810 APPENDIX

811 812 813

814

A RELATED WORK

We detail related work in unsupervised performance estimation here. Works below assume access to *only* unlabeled data; in contrast, SSME learns from both labeled and unlabeled data.

817 Unsupervised performance estimation involves estimating the performance of a model given only unlabeled data. Methods designed to address this problem often focus on out-of-distribution samples, where labeled data is scarce and model performance is known to degrade. Several works have illustrated strong empirical relationships between out-of-distribution generalization and thresh-olded classifier confidence (Garg et al., 2022), dataset characteristics (Deng & Zheng, 2021; Guillory et al., 2021), in-distribution classifier accuracy (Miller et al., 2021), and classifier agreement (Parisi et al., 2014; Platanios et al., 2017; Baek et al., 2022).

824 Several works have formalized when unsupervised model evaluation is possible (Donmez et al., 825 2010; Chen et al., 2022; Garg et al., 2022; Lu et al., 2023), and propose assumptions under which es-826 timates of performance are recoverable. Donmez et al. (2010) and Balasubramanian et al. (2011) as-827 sume knowledge of p(y) in the unlabeled sample. Steinhardt & Liang (2016) assume conditionallyindependent subsets of the observed features, inspired by conditional-independence assumptions 828 made in works such as Dawid & Skene (1979). Guillory et al. (2021) assume classifier calibration 829 on unlabeled samples. Chen et al. (2022) assume a sparse covariate shift model, in which a subset 830 of the features' class-conditional distribution remains constant. Lu et al. (2023) illustrate misesti-831 mation of p(y) in the unlabeled example, and assume that p(y) out-of-distribution is close to p(y)832 in-distribution. As Garg et al. (2022) highlight, assumptions are necessary to make any claim about 833 the nature of unsupervised model evaluation, and the above methods are a representative sample of 834 assumptions made by prior works. 835

Our work is also similar, in spirit, to methods that learn to debias classifier predictions on a small set of labeled data and then apply that debiasing procedure to classifier predictions on unlabeled examples. Prediction-powered inference (Angelopoulos et al., 2023) and double machine learning (Chernozhukov et al., 2018) both learn a debiasing procedure to ensure that unlabeled metric estimates (e.g., accuracy) are statistically unbiased. One of the baselines we compare to, AutoEval (Boyeau et al., 2024), is built atop prediction-powered inference.

841 842 843

844

845

B EXPERIMENTAL DETAILS

B.1 REAL DATASETS AND CLASSIFIER SETS

846 We provide additional detail for the six datasets we use in our work, including ground truth p(y)847 for each dataset and ground truth metrics for each classifier in the associated classifier set **[DS: ref]**. 848 As discussed, each dataset is split into a training split (provided to each classifier as training data), 849 an estimation split (provided to each performance estimation method), and an evaluation split (used 850 to compute ground truth metrics for each classifier). We determine training splits based on prior work. We then split the remaining data in half (randomly, for each run) to produce the estimation 851 and evaluation splits. We then ubsample the estimation split to have n_l labeled examples and n_u 852 unlabeled examples. We ensure that the labeled data always includes at least one example from each 853 class. Thus, the estimation split contains $n_l + n_u$ examples in each experiment, and the evaluation 854 split for each task is fixed across runs (exact sample sizes reported below). 855

1. **MIMIC-IV**: We use three binary classification tasks from MIMIC-IV (Johnson et al., 2020), a large dataset of electronic health records describing 418K patient visits to an emergency department. We focus on three tasks: **hospitalization** (predicting hospital admission based on features available during triage, p(y = 1) = 0.45), **critical outcomes** (predicting inpatient mortality or a transfer to the ICU within 12 hours, p(y = 1) = 0.06), and **emergency department revisits** (predicting a patient's return to the emergency department within 3 days, p(y = 1) = 0.03). We split and preprocess data according to prior work (Xie et al., 2022; Movva et al., 2023). No patient appears in more than one split. For each task, the evaluation split contains 70,439 examples.

