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Abstract

Large language models (LLMs) have demon-001
strated impressive multilingual understanding002
and reasoning capabilities, driven by exten-003
sive pre-training multilingual corpora and fine-004
tuning instruction data. However, a perfor-005
mance gap persists between high-resource and006
low-resource language tasks due to language007
imbalance in the pre-training corpus, even us-008
ing more low-resource data during fine-tuning.009
To alleviate this issue, we propose LinguaLIFT,010
a two-stage instruction tuning framework for011
advancing low-resource language tasks. An012
additional language alignment layer is first013
integrated into the LLM to adapt a pre-trained014
multilingual encoder, thereby enhancing multi-015
lingual alignment through code-switched fine-016
tuning. The second stage fine-tunes LLM with017
English-only instruction data while freezing018
the language alignment layer, allowing LLM to019
transfer task-specific capabilities from English020
to low-resource language tasks. Additionally,021
we introduce the Multilingual Math World022
Problem (MMWP) benchmark, which spans023
21 low-resource, 17 medium-resource, and 10024
high-resource languages, enabling comprehen-025
sive evaluation of multilingual reasoning. Ex-026
perimental results show that LinguaLIFT out-027
performs several competitive baselines across028
MMWP and other widely used benchmarks. 1029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated impressive understanding and reasoning ca-032

pabilities, opening up a new paradigm for artificial033

intelligence (Wei et al., 2022; Zhao et al., 2023).034

These capabilities arise from self-supervised pre-035

training on large-scale multilingual data, followed036

by supervised fine-tuning on multilingual instruc-037

tion data (Ouyang et al., 2022; Muennighoff et al.,038

2023; Chung et al., 2024). As a result, LLMs039

have achieved remarkable performance across040

1Our code and data will be released once accepted.

a. Reasoning on High-resource Language

Terry eats 2 yogurts a day and they are on sale at 4 
yogurts for $5.00. If he buys 2 yogurts a day at $5.00 
each, he spends $2.50 a day on yogurt. Over 30 days, 
he spends $2.50 a day on yogurt, so he spends 
$2.50*30 = $<<2.5*30=75.00>>75.00 on yogurt.

Response En

Terry eats 2 yogurts a day.  They 
are currently on sale at 4 yogurts 
for $5.00.  How much does he 
spend on yogurt over 30 days?

Query En

b. Reasoning on Low-Resource Language

!টির িদেন 2( ইেয়াগাট- খান।
সPিত 4( ইেয়াগাট- $5.00-এর
ছাড়য67 মূেল; িবি= হে?। 30 িদেন
িতিন ইেয়াগােট- র জন; কত ডলার
ব;য় কেরন?

Query Bn সPিত 4( ইেয়াগাট- $5.00-এর ছাড়য67 মূেল; িবি=
হে?, তাই এ( 4*5 = $<<4*5=20.00>>20.00 !টির িদেন
2( ইেয়াগাট- খান, তাই 30 িদেন িতিন 2*30 = 
<<2*30=60>>60 ইেয়াগাট- খান যিদ সPিত 4( ইেয়াগাট-
$5.00-এর ছাড়য67 মূেল; িবি= হে?, তাহেল এক(
ইেয়াগাট- খান তার জন; 5-2 = $<<5-2=3.00>>3.00 যিদ
!টির 30 িদেন 60 ইেয়াগাট- খান, তাহেল িতিন 30*3 = 
$<<30*3=90.00>>90.00 ডলার খরচ কেরন।

Response Bn

Response Translation: Recently 4 yogurts are on sale at a discounted price of $5.00, so it is 4*5 = $<<4*5=20.00>>20.00. 
Terry eats 2 yogurts a day, so in 30 days he eats 2*30 = <<2*30=60>>60 yogurts. If recently 4 yogurts are on sale at a 
discounted price of $5.00, then eating one yogurt costs him 5-2 = $<<5-2=3.00>>3.00. If Terry eats 60 yogurts in 30 days, 
then he spends 30*3 = $<<30*3=90.00>>90.00 dollars.

Terry hukunywa maziwa 2 ya
mtindi. Kwa sasa kuna ofa ya
maziwa 4 ya mtindi kwa $5.00. 
Huwa anatumia pesa ngapi 
kununua maziwa ya mtindi kwa
kipindi cha siku 30?

