ± 1.04 1.43 ± 1.12 1.18 ± 0.89 0.57 ± 0.39

Hospital Admission 20 1000 7.32 ± 4.52 6.86 ± 4.31 19.55 ± 0.47 7.19 ± 3.73 2.48 ± 1.59 3.29 ± 1.71 1.88 ± 1.04

50 1000 5.40 ± 2.98 3.99 ± 2.97 18.78 ± 0.51 5.23 ± 2.46 2.14 ± 1.28 3.17 ± 1.85 1.95 ± 0.99

100 1000 3.64 ± 1.99 3.01 ± 1.92 17.81 ± 0.59 4.01 ± 1.99 2.42 ± 1.19 3.06 ± 1.64 1.51 ± 0.82

SARS-CoV Inhibition 20 1000 6.11 ± 3.45 5.95 ± 3.62 4.91 ± 0.65 4.59 ± 3.05 2.25 ± 1.13 3.06 ± 0.83 2.30 ± 0.56
50 1000 3.22 ± 2.05 2.99 ± 1.64 4.50 ± 0.63 2.64 ± 1.53 1.74 ± 0.76 2.59 ± 0.94 2.35 ± 0.35

100 1000 2.04 ± 1.38 2.14 ± 1.10 4.01 ± 0.62 1.94 ± 0.90 1.43 ± 0.68 1.84 ± 0.85 2.36 ± 0.47

Toxicity Detection 20 1000 5.95 ± 2.64 5.03 ± 2.92 4.82 ± 0.32 5.27 ± 2.71 5.29 ± 1.06 6.71 ± 0.83 2.34 ± 0.52

50 1000 4.03 ± 2.44 2.88 ± 1.72 4.65 ± 0.29 3.37 ± 1.48 4.57 ± 1.07 5.38 ± 1.01 2.22 ± 0.47

100 1000 2.43 ± 1.48 1.90 ± 1.11 4.46 ± 0.40 2.34 ± 0.94 3.78 ± 0.92 3.80 ± 1.16 2.14 ± 0.54

Table S3: Mean absolute error in accuracy estimation on binary tasks. .

Dataset n` nu Labeled Pseudo-Labeling (LR) Dawid-Skene Bayesian-Calibration SSME-KDE-M SSME-KDE (Ours)

Critical Outcome 20 1000 11.01 ± 4.04 6.94 ± 2.30 2.61 ± 0.33 3.48 ± 2.76 3.17 ± 1.10 1.16 ± 0.48

50 1000 6.22 ± 2.23 5.38 ± 1.40 2.37 ± 0.32 2.56 ± 1.57 3.01 ± 0.94 1.13 ± 0.47

100 1000 4.20 ± 1.38 3.63 ± 0.77 2.25 ± 0.37 1.69 ± 0.91 2.81 ± 0.81 1.15 ± 0.38

ED Revisit 20 1000 8.37 ± 3.14 4.16 ± 2.96 3.25 ± 2.45 3.57 ± 2.78 1.88 ± 0.86 0.76 ± 0.16

50 1000 4.82 ± 1.73 2.29 ± 1.69 2.29 ± 1.68 2.04 ± 1.66 1.83 ± 0.67 0.73 ± 0.18

100 1000 3.29 ± 0.88 1.36 ± 0.78 1.34 ± 0.76 1.16 ± 0.73 1.51 ± 0.63 0.73 ± 0.21

Hospital Admission 20 1000 21.76 ± 4.18 8.10 ± 4.61 17.31 ± 0.42 5.12 ± 3.94 5.54 ± 1.32 1.97 ± 0.47

50 1000 12.74 ± 2.25 5.02 ± 2.45 16.60 ± 0.43 3.49 ± 2.05 5.20 ± 1.19 2.06 ± 0.67

100 1000 8.56 ± 1.39 3.91 ± 1.76 15.62 ± 0.44 3.23 ± 1.68 5.32 ± 1.32 1.70 ± 0.54

SARS-CoV Inhibition 20 1000 7.44 ± 3.44 5.96 ± 3.13 4.35 ± 0.53 2.24 ± 1.19 2.57 ± 0.64 3.38 ± 0.47
50 1000 3.66 ± 1.80 3.06 ± 1.28 4.08 ± 0.57 1.73 ± 0.93 2.27 ± 0.72 3.41 ± 0.41