864

2. **Toxicity detection**: The task is to predict presence of toxicity given an online comment, 865 using data from CivilComments (Borkan et al., 2019; Koh et al., 2021) where p(y = 1) =866 0.11. The evaluation split contains 66,891 examples. 867 3. **Biochemical property prediction** The task is to predict presence of a biochemical property based on a molecular graph, using data from the Open Graph Benchmark (Hu et al., 2020). We focus on the task of predicting whether a molecule inhibits SARS-CoV virus maturation, where p(y = 1) = 0.09. We filter out examples for which *no* label is observed 870 (i.e. the molecule was not screened at all) because it is impossible to evaluate our perfor-871 mance estimates on those examples. Doing so reduces data held-out from training from 872 43,793 to 28,325 examples. The evaluation split then contains half, or 14,163, of those 873 examples. 874 4. News classification The task is to predict one of four news types based on the title and 875 description of an article (Zhang et al., 2015). The classes are balanced and the evaluation 876 split contains 3,800 examples. 877 5. Sentence classification The task is to predict one of three textual entailments from a sen-878 tence (Williams et al., 2018). The classes are balanced and the evaluation split contains 879 61,856 examples. 6. **Image classification** The task is to predict one of nine coarse image categories (e.g. "dog" 881 or "vehicle") from an image (Xiao et al.). The classes are balanced and the evaluation split 882 contains 2,025 examples. 883 884 **B.2 BASELINES** 885 For baselines that require discrete predictions (i.e. Dawid-Skene and AutoEval), we discretize classifier scores by assigning a class according to the maximum classifier score across classes. We expand on our implementation of each baseline below. 889 890 • *Labeled*: When estimating performance over the whole dataset, we compare the classifier 891 scores to the ground truth labels within the labeled sample. However, when estimating subgroup-specific performance, it is often the case that there are no labeled examples for a 893 given subgroup. In these instances, *Labeled* reverts to estimating subgroup-specific perfor-894 mance as performance over all labeled examples. • Pseudo-Labeling: We train a logistic regression with the default parameters associated 895 with the scikit-learn implementation (Pedregosa et al., 2011). Experiments with alternative 896 function classes (e.g. a KNN) revealed no significant differences in performance. 897 • Bayesian-Calibration: Bayesian-Calibration operates on each classifier individually. We make use of the implementation made available by Ji et al. (2020). Extending the proposed approach to multi-class tasks is not straightforward, so we compare to Bayesian-900 Calibration only on binary tasks. 901 • Dawid-Skene: We implement Dawid-Skene with a tolerance of 1e-5 and a maximum num-902 ber of EM iterations of 100, according to a public implementation. 903 • AutoEval: We implement AutoEval using an implementation made available by the authors 904 (Boyeau et al., 2024). The implementation, to the best of our knowledge, only supports 905 accuracy estimation across a set of classifiers, so we limit our comparison to this metric. 906 907 B.3 SEMISYNTHETIC DATASET AND CLASSIFIER SETS 908 909 As with the real datasets, we produce three splits: a training split to learn the classifiers (50 exam-910 ples), an estimation split for the performance estimation methods (20 labeled examples and 1000 911 unlabeled examples), and an evaluation split to measure ground truth values for each metric (10,000 912 examples). Each classifier is a logistic regression with default L2 regularization. 913 914 **B.4** COMPUTING EFFECTIVE SAMPLE SIZE 915

916 In order to compute effective sample size, we produce 50 samples of labeled data for each incre-917 ment of 5 between 10 labeled examples and 1000. We then compute the mean absolute metric estimation error of using labeled data alone, across all runs. The effective sample size of a given

924						
925	Dataset	Classifier	Acc	ECE	AUC	AUPRC
926	Hospital Admission	DT-RandomForest-seed1	74.2	1.5	81.5	76.0
927	Ĩ	MLP-ERM-seed2	74.4	1.4	81.7	76.7
928		MLP-ERM-seed1	74.4	1.9	81.9	77.0
020		MLP-ERM-seed0	74.5	2.4	82.0	77.0
929		LR-LBFGS-seed2	73.3	4.0	80.7	75.5
930		LR-LBFGS-seed1	73.3	4.0	80.7	75.5
931		LR-LBFGS-seed0	73.4	2.9	81.0	75.7
932		DT-RandomForest-seed2	74.3	1.6	81.5	76.1
933		DT-RandomForest-seed0	74.1	1.5	81.5	76.1
934	Critical Outcome	MLP-ERM-seed2	93.9	0.9	8/.9	38.6
035		MLP-ERM-seed1	93.9	0.8	88.1	39.0
335		MLD EDM good0	95.0	1.2	87.0	34.2 37.9
936		I P I BECS seed()	93.9	0.5	87.5 87.6	37.0
937		DT-RandomForest_seed?	93.0	0.3	87.0	38.2
938		DT-RandomForest-seed1	94 0	0.5	87.4	38.3
939		DT-RandomForest-seed0	94.0	0.4	87.4	38.3
940		LR-LBFGS-seed1	93.6	1.2	87.6	34.2
0/11	ED Revisit	DT-RandomForest-seed0	97.7	1.8	54.9	2.7
040		DT-RandomForest-seed1	97.7	1.7	55.3	2.7
942		DT-RandomForest-seed2	97.7	1.8	54.9	2.7
943		LR-LBFGS-seed0	97.7	0.4	59.3	3.0
944		LR-LBFGS-seed2	97.7	0.4	59.1	3.0
945		MLP-ERM-seed0	97.7	0.3	59.8	3.1
946		MLP-ERM-seed1	97.7	0.3	59.8	3.1
0/17		MLP-ERM-seed2	97.7	0.5	57.9	3.0
040		LR-LBFGS-seed1	97.7	0.4	59.1	3.0
948	Toxicity Detection	distilbert-CORAL-seed0	88.3	6.0	86.2	40.0
949		distilbert IDM good1	88.7	10.2	91.9	05.5
950		distilbert IBM sood0	89.0 99.1	9.8	91.0	65.0
951		distilbert FRM-seed?	00.1	10.0	91.0	73.3
952		distilbert-FRM-seed1	92.1	4.9 6.2	93.8	72.3
053		distilbert-ERM-seed0	92.2	6.1	93.8	72.2
050	Molecule Property 60	gin-virtual-CORAL-seed1	92.8	5.2	90.1	61.9
954		gin-virtual-CORAL-seed2	92.8	5.2	90.1	61.9
955		gin-virtual-ERM-seed0	94.6	1.2	94.5	73.5
956		gin-virtual-ERM-seed1	92.4	5.6	90.7	61.1
957		gin-virtual-ERM-seed2	92.8	5.2	90.1	61.9
958		gin-virtual-IRM-seed0	93.2	1.8	90.2	58.4
959		gin-virtual-IRM-seed1	91.1	5.2	83.8	43.8
		gin-virtual-IRM-seed2	91.1	5.7	82.8	44.7

Table S1: Ground truth classifier metrics on binary tasks. We report ground truth performance
for classifiers in the sets associated with each binary task. Each classifier name begins with the
architecture (e.g. DT represents DecisionTree), the loss or training procedure (e.g. ERM or IRM),
and then the seed. Note that the equivalent accuracies on ED Revisit are a byproduct of both the low
class prevalence and the poor classifiers.