Query Sw
Ananunua maziwa 2 ya mtindi kwa siku na kuna
ofa ya maziwa 4 kwa $5.00 hivyo ananunua maziwa
2*2=4 kwa siku Anahitaji maziwa kwa siku 30 na
ananunua maziwa 4 kwa siku hivyo anahitaji 30*4 = 
<<30*4=120>>120 maziwa Ananunua maziwa 120 
kwa $5.00 kwa maziwa ya mtindi hivyo anatumia
120*5 = $<<120*5=600.00>>600.00

Response Sw

Response Translation: He buys 2 milks of yogurt per day and there is a sale on 4 milks for $5.00 so he buys 2*2=4 milks 
per day. He needs milk for 30 days and he buys 4 milks per day so he needs 30*4 = <<30*4=120>>120 milks. He buys 
120 milks for $5.00 for yogurt so he spends 120*5 = $<<120*5=600.00>>600.00

Figure 1: Examples from the MGSM (Shi et al., 2023)
dataset, where the mathematical problems share the
same meaning across languages, but LLMs generate
different answers. The red text marks the erroneous
reasoning in the responses. Translations of the responses
are provided in dashed boxes.

various natural language processing tasks (Chen 041

et al., 2024a,b; Zhang et al., 2024b,a), especially 042

high-resource language mathematical reasoning 043

tasks (Shi et al., 2023; She et al., 2024) and natural 044

language inference tasks (Üstün et al., 2024; Lu 045

et al., 2024). 046

However, a substantial performance gap still 047

exists between high-resource and low-resource 048

language tasks (Zhu et al., 2024c), primarily 049

due to the language imbalance within the large- 050

scale multilingual corpora during pre-training, 051

where high-resource languages dominate (Touvron 052

et al., 2023). This gap remains unaddressed, even 053

using more low-resource language data during the 054

following fine-tuning (Singh et al., 2024). As 055

illustrated in Figure 1, while LLMs can generate 056
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the correct answer to the query in high-resource057