100 1000 2.18 ± 1.14 2.36 ± 0.78 3.67 ± 0.59 1.35 ± 0.78 1.79 ± 0.69 3.44 ± 0.47

Toxicity Detection 20 1000 5.85 ± 2.89 5.09 ± 2.87 4.40 ± 0.33 4.69 ± 1.21 5.67 ± 0.68 2.35 ± 0.46

50 1000 3.99 ± 2.28 3.04 ± 1.66 4.20 ± 0.26 3.97 ± 1.21 4.57 ± 0.93 2.26 ± 0.44

100 1000 2.37 ± 1.35 1.91 ± 0.99 4.10 ± 0.32 3.30 ± 0.91 3.43 ± 1.05 2.19 ± 0.53

Table S4: Mean absolute error in ECE estimation on binary tasks.

Dataset n` nu Labeled Pseudo-Labeling (LR) Dawid-Skene Bayesian-Calibration SSME-KDE-M SSME-KDE (Ours)

Critical Outcome 20 1000 10.09 ± 4.84 31.73 ± 3.95 9.39 ± 1.25 2.84 ± 0.91 4.72 ± 2.27 2.52 ± 1.24

50 1000 7.50 ± 4.62 27.33 ± 5.51 8.49 ± 1.46 3.17 ± 1.17 5.61 ± 4.61 2.39 ± 1.74

100 1000 5.65 ± 3.44 20.43 ± 4.38 7.97 ± 1.08 2.70 ± 0.94 3.82 ± 1.72 2.83 ± 2.89

ED Revisit 20 1000 18.48 ± 6.68 7.48 ± 0.72 8.27 ± 3.80 7.65 ± 0.55 11.89 ± 4.66 5.92 ± 3.14

50 1000 17.37 ± 7.13 7.48 ± 0.95 7.62 ± 0.99 7.30 ± 0.76 11.99 ± 4.36 5.09 ± 2.56

100 1000 14.13 ± 6.03 7.06 ± 1.46 7.09 ± 1.52 7.47 ± 1.17 11.28 ± 5.73 5.08 ± 2.77

Hospital Admission 20 1000 6.97 ± 4.64 8.94 ± 5.97 16.70 ± 0.31 2.67 ± 1.15 3.63 ± 1.95 2.51 ± 1.38

50 1000 5.08 ± 3.49 5.59 ± 4.31 16.18 ± 0.31 2.62 ± 1.65 3.18 ± 1.95 2.51 ± 1.20

100 1000 3.57 ± 2.58 3.66 ± 2.68 15.32 ± 0.39 2.55 ± 1.34 3.17 ± 1.60 2.02 ± 1.20

SARS-CoV Inhibition 20 1000 9.61 ± 9.22 30.92 ± 4.35 7.50 ± 1.05 3.07 ± 1.00 5.42 ± 2.63 3.48 ± 1.58
50 1000 5.84 ± 3.64 22.71 ± 4.29 7.06 ± 1.04 3.62 ± 0.97 5.02 ± 1.86 3.41 ± 1.68

100 1000 3.97 ± 1.97 16.33 ± 3.27 6.04 ± 1.17 3.53 ± 1.35 4.21 ± 1.90 3.46 ± 1.63

Toxicity Detection 20 1000 6.71 ± 3.57 17.33 ± 7.52 6.20 ± 0.41 5.22 ± 0.59 6.05 ± 1.02 3.34 ± 0.82

50 1000 4.76 ± 3.29 11.79 ± 6.41 5.97 ± 0.33 4.76 ± 0.74 4.86 ± 1.03 3.15 ± 0.66

100 1000 3.82 ± 2.17 7.54 ± 3.73 5.84 ± 0.44 4.25 ± 0.96 4.15 ± 1.20 3.09 ± 0.81

Table S5: Mean absolute error in AUC estimation on binary tasks.