Dataset	Classifier	Acc	ECE
AG News	all-MiniLM-L12-v2	84.8	4.2
	mxbai-embed-large-v1	85.0	14.4
	multi-qa-MiniLM-L6-cos-v1	85.6	5.2
	bge-small-en-v1.5	85.2	16.9
	bge-large-en-v1.5	86.8	4.8
	bge-base-en-v1.5	86.6	5.6
	all-mpnet-base-v2	86.7	2.9
	all-MiniLM-L6-v2	83.8	3.8
	paraphrase-multilingual-MiniLM-L12-v2	85.1	9.6
	paraphrase-MiniLM-L6-v2	86.0	8.9
MultiNLI	distilbert-SqrtReWeight	81.4	9.2
	distilbert-ReWeight	80.9	7.4
	distilbert-ReSample	81.4	8.2
	distilbert-IRM	64.8	6.1
ImagenetBG	ResNet-ReWeight	86.6	7.8
	ResNet-ReSample	87.4	7.7
	ResNet-Mixup	88.6	7.7
	ResNet-IRM	54.1	30.9

Table S2: **Ground truth classifier metrics on multiclass tasks.** We report ground truth performance for classifiers in the sets associated with each multiclass task. Each of the LLMs fine-tuned for AG News are sentence transformers, while the MultiNLI classifiers all use DistilBERT (Sanh, 2019) as the base architecture. The base architecture on ImagenetBG is a ResNet-50.

semi-supervised evaluation method is thus the amount of labeled data which achieves the most similar mean absolute metric estimation error.

C NORMALIZING FLOW

One alternative parameterization is to use a normalizing flow to model our mixture of distributions. Normalizing flows learn and apply an invertible transform f_{θ} to a random variable $\mathbf{z} \sim D_1$ to obtain $f_{\theta}(\mathbf{z}) \sim D_2$. Here, we set $\mathbf{z} \sim D_1$ to a Gaussian mixture model and learn a transformation such that $f_{\theta}(\mathbf{z}) \stackrel{\text{dist.}}{\approx} \mathbf{s}$, i.e., the transformed distribution roughly matches our classifier score distribution. By modeling \mathbf{z} explicitly as a Gaussian mixture model, one can move back and forth between the two distributions, as $f_{\theta}^{-1}(f_{\theta}(\mathbf{z})) = \mathbf{z}$. Specifically, we set the distribution of \mathbf{Z} to follow a Gaussian mixture: $\mathbf{Z}(X = k) = N(x = \Sigma)$

$$\mathbf{Z}|(Y=k) \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Thus, the marginal distribution of \mathbf{Z} is $p_{\mathbf{Z}}(\mathbf{z}) = \sum_{k=1}^{K} \mathcal{N}(\mathbf{z}|\mu_k, \Sigma_k) \cdot p(y=k)$ is the overall density of \mathbf{z} . We apply our invertible transformation f_{θ} to obtain $\mathbf{s} = f_{\theta}(\mathbf{z})$. To find $p(\mathbf{s}|y=k)$, we follow the approach of Izmailov et al. (2020):

1012 1013

1008

990

991

992

993 994 995

996

997 998

999

$$p_{\mathbf{S}}(\mathbf{s}|y=k) = \mathcal{N}(f_{\theta}^{-1}(\mathbf{s})|\mu_k, \Sigma_k) \cdot \left| \det\left(\frac{\delta f}{\delta x}\right) \right| \cdot p(y=k)$$

Intuitively, we transform (\mathbf{s}, y) into a distribution (\mathbf{z}, y) which follows a Gaussian mixture model. By enforcing the constraint that this transform is invertible, the joint distribution on (\mathbf{z}, y) captures all the information in (\mathbf{s}, y) .

We use the RealNVP architecture (Dinh et al., 2016) to parameterize f_{θ} using 10 coupling layers, 3 fully-connected layers, and a hidden dimension of 128 between the fully connected layers. Our normalizing flow is lightweight and trains in less than a minute for each dataset in our experiments section using 1 80GB NVIDIA A100 GPU.

1022 Note there are two optimizations here: (1) the normalizing flow transformation f_{θ} which maps 1023 s into our latent Gaussian mixture space and (2) the Gaussian mixture model parameters μ_k, Σ_k 1024 themselves. We begin by fixing the GMM parameters μ_k, Σ_k to values estimated from our classifier 1025 scores s and learning only the flow f_{θ} for 300 epochs. Afterwards, we optimize the GMM parameters μ_k, Σ_k with EM for another 700 epochs.

Figure S1: Impact of average accuracy across classifiers in set on SSME's performance.

Figure S2: Impact of average ECE across classifiers in set on SSME's performance.