languages like English, they struggle with the058

same query in low-resource languages. These059

discrepancies emphasize a fundamental limitation060

in the understanding and reasoning capabilities of061

LLMs for low-resource languages.062

To alleviate this issue, we propose a two-stage063

instruction tuning framework (LinguaLIFT) for064

enhancing low-resource language tasks. An ad-065

ditional language alignment layer is initially in-066

tegrated into the LLM to adapt a pre-trained067

multilingual encoder. LinguaLIFT then improves068

multilingual alignment via code-switched fine-069

tuning, using the code-switched translation data070

generated from unsupervised multilingual align-071

ment lexicons The second stage fine-tunes LLMs072

with English-only instruction data while freezing073

the language alignment layer, which enables LLMs074

to transfer the learned task-specific capabilities075

from English to low-resource languages. Addi-076

tionally, we introduce a new benchmark named077

Multilingual Math World Problem (MMWP), span-078

ning 21 low-resource, 17 medium-resource, and 10079

high-resource languages to evaluate multilingual080

reasoning tasks comprehensively. Experiments081

demonstrate that LinguaLIFT significantly outper-082

forms several strong competitive methods on the083

MMWP and other widely used benchmarks, such084

as MGSM (Shi et al., 2023), MSVAMP (Chen085

et al., 2023), XNLI (Conneau et al., 2018) and086

X-CSQA (Lin et al., 2021).087

2 Related Work088

Leveraging Powerful Cross-lingual Transfer Ca-089

pabilities of Multilingual Models. Recent stud-090

ies have shown that multilingual models possess091

strong cross-lingual transfer capabilities (Conneau092

et al., 2020; Xue et al., 2021; FitzGerald et al.,093

2023; Chirkova and Nikoulina, 2024; Shaham et al.,094

2024; Chen et al., 2024c), benefiting the low-095

resource language community by enabling task096

transfer across multiple languages after fine-tuning097

on high-resource languages (Kew et al., 2023;098

Pfeiffer et al., 2020; Reimers and Gurevych, 2020;099

Pan et al., 2021; Feng et al., 2022).100

Unlike previous approaches focusing on mul-101

tilingual instruction tuning (Singh et al., 2024;102

Üstün et al., 2024; Köpf et al., 2024; Zhu et al.,103

2024b,a; Li et al., 2023a; Wei et al., 2023; Ranaldi104

et al., 2023), LinguaLIFT incorporates a language105

alignment layer into LLMs to adapt a pre-trained106

multilingual encoder through code-switched fine- 107

tuning. While freezing the language alignment 108

layer and a pre-trained multilingual encoder, the 109

LLM is fine-tuned with English-only instruction 110

data to transfer task-specific capabilities from 111

English to low-resource language tasks. 112

Improving Multilingual Mathematical Reason- 113

ing Tasks. Recent efforts to improve multilin- 114

gual mathematical reasoning for LLMs can be 115

categorized into three ways: 1) Prompting close- 116

source LLMs: Qin et al. (2023), Shi et al. (2023), 117

and Huang et al. (2023) designed prompts for 118

closed-source LLMs like ChatGPT, translating 119

non-English contexts into English for reasoning. 120

However, this approach is limited by translation 121

quality and does not improve multilingual under- 122

standing or work well for open-source LLMs (Zhu 123

et al., 2024b). 2) Instruction-tuning open-source 124

LLMs: Chen et al. (2023), Chai et al. (2024), and 125

Lai and Nissim (2024) adopted a translate-training 126

method, translating English reasoning datasets into 127

non-English and instruction-tuning LLMs. Zhu 128

et al. (2024b) and She et al. (2024) proposed 129

approaches to transfer mathematical reasoning 130

capabilities from English to non-English. While 131

these methods improve multilingual reasoning, 132

they incur high translation costs and errors, making 133

them impractical for low-resource languages. 3) 134

Bridging existing skilled LLMs to multilingual- 135

ism: Yoon et al. (2024) combines pre-trained mul- 136

tilingual models with skilled reasoning LLMs, but 137

a performance gap persists between low-resource 138

and high-resource languages. While Huang et al. 139

(2024) shows significant improvement, it relies 140

heavily on parallel and multilingual task data. 141

Different from existing studies, this paper pro- 142

poses a novel two-stage instruction fine-tuning 143

framework to enhance the reasoning capabilities 144

of low-resource language tasks without relying on 145

multilingual instruction data. 146

3 Methodology 147

Figure 2 illustrates an overview of the proposed 148

two-stage instruction tuning framework, 149

LinguaLIFT. The core idea is to transfer 150

task-specific capabilities learned from English to 151

low-resource languages, leveraging the language 152

alignment established by code-switched tuning. 153

We then introduce the model architecture (§3.1), 154

the language alignment stage (§3.2) and the task 155

transfer stage (§3.3). 156
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❄ Large Language Model

Multilingual 
Encoder

Language Alignment 
Layer

It !টকস Tom 3 ঘ&া to মও the entire লন। He 
can মও each !সকশন in 30 িমিনট। How many 
!সকশনস does his লন have?

It takes Tom 3 hours to mow the entire lawn. He can mow each 
section in 30 minutes. How many sections does his lawn have?

To find out the number of sections Tom’s lawn has, we need to 
determine how many 30-minute intervals are in 3 hours. There 
are 60 minutes in 1 hour. So, 3 hours will have 3 * 60 = 180….

Stage-I:  Language Align Stage-II Task Transfer

Instruction

Translate the following code-switched 
Bengali sentence to pure English:

Code-Switched Input

❄

❄ Embedding Layer

......𝐻!"# 𝐻$"%

... ...

🔥 Large Language Model

Multilingual 
Encoder

It takes Tom 3 hours to mow the entire lawn. 
He can mow each section in 30 minutes. How 
many sections does his lawn have?

Instruction

Solve the following math problem:
❄

......𝐻!"# 𝐻$"%

❄

... ...

❄ Embedding Layer

Task-Specific Input

concatenation
concatenation

🔥
Language Alignment 

Layer❄

Figure 2: Overview of the proposed LinguaLIFT approach. Stage-I (Language-Align): A language alignment layer
is introduced into the LLM to adapt the pre-trained multilingual encoder, thereby enhancing multilingual alignment
through code-switched tuning. Stage-II (Task-Transfer): The LLM is fine-tuned on high-quality, English-only
instruction data with the language alignment layer frozen, allowing LLM to transfer task-specific capabilities learned
from English to low-resource languages.