Dataset n` nu Labeled Pseudo-Labeling (LR) Dawid-Skene Bayesian-Calibration SSME-KDE-M SSME-KDE (Ours)

Critical Outcome 20 1000 32.86 ± 18.26 22.98 ± 6.69 39.02 ± 4.26 9.29 ± 6.01 11.48 ± 5.46 6.11 ± 2.63

50 1000 22.81 ± 13.16 20.48 ± 8.04 35.64 ± 5.80 9.34 ± 5.17 11.98 ± 5.17 6.17 ± 3.47

100 1000 15.71 ± 8.81 14.45 ± 7.30 33.31 ± 4.33 8.96 ± 5.07 11.30 ± 6.01 5.77 ± 2.80

ED Revisit 20 1000 19.18 ± 13.27 5.14 ± 3.20 5.12 ± 4.68 9.14 ± 3.74 5.07 ± 2.89 1.67 ± 1.06

50 1000 8.85 ± 8.14 2.72 ± 2.22 3.04 ± 2.80 6.03 ± 2.95 3.79 ± 2.33 1.81 ± 1.08

100 1000 6.34 ± 5.57 1.57 ± 1.19 1.74 ± 1.24 4.23 ± 1.97 3.92 ± 2.23 1.82 ± 1.13

Hospital Admission 20 1000 9.43 ± 5.85 10.89 ± 9.33 21.15 ± 0.52 5.26 ± 3.84 4.36 ± 1.60 3.47 ± 2.04

50 1000 7.46 ± 4.74 7.91 ± 5.89 20.34 ± 0.59 4.43 ± 2.68 3.70 ± 2.26 3.64 ± 2.16

100 1000 5.51 ± 3.48 4.12 ± 3.66 19.17 ± 0.68 3.49 ± 2.17 4.00 ± 2.19 2.80 ± 1.84

SARS-CoV Inhibition 20 1000 22.27 ± 10.94 37.41 ± 8.82 16.60 ± 3.91 7.54 ± 2.74 13.81 ± 5.52 20.51 ± 6.12
50 1000 15.02 ± 8.77 30.29 ± 9.40 15.01 ± 3.85 8.40 ± 3.45 12.82 ± 3.63 21.06 ± 5.46

100 1000 11.53 ± 5.64 20.34 ± 6.46 12.61 ± 3.78 8.27 ± 3.19 11.01 ± 5.02 20.67 ± 5.92

Toxicity Detection 20 1000 19.34 ± 8.45 25.13 ± 12.71 26.34 ± 1.31 19.94 ± 4.70 23.38 ± 2.64 10.89 ± 3.14

50 1000 13.78 ± 6.52 20.15 ± 12.57 25.24 ± 1.31 16.84 ± 5.68 18.90 ± 3.88 9.91 ± 3.06

100 1000 10.69 ± 6.16 14.06 ± 7.21 24.51 ± 1.68 14.15 ± 5.35 14.59 ± 4.54 9.88 ± 3.51

Table S6: Mean absolute error in AUPRC estimation on binary tasks.
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Dataset n` nu Labeled Pseudo-Labeling Dawid-Skene AutoEval SSME-KDE SSME-NF

AG News 20 1000 5.79 ± 3.04 5.72 ± 4.16 8.31 ± 0.54 5.61 ± 2.77 2.77 ± 0.96 5.56 ± 0.75
50 1000 4.09 ± 1.92 2.97 ± 2.00 8.06 ± 0.68 3.68 ± 1.48 2.72 ± 1.09 5.64 ± 1.03

100 1000 2.93 ± 1.52 2.36 ± 1.48 7.66 ± 0.69 2.70 ± 1.29 2.50 ± 1.09 5.32 ± 1.05

ImagenetBG 20 1000 6.62 ± 2.74 33.45 ± 2.96 5.78 ± 0.71 6.55 ± 2.62 8.76 ± 1.00 2.65 ± 0.67

50 1000 3.98 ± 1.63 17.88 ± 2.78 5.69 ± 0.73 3.87 ± 1.56 8.18 ± 0.90 2.66 ± 0.81

100 1000 2.97 ± 1.38 9.37 ± 1.53 5.34 ± 0.63 2.73 ± 1.13 8.02 ± 0.90 2.10 ± 0.68

MultiNLI 20 1000 7.46 ± 3.88 7.95 ± 4.55 11.73 ± 0.55 7.20 ± 3.76 1.98 ± 0.88 3.08 ± 0.65
50 1000 4.42 ± 1.99 3.08 ± 2.25 11.41 ± 0.52 4.17 ± 1.96 1.90 ± 0.76 2.79 ± 0.81

100 1000 3.27 ± 1.65 2.47 ± 1.86 10.72 ± 0.54 3.17 ± 1.59 2.02 ± 0.82 2.52 ± 0.77

Table S7: Mean absolute error in accuracy estimation on multiclass tasks.