D SUPPLEMENTARY RESULTS

D.1 RESULTS REPORTING MEAN ABSOLUTE ERROR

In the main text, we evaluate our method and all baselines using 20 labeled examples and 1000 unlabeled examples and report *rescaled* mean absolute error across metrics and tasks. Here, we supplement those results by reporting mean absolute error across each task and metric and expanding n_l to include 50 and 100. The number of unlabeled examples remains the same (1000) to isolate the effect of additional labeled data.

Tables S3, S4, S5, and S6 report our results on each binary task, for accuracy, ECE, AUC, and AUPRC, respectively. Three high-level findings emerge. First, SSME-KDE achieves the lowest mean absolute error (averaging across tasks and amounts of labeled data). Second, SSME-KDE consistently outperforms the ablated version of SSME, fit to a single model at a time (SSME-KDE-M). And finally, SSME-KDE is able to produce performance estimates that are quite close, in absolute terms, to ground truth. For example, when given 20 labeled examples and 1000 unlabeled examples, SSME-KDE estimates accuracy within at most 2.5 percentage points of ground truth accuracy (across tasks).

Tables S7 and S8 report our results on the multiclass tasks, for accuracy and ECE respectively.
 Note that we exclude Bayesian-Calibration from multiclass comparisons because the method does not natively support multiclass recalibration. We also omit AutoEval from Table S8 because the implementation of expected calibration error within the framework is not straightforward.

1071

1035

1036

1046

1047 1048 1049

1050 1051 1052

1053

1072 D.2 COMPARISON TO ENSEMBLING 1073

1074 While we limit the scope of our experiments in the main text to semi-supervised methods that make 1075 use of *both* labeled and unlabeled data, another approach would be to produce an estimate of $Pr(y = k|s^{(i)})$ by averaging the classifier scores. This approach results in an unbiased metric estimator when 1076 the resulting ensemble is calibrated, as theoretical results by Ji et al. (2020) show. Such an approach 1078 has natural downsides: it is sensitive to the composition of the classifier set, does not improve with 1079 the introduction of labeled data, and relies on an assumption of ensemble calibration that is unlikely 1079 to hold in practice (Wu & Gales, 2021). Here, we provide experiments to illustrate this behavior.

Dataset	ne	<i>n</i>	Labeled	Pseudo-Labeling (LR)	Dawid-Skene	AutoEval	Bayesian-Calibration	SSME-KDE-M	SSME-KDE (Ours)
Duniot	πĘ	тų	Eutocicu	Toeudo Eudening (EIR)	Build Blelle	. Iuto 1. vui	Buyesian Canoradon		boline nee (ours)
Critical Outcome	20	1000	5.19 ± 3.85	4.12 ± 3.87	4.36 ± 0.31	4.78 ± 3.34	2.80 ± 2.23	1.70 ± 0.99	0.67 ± 0.46
	50	1000	2.90 ± 2.13	3.06 ± 2.32	4.07 ± 0.40	3.01 ± 2.36	2.07 ± 1.29	1.65 ± 0.90	0.78 ± 0.47
	100	1000	2.09 ± 1.47	1.58 ± 1.08	3.87 ± 0.38	2.00 ± 1.16	1.18 ± 0.74	1.30 ± 0.70	0.77 ± 0.47
ED Revisit	20	1000	5.11 ± 3.53	5.13 ± 3.23	4.02 ± 2.83	4.70 ± 3.32	4.36 ± 2.76	1.64 ± 1.24	0.45 ± 0.36
	50	1000	2.02 ± 2.08	2.73 ± 2.24	2.74 ± 2.22	1.95 ± 2.07	2.47 ± 2.07	1.46 ± 0.97	0.53 ± 0.39
	100	1000	1.43 ± 1.15	1.54 ± 1.22	1.51 ± 1.18	1.42 ± 1.04	1.43 ± 1.12	1.18 ± 0.89	0.57 ± 0.39
Hospital Admission	20	1000	7.32 ± 4.52	6.86 ± 4.31	19.55 ± 0.47	7.19 ± 3.73	2.48 ± 1.59	3.29 ± 1.71	1.88 ± 1.04
	50	1000	5.40 ± 2.98	3.99 ± 2.97	18.78 ± 0.51	5.23 ± 2.46	$\overline{2.14 \pm 1.28}$	3.17 ± 1.85	1.95 ± 0.99
	100	1000	3.64 ± 1.99	3.01 ± 1.92	17.81 ± 0.59	4.01 ± 1.99	2.42 ± 1.19	3.06 ± 1.64	1.51 ± 0.82
SARS-CoV Inhibition	20	1000	6.11 ± 3.45	5.95 ± 3.62	4.91 ± 0.65	4.59 ± 3.05	2.25 ± 1.13	3.06 ± 0.83	2.30 ± 0.56
	50	1000	3.22 ± 2.05	2.99 ± 1.64	4.50 ± 0.63	2.64 ± 1.53	1.74 ± 0.76	2.59 ± 0.94	$\overline{2.35 \pm 0.35}$
	100	1000	2.04 ± 1.38	2.14 ± 1.10	4.01 ± 0.62	1.94 ± 0.90	1.43 ± 0.68	1.84 ± 0.85	2.36 ± 0.47
Toxicity Detection	20	1000	5.95 ± 2.64	5.03 ± 2.92	4.82 ± 0.32	5.27 ± 2.71	5.29 ± 1.06	6.71 ± 0.83	2.34 ± 0.52
•	50	1000	4.03 ± 2.44	2.88 ± 1.72	4.65 ± 0.29	3.37 ± 1.48	4.57 ± 1.07	5.38 ± 1.01	2.22 ± 0.47
	100	1000	2.43 ± 1.48	$\overline{1.90 \pm 1.11}$	4.46 ± 0.40	2.34 ± 0.94	3.78 ± 0.92	3.80 ± 1.16	2.14 ± 0.54

Table S3: Mean absolute error in accuracy estimation on binary tasks. .

Dataset	n_ℓ	n_u	Labeled	Pseudo-Labeling (LR)	Dawid-Skene	Bayesian-Calibration	SSME-KDE-M	SSME-KDE (Ours)
Critical Outcome	20	1000	11.01 ± 4.04	6.94 ± 2.30	2.61 ± 0.33	3.48 ± 2.76	3.17 ± 1.10	1.16 ± 0.48
	50	1000	6.22 ± 2.23	5.38 ± 1.40	2.37 ± 0.32	2.56 ± 1.57	3.01 ± 0.94	1.13 ± 0.47
	100	1000	4.20 ± 1.38	3.63 ± 0.77	2.25 ± 0.37	1.69 ± 0.91	2.81 ± 0.81	1.15 ± 0.38
ED Revisit	20	1000	8.37 ± 3.14	4.16 ± 2.96	3.25 ± 2.45	3.57 ± 2.78	1.88 ± 0.86	0.76 ± 0.16
	50	1000	4.82 ± 1.73	2.29 ± 1.69	2.29 ± 1.68	2.04 ± 1.66	1.83 ± 0.67	0.73 ± 0.18
	100	1000	3.29 ± 0.88	1.36 ± 0.78	1.34 ± 0.76	1.16 ± 0.73	1.51 ± 0.63	0.73 ± 0.21
Hospital Admission	20	1000	21.76 ± 4.18	8.10 ± 4.61	17.31 ± 0.42	5.12 ± 3.94	5.54 ± 1.32	1.97 ± 0.47
-	50	1000	12.74 ± 2.25	5.02 ± 2.45	16.60 ± 0.43	3.49 ± 2.05	5.20 ± 1.19	2.06 ± 0.67
	100	1000	8.56 ± 1.39	3.91 ± 1.76	15.62 ± 0.44	3.23 ± 1.68	5.32 ± 1.32	1.70 ± 0.54
SARS-CoV Inhibition	20	1000	7.44 ± 3.44	5.96 ± 3.13	4.35 ± 0.53	2.24 ± 1.19	2.57 ± 0.64	3.38 ± 0.47
	50	1000	3.66 ± 1.80	3.06 ± 1.28	4.08 ± 0.57	1.73 ± 0.93	2.27 ± 0.72	3.41 ± 0.41
	100	1000	2.18 ± 1.14	2.36 ± 0.78	3.67 ± 0.59	1.35 ± 0.78	1.79 ± 0.69	3.44 ± 0.47
Toxicity Detection	20	1000	5.85 ± 2.89	5.09 ± 2.87	4.40 ± 0.33	4.69 ± 1.21	5.67 ± 0.68	2.35 ± 0.46
•	50	1000	3.99 ± 2.28	3.04 ± 1.66	4.20 ± 0.26	3.97 ± 1.21	4.57 ± 0.93	2.26 ± 0.44
	100	1000	2.37 ± 1.35	1.91 ± 0.99	4.10 ± 0.32	3.30 ± 0.91	3.43 ± 1.05	2.19 ± 0.53

Table S4: Mean absolute error in ECE estimation on binary tasks.

Dataset	n_ℓ	n_u	Labeled	Pseudo-Labeling (LR)	Dawid-Skene	Bayesian-Calibration	SSME-KDE-M	SSME-KDE (Ours
Critical Outcome	20	1000	10.09 ± 4.84	31.73 ± 3.95	9.39 ± 1.25	2.84 ± 0.91	4.72 ± 2.27	2.52 ± 1.24
	50	1000	7.50 ± 4.62	27.33 ± 5.51	8.49 ± 1.46	3.17 ± 1.17	5.61 ± 4.61	2.39 ± 1.74
	100	1000	5.65 ± 3.44	20.43 ± 4.38	7.97 ± 1.08	2.70 ± 0.94	3.82 ± 1.72	2.83 ± 2.89
ED Revisit	20	1000	18.48 ± 6.68	7.48 ± 0.72	8.27 ± 3.80	7.65 ± 0.55	11.89 ± 4.66	5.92 ± 3.14
	50	1000	17.37 ± 7.13	7.48 ± 0.95	7.62 ± 0.99	7.30 ± 0.76	11.99 ± 4.36	5.09 ± 2.56
	100	1000	14.13 ± 6.03	7.06 ± 1.46	7.09 ± 1.52	7.47 ± 1.17	11.28 ± 5.73	5.08 ± 2.77
Hospital Admission	20	1000	6.97 ± 4.64	8.94 ± 5.97	16.70 ± 0.31	2.67 ± 1.15	3.63 ± 1.95	2.51 ± 1.38
-	50	1000	5.08 ± 3.49	5.59 ± 4.31	16.18 ± 0.31	2.62 ± 1.65	3.18 ± 1.95	2.51 ± 1.20
	100	1000	3.57 ± 2.58	3.66 ± 2.68	15.32 ± 0.39	2.55 ± 1.34	3.17 ± 1.60	2.02 ± 1.20
SARS-CoV Inhibition	20	1000	9.61 ± 9.22	30.92 ± 4.35	7.50 ± 1.05	3.07 ± 1.00	5.42 ± 2.63	3.48 ± 1.58
	50	1000	5.84 ± 3.64	22.71 ± 4.29	7.06 ± 1.04	3.62 ± 0.97	5.02 ± 1.86	3.41 ± 1.68
	100	1000	3.97 ± 1.97	16.33 ± 3.27	6.04 ± 1.17	3.53 ± 1.35	4.21 ± 1.90	3.46 ± 1.63
Toxicity Detection	20	1000	6.71 ± 3.57	17.33 ± 7.52	6.20 ± 0.41	5.22 ± 0.59	6.05 ± 1.02	3.34 ± 0.82
	50	1000	4.76 ± 3.29	11.79 ± 6.41	5.97 ± 0.33	4.76 ± 0.74	4.86 ± 1.03	3.15 ± 0.66
	100	1000	3.82 ± 2.17	7.54 ± 3.73	5.84 ± 0.44	4.25 ± 0.96	4.15 ± 1.20	3.09 ± 0.81