Dataset n` nu Labeled Pseudo-Labeling Dawid-Skene SSME-KDE SSME-NF

AG News 20 1000 7.04 ± 2.22 4.48 ± 3.23 5.60 ± 0.28 2.24 ± 0.51 3.72 ± 0.50
50 1000 4.85 ± 1.54 2.28 ± 1.36 5.37 ± 0.34 2.24 ± 0.59 3.81 ± 0.46
100 1000 3.24 ± 1.15 1.89 ± 0.96 5.02 ± 0.40 2.15 ± 0.55 3.53 ± 0.60

ImagenetBG 20 1000 7.10 ± 2.79 29.64 ± 2.84 4.76 ± 0.56 6.73 ± 0.54 2.49 ± 0.60

50 1000 4.00 ± 1.85 14.18 ± 2.51 4.68 ± 0.48 6.42 ± 0.57 2.49 ± 0.72

100 1000 2.75 ± 1.13 6.68 ± 1.04 4.54 ± 0.52 6.30 ± 0.62 1.96 ± 0.60

MultiNLI 20 1000 11.57 ± 4.06 7.84 ± 4.12 2.95 ± 0.29 2.06 ± 0.88 1.75 ± 0.62

50 1000 6.14 ± 2.42 3.10 ± 2.24 2.92 ± 0.37 2.06 ± 0.72 1.63 ± 0.59

100 1000 4.52 ± 1.83 2.37 ± 1.66 3.18 ± 0.30 2.19 ± 0.76 1.45 ± 0.57

Table S8: Mean absolute error in ECE estimation on multiclass tasks.

Using the semisynthetic setting described in Section 6.4, we artificially increase the expected cali-
bration error of each classifier using a generalized logistic function parameterized by a. Specifically,
we transform classifier score s to be sa

sa+(1�s)a , effectively increasing overconfidence for higher s
and increasing underconfidence for lower s. As in the semisynthetic experiments, we generate 500
semisynthetic classifier sets, where each classifier in a set is trained on 100 examples distinct from
the training data for other classifiers in the set (results are robust to this choice of training dataset
size). Each set contains three classifiers.

Figure S3 reports our results. As the average calibration among classifiers in a set varies, SSME
consistently improves over the use of an ensemble. This aligns with our intuition, and indicates the
value of using labeled data in conjunction with unlabeled data. Interestingly, miscalibration has little
effect on the ensemble when estimating AUPRC; here, SSME and ensembling perform similarly.

Figure S3: A comparison of SSME to ensembling on a miscalibrated classifier set. SSME
consistently produces more accurate performance estimates compared to ensembling the classifiers
across differently calibrated classifier sets (x-axis).
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E METHOD DETAILS

E.1 METRIC ESTIMATION

Given a vector p 2 �K�1 over K classes, let s = ALR(p) =
h
log p1

pK
, log p2

pK
, · · · , log pK�1

pK

i
2

RK�1. To invert, pi = esi

1+
PK�1

k=1 esk
for i < K and pK = 1

1+
PK�1

k=1 esk
. The ALR transform

maps unit-sum data into real space, where it is easier to fit mixture models. The inverse allows us
to map samples from the mixture model in real space back to the simplex �K�1. For details, see
Pawlowsky-Glahn & Buccianti (2011).

E.2 METRIC ESTIMATION

SSME is able to estimate any metric that is a function of the classifier probabilities p and label y.
We approximate the joint distribution P (y,p) with a mixture model model P✓(y, s), where s refers
to the ALR-transformed classifier probabilities (i.e. “classifier scores”)2. We refer to P (y,p) for
ease of notation in this section; it is equivalent, through invertible mapping, to P (y, s).

We denote our approximation for P (p, y) as P✓(p, y). We provide a few concrete examples of
how one can use SSME to measure performance metrics, given P✓(p, y) and a set of unlabeled
probabilistic predictions {p(i)}nu

i=1 and labeled probabilistic predictions {pi, y(i)}n`
i=1. Notationally,

pi
j refers to the jth model’s probabilistic prediction of the ith unlabeled example.