Table S5: Mean absolute error in AUC estimation on binary tasks.

Dataset	n_ℓ	n_u	Labeled	Pseudo-Labeling (LR)	Dawid-Skene	Bayesian-Calibration	SSME-KDE-M	SSME-KDE (Ours)
Critical Outcome	20	1000	32.86 ± 18.26	22.98 ± 6.69	39.02 ± 4.26	9.29 ± 6.01	11.48 ± 5.46	6.11 ± 2.63
	50	1000	22.81 ± 13.16	20.48 ± 8.04	35.64 ± 5.80	9.34 ± 5.17	11.98 ± 5.17	6.17 ± 3.47
	100	1000	15.71 ± 8.81	14.45 ± 7.30	33.31 ± 4.33	8.96 ± 5.07	11.30 ± 6.01	5.77 ± 2.80
ED Revisit	20	1000	19.18 ± 13.27	5.14 ± 3.20	5.12 ± 4.68	9.14 ± 3.74	5.07 ± 2.89	1.67 ± 1.06
	50	1000	8.85 ± 8.14	2.72 ± 2.22	3.04 ± 2.80	6.03 ± 2.95	3.79 ± 2.33	1.81 ± 1.08
	100	1000	6.34 ± 5.57	1.57 ± 1.19	<u>1.74 ± 1.24</u>	4.23 ± 1.97	3.92 ± 2.23	1.82 ± 1.13
Hospital Admission	20	1000	9.43 ± 5.85	10.89 ± 9.33	21.15 ± 0.52	5.26 ± 3.84	4.36 ± 1.60	3.47 ± 2.04
	50	1000	7.46 ± 4.74	7.91 ± 5.89	20.34 ± 0.59	4.43 ± 2.68	3.70 ± 2.26	3.64 ± 2.16
	100	1000	5.51 ± 3.48	4.12 ± 3.66	19.17 ± 0.68	3.49 ± 2.17	4.00 ± 2.19	2.80 ± 1.84
SARS-CoV Inhibition	20	1000	22.27 ± 10.94	37.41 ± 8.82	16.60 ± 3.91	7.54 ± 2.74	13.81 ± 5.52	20.51 ± 6.12
	50	1000	15.02 ± 8.77	30.29 ± 9.40	15.01 ± 3.85	8.40 ± 3.45	12.82 ± 3.63	21.06 ± 5.46
	100	1000	11.53 ± 5.64	20.34 ± 6.46	12.61 ± 3.78	8.27 ± 3.19	11.01 ± 5.02	20.67 ± 5.92
Toxicity Detection	20	1000	19.34 ± 8.45	25.13 ± 12.71	26.34 ± 1.31	19.94 ± 4.70	23.38 ± 2.64	10.89 ± 3.14
	50	1000	13.78 ± 6.52	20.15 ± 12.57	25.24 ± 1.31	16.84 ± 5.68	18.90 ± 3.88	9.91 ± 3.06
	100	1000	10.69 ± 6.16	14.06 ± 7.21	24.51 ± 1.68	14.15 ± 5.35	14.59 ± 4.54	9.88 ± 3.51

Table S6: Mean absolute error in AUPRC estimation on binary tasks.

Dataset	n_ℓ	n_u	Labeled	Pseudo-Labeling	Dawid-Skene	AutoEval	SSME-KDE	SSME-NF
AG News	20	1000	5.79 ± 3.04	5.72 ± 4.16	8.31 ± 0.54	5.61 ± 2.77	2.77 ± 0.96	5.56 ± 0.75
	50	1000	4.09 ± 1.92	2.97 ± 2.00	8.06 ± 0.68	3.68 ± 1.48	2.72 ± 1.09	5.64 ± 1.03
	100	1000	2.93 ± 1.52	2.36 ± 1.48	7.66 ± 0.69	2.70 ± 1.29	2.50 ± 1.09	5.32 ± 1.05
ImagenetBG	20	1000	6.62 ± 2.74	33.45 ± 2.96	5.78 ± 0.71	6.55 ± 2.62	8.76 ± 1.00	2.65 ± 0.67
	50	1000	3.98 ± 1.63	17.88 ± 2.78	5.69 ± 0.73	3.87 ± 1.56	8.18 ± 0.90	2.66 ± 0.81
	100	1000	2.97 ± 1.38	9.37 ± 1.53	5.34 ± 0.63	<u>2.73 ± 1.13</u>	8.02 ± 0.90	2.10 ± 0.68
MultiNLI	20	1000	7.46 ± 3.88	7.95 ± 4.55	11.73 ± 0.55	7.20 ± 3.76	1.98 ± 0.88	3.08 ± 0.65
	50	1000	4.42 ± 1.99	3.08 ± 2.25	11.41 ± 0.52	4.17 ± 1.96	1.90 ± 0.76	2.79 ± 0.81
	100	1000	3.27 ± 1.65	2.47 ± 1.86	10.72 ± 0.54	3.17 ± 1.59	2.02 ± 0.82	2.52 ± 0.77