Accuracy measures the alignment between a model’s (discrete) predictions and the true label y.
To discretize predictions, practitioners typically take the argmax of p(i). Using the binary case an
illustrative example, the accuracy of the jth model can be written as:

Accuracyj = Ep [1 [y = 1(p > t)]]

where 1 is an indicator function and t is a chosen threshold, typically 0.5. In our setting, we approx-
imate this as:

Accuracyj ⇡
1

nu + n`

nu+n`X

i=1

1
h
y(i) = 1(p(i) > t)

i

For labeled examples, we use the true label y(i). For unlabeled examples, we draw y(i) ⇠
P✓(y|p(i)). We then compute accuracy using these labels y(i) and predictions p(i). To ensure
our estimation procedure is robust to sampling noise, we average our estimated accuracy over 500
separate sampled labels for each example in the unlabeled dataset.

Alternatively, we could directly use P✓(y|p) to estimate accuracy. That is, for each point p(i) we
directly compute an expectation for the label, and sum this over the entire dataset.

Using the binary case as an example

Accuracyj ⇡
1

nu + n`

nu+n`X

i=1

E
h
1
h
y(i) = 1(p(i)

j > t)
i
|p(i)

i

In other words, we compute the expectation that the true label agrees with the predicted label for
each point . This expectation is p(i). This expectation is computed over P✓(y|p) One can interpret
P✓(y|p) as a “recalibration” step: given a set of classifier guesses p, what is the true distribution of
y?

In our experiments, we use the first of these two approaches, i.e. we sample the true label from the
estimated distribution.

Expected Calibration Error (ECE) measures the alignment between a model’s predicted probabil-
ities pj and the ground truth labels y. In particular, ECE compares the model’s reported confidence

2Recall that ALR is a bijection, so we use the inverse mapping ALR�1 : RK�1 ! �K�1 to transform our
mixture distribution in real space back to probability space.
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to the true class likelihoods, averaged over the dataset. We write out our ECE estimation procedure
for the binary case, and it extends readily to definitions of calibration in multiclass settings (Gupta
& Ramdas, 2022). Binary ECE can be written as:

ECEj = Epj

h���P (Ŷ = 1|p̂ = pj)� pj

���
i

Then, to approximate the ECE with the datasets {pi}nu
i=1 and {pi, y(i)}n`

i=1, one can sample y(i) ⇠
P✓(y|p(i)) for each unlabeled sample i and then use the standard histogram binning procedure (Guo
et al., 2017) using both the true labels for the labeled dataset and the sampled labels for the unlabeled
dataset. In this approach, we treat the sampled labels y(i) as true labels for unlabeled examples. To
ensure our procedure is robust against sampling noise, we draw samples of y(i) repeatedly for a fixed
number of draws (500). We then compute ECE separately for each of these 500 draws and average
ECE across all draws.

Alternatively, one could also directly use P✓(y|p) to estimate ECE. In particular, we can write:

ECEj ⇡
1

nu + n`

nu+n`X

i=1

���P✓

⇣
y = 1|p(i)

j

⌘
� p(i)

j

���

In this approach, we don’t sample the labels y for unlabeled examples but instead directly use
P✓(y|p), which provides us (an estimate of) the true distribution of y. Instead, we directly use our
estimate for the conditional label distribution P✓

⇣
y = 1|p(i)

j

⌘
. In our experiments, we use the first

approach described, i.e. sampling y(i) for unlabeled examples and then using the standard binning
and averaging procedure.

AUROC and AUPRC can be estimated with a similar procedure as above. In particular, we sample
a label y(i) ⇠ P✓

�
y = 1|p(i)

�
from the conditional label distribution and compare these sampled

labels to the classifier probabilities.

24


	Introduction
	Related Work
	Problem Setting
	Method
	Experiments
	Datasets and Classifier Sets
	Baselines
	Evaluation

	Results
	Classifier evaluation on binary tasks
	Classifier evaluation on multi-class tasks
	Assessing subgroup-specific performance
	Impact of classifier set characteristics on SSME's performance

	Discussion
	Related work
	Experimental details
	Real datasets and classifier Sets
	Baselines
	Semisynthetic dataset and classifier sets
	Computing effective sample size

	Normalizing Flow
	Supplementary results
	Results reporting mean absolute error
	Comparison to ensembling

	Method Details
	Metric Estimation
	Metric Estimation