Table S7: Mean absolute error in accuracy estimation on multiclass tasks.

Dataset	n_ℓ	n_u	Labeled	Pseudo-Labeling	Dawid-Skene	SSME-KDE	SSME-NF
AG News	20	1000	7.04 ± 2.22	4.48 ± 3.23	5.60 ± 0.28	2.24 ± 0.51	3.72 ± 0.50
	50	1000	4.85 ± 1.54	2.28 ± 1.36	5.37 ± 0.34	2.24 ± 0.59	3.81 ± 0.46
	100	1000	3.24 ± 1.15	1.89 ± 0.96	5.02 ± 0.40	2.15 ± 0.55	3.53 ± 0.60
ImagenetBG	20	1000	7.10 ± 2.79	29.64 ± 2.84	4.76 ± 0.56	6.73 ± 0.54	2.49 ± 0.60
	50	1000	4.00 ± 1.85	14.18 ± 2.51	4.68 ± 0.48	6.42 ± 0.57	2.49 ± 0.72
	100	1000	2.75 ± 1.13	6.68 ± 1.04	4.54 ± 0.52	6.30 ± 0.62	1.96 ± 0.60
MultiNLI	20	1000	11.57 ± 4.06	7.84 ± 4.12	2.95 ± 0.29	2.06 ± 0.88	1.75 ± 0.62
	50	1000	6.14 ± 2.42	3.10 ± 2.24	2.92 ± 0.37	2.06 ± 0.72	1.63 ± 0.59
	100	1000	4.52 ± 1.83	2.37 ± 1.66	3.18 ± 0.30	2.19 ± 0.76	1.45 ± 0.57

Table S8: Mean absolute error in ECE estimation on multiclass tasks.

Using the semisynthetic setting described in Section 6.4, we artificially increase the expected calibration error of each classifier using a generalized logistic function parameterized by *a*. Specifically, we transform classifier score *s* to be $\frac{s^a}{s^a + (1-s)^a}$, effectively increasing overconfidence for higher *s* and increasing underconfidence for lower *s*. As in the semisynthetic experiments, we generate 500 semisynthetic classifier sets, where each classifier in a set is trained on 100 examples distinct from the training data for other classifiers in the set (results are robust to this choice of training dataset size). Each set contains three classifiers.

Figure S3 reports our results. As the average calibration among classifiers in a set varies, SSME consistently improves over the use of an ensemble. This aligns with our intuition, and indicates the value of using labeled data in conjunction with unlabeled data. Interestingly, miscalibration has little effect on the ensemble when estimating AUPRC; here, SSME and ensembling perform similarly.

¹¹⁸⁸ E METHOD DETAILS

1190 E.1 METRIC ESTIMATION 1191

Given a vector $p \in \Delta^{K-1}$ over K classes, let $\mathbf{s} = \text{ALR}(\mathbf{p}) = \left[\log \frac{\mathbf{p}_1}{\mathbf{p}_K}, \log \frac{\mathbf{p}_2}{\mathbf{p}_K}, \cdots, \log \frac{\mathbf{p}_{K-1}}{\mathbf{p}_K}\right] \in \mathbb{R}^{K-1}$. To invert, $\mathbf{p}_i = \frac{e^{\mathbf{s}_i}}{1 + \sum_{k=1}^{K-1} e^{\mathbf{s}_k}}$ for i < K and $\mathbf{p}_K = \frac{1}{1 + \sum_{k=1}^{K-1} e^{\mathbf{s}_k}}$. The ALR transform maps unit-sum data into real space, where it is easier to fit mixture models. The inverse allows us to map samples from the mixture model in real space back to the simplex Δ^{K-1} . For details, see Pawlowsky-Glahn & Buccianti (2011).

1198

1212 1213

1216 1217 1218

1199 E.2 METRIC ESTIMATION

SSME is able to estimate any metric that is a function of the classifier probabilities p and label y. We approximate the joint distribution $P(y, \mathbf{p})$ with a mixture model model $P_{\theta}(y, \mathbf{s})$, where \mathbf{s} refers to the ALR-transformed classifier probabilities (i.e. "classifier scores")². We refer to $P(y, \mathbf{p})$ for ease of notation in this section; it is equivalent, through invertible mapping, to $P(y, \mathbf{s})$.

We denote our approximation for $P(\mathbf{p}, y)$ as $P_{\theta}(\mathbf{p}, y)$. We provide a few concrete examples of how one can use SSME to measure performance metrics, given $P_{\theta}(\mathbf{p}, y)$ and a set of unlabeled probabilistic predictions $\{\mathbf{p}^{(i)}\}_{i=1}^{n_u}$ and labeled probabilistic predictions $\{\mathbf{p}^i, y^{(i)}\}_{i=1}^{n_\ell}$. Notationally, \mathbf{p}_j^i refers to the *j*th model's probabilistic prediction of the *i*th unlabeled example.

Accuracy measures the alignment between a model's (discrete) predictions and the true label y. To discretize predictions, practitioners typically take the argmax of $\mathbf{p}^{(i)}$. Using the binary case an illustrative example, the accuracy of the *j*th model can be written as:

Accuracy_i =
$$\mathbb{E}_{\mathbf{p}} \left[\mathbf{1} \left[y = \mathbf{1}(\mathbf{p} > t) \right] \right]$$

where 1 is an indicator function and t is a chosen threshold, typically 0.5. In our setting, we approximate this as:

$$\operatorname{Accuracy}_{j} \approx \frac{1}{n_{u} + n_{\ell}} \sum_{i=1}^{n_{u} + n_{\ell}} \mathbf{1} \left[y^{(i)} = \mathbf{1} (\mathbf{p}^{(i)} > t) \right]$$

For labeled examples, we use the true label $y^{(i)}$. For unlabeled examples, we draw $y^{(i)} \sim P_{\theta}(y|\mathbf{p}^{(i)})$. We then compute accuracy using these labels $y^{(i)}$ and predictions $\mathbf{p}^{(i)}$. To ensure our estimation procedure is robust to sampling noise, we average our estimated accuracy over 500 separate sampled labels for each example in the unlabeled dataset.

Alternatively, we could directly use $P_{\theta}(y|\mathbf{p})$ to estimate accuracy. That is, for each point $\mathbf{p}^{(i)}$ we directly compute an expectation for the label, and sum this over the entire dataset.

Using the binary case as an example

$$\operatorname{Accuracy}_{j} \approx \frac{1}{n_{u} + n_{\ell}} \sum_{i=1}^{n_{u} + n_{\ell}} \mathbb{E} \left[\mathbf{1} \left[y^{(i)} = \mathbf{1} (\mathbf{p}_{j}^{(i)} > t) \right] | \mathbf{p}^{(i)} \right]$$

1229 1230 1231

1227 1228

In other words, we compute the expectation that the true label agrees with the predicted label for each point. This expectation is $\mathbf{p}^{(i)}$. This expectation is computed over $P_{\theta}(y|\mathbf{p})$ One can interpret $P_{\theta}(y|\mathbf{p})$ as a "recalibration" step: given a set of classifier guesses \mathbf{p} , what is the true distribution of y?

1236 In our experiments, we use the first of these two approaches, i.e. we sample the true label from the 1237 estimated distribution.

²Recall that ALR is a bijection, so we use the inverse mapping $ALR^{-1} : \mathbb{R}^{K-1} \to \Delta^{K-1}$ to transform our mixture distribution in real space back to probability space.

to the true class likelihoods, averaged over the dataset. We write out our ECE estimation procedure for the binary case, and it extends readily to definitions of calibration in multiclass settings (Gupta & Ramdas, 2022). Binary ECE can be written as:

 $\operatorname{ECE}_{j} = \mathbb{E}_{\mathbf{p}_{j}}\left[\left|P(\hat{Y}=1|\hat{p}=\mathbf{p}_{j})-\mathbf{p}_{j}\right|\right]$

1248 Then, to approximate the ECE with the datasets $\{\mathbf{p}^i\}_{i=1}^{n_u}$ and $\{\mathbf{p}^i, y^{(i)}\}_{i=1}^{n_\ell}$, one can sample $y^{(i)} \sim P_\theta(y|\mathbf{p}^{(i)})$ for each unlabeled sample *i* and then use the standard histogram binning procedure (Guo et al., 2017) using both the true labels for the labeled dataset and the sampled labels for the unlabeled dataset. In this approach, we treat the sampled labels $y^{(i)}$ as true labels for unlabeled examples. To ensure our procedure is robust against sampling noise, we draw samples of $y^{(i)}$ repeatedly for a fixed number of draws (500). We then compute ECE separately for each of these 500 draws and average ECE across all draws.

Alternatively, one could also *directly* use $P_{\theta}(y|\mathbf{p})$ to estimate ECE. In particular, we can write:

$$\text{ECE}_{j} \approx \frac{1}{n_{u} + n_{\ell}} \sum_{i=1}^{n_{u} + n_{\ell}} \left| P_{\theta} \left(y = 1 | \mathbf{p}_{j}^{(i)} \right) - \mathbf{p}_{j}^{(i)} \right|$$

In this approach, we don't sample the labels y for unlabeled examples but instead directly use $P_{\theta}(y|\mathbf{p})$, which provides us (an estimate of) the true distribution of y. Instead, we directly use our estimate for the conditional label distribution $P_{\theta}\left(y=1|\mathbf{p}_{j}^{(i)}\right)$. In our experiments, we use the first approach described, i.e. sampling $y^{(i)}$ for unlabeled examples and then using the standard binning and averaging procedure.

1266 AUROC and AUPRC can be estimated with a similar procedure as above. In particular, we sample 1267 a label $y^{(i)} \sim P_{\theta} (y = 1 | \mathbf{p}^{(i)})$ from the conditional label distribution and compare these sampled 1268 labels to the classifier probabilities.