3.1 Model Architecture157

Given a task-specific input x with lx tokens, we158

use a multilingual pre-trained model to encode it159

into a moderately language-agnostic representation160

X , facilitating more effective cross-lingual under-161

standing and transfer:162

X = Encoder(x), (1)163

where Encoder(·) is the pre-trained multilingual164

encoder, and X ∈ Rlx×d1 is the final hidden state.165

We introduce the language alignment layer,166

Alignment(·), to bridge the gap between the167

multilingual encoder and the LLM representation,168

implemented as a multi-layer perceptron (MLP).169

This layer maps X to the input embedding space170

of the LLM:171

X̂ = Alignment(X), (2)172

where X̂ ∈ Rlx×d2 is the alignment representation173

of X on the input embedding space of the LLM.174

To leverage the built-in capabilities of the LLM175

for instruction following, we embed the instruction176

context q with lq tokens using the embedding layer177

Embedding(·):178

Q = Embedding(q), (3)179

where Q ∈ Rlq×d2 presents the instruction context 180

q in the input embedding space of the LLM. Then, 181

we concatenate the instruction context representa- 182

tion with the multilingual input representation: 183

(Q, X̂) = [<bos>;Q;<enc_start>; X̂;<enc_end>],
(4) 184

where <bos> ∈ Rd2 is the start token representa- 185

tion and <enc_start> and <enc_end> are trainable 186

boundary parameters of X̂ . Finally, (Q, X̂) is fed 187

into the LLM to generate the response. 188

3.2 Language Alignment 189

In this stage, we enhance the model’s multilingual 190

alignment through code-switched tuning. This 191

involves two key parts: building multilingual 192

alignment lexicons and enhancing alignment via 193

code-switched translation instruction tuning. 194

Building Multilingual Alignment Lexicons. 195

Given the scarcity of data for low-resource 196

languages, we adopt an unsupervised word 197

translation method MUSE (Lample et al., 2018) 198

to construct the multilingual alignment lexicons 199

without parallel data. Specifically, we extract a 200

set of unique words W = {w}Ni from English 201

monolingual corpus D, where N is the number of 202
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unique words, excluding named entities and stop203

words. We collect the translations for each word204

w ∈ W by retrieving the top nearest neighbor by205

projecting the word embeddings into the target206

space. Further implementation details are provided207

in Appendix A.1.208

Enhancing Alignment with Code-Switched209

Translation Instruction Tuning. We leverage210

the built multilingual alignment lexicons to211

generate code-switched inputs. Formally, this212

tuning aims to predict the English translation213

response tokens y given the instruction context q214

and code-switched input tokens xl in language l.215

The input embeddings for this task are represented216

as (Q, X̂l) from Equation (4). The optimization217

objective is outlined as follows:218

−argmin
θ

∑
l∈L

T∑
i=1

log pθ,σ,ϕ(yi | (Q, X̂l), y<i),

(5)219

where T represents the sequence length of the220

target output y, y<i denotes the tokens preceding221

the i-th token, and yi is the i-th token of y. The222

trainable parameters include θ, corresponding to223

the language alignment layer and the boundary224

tokens. σ and ϕ represent the parameters of the225

multilingual encoder and LLM, respectively, which226

remain frozen during training to mitigate the risk227

of catastrophic forgetting. Finally, L denotes the228

set of target languages.229

3.3 Task Transfer230

After establishing language alignment in the231

first stage, we fine-tune LLM using high-quality,232

English-only task-specific instruction data while233

freezing the language alignment layer. This234

approach preserves the multilingual alignment and235

cross-lingual transferability capabilities acquired236

in the first stage, unlocking the potential of LLM237

to transfer strong capabilities learned from English238

to low-resource language tasks. Specifically, we239

fine-tune the parameters of the LLM to minimize240

the language modeling negative log-likelihood of241

the response y, given the combined instruction242

context and task-specific input (Q, X̂en):243

−argmin
ϕ

T∑
i=1

log pθ̃,σ,ϕ

(
yi | (Q, X̂en), y<i

)
,

(6)244

where ϕ represents the trainable parameters of the245

LLM, and θ̃ is initialized from the checkpoint of θ246

trained at the first stage. The multilingual encoder 247

parameters σ and θ̃ are kept frozen throughout the 248

training. 249

4 The MMWP Benchmark 250

Existing multilingual mathematical reasoning 251

benchmarks (Shi et al., 2023; Chen et al., 2023) 252

predominantly focus on 7 high-resource languages 253

and 3 low-resource languages, leaving a significant 254

gap in coverage for low-resource languages. This 255

imbalance introduces evaluation bias, as models are 256

optimized for high-resource languages while their 257

performance on low-resource languages remains 258

underexplored, hindering the comprehensive 259

development of multilingual models. To fill this 260

gap, we build a new Multilingual Math World 261

Problem (MMWP) benchmark and describe its 262

collection process in this section. 263

Source data. We use AsDiV (Miao et al., 2020) 264

and MAWPS (Koncel-Kedziorski et al., 2016) as 265

base datasets. From the AsDiv official test set, we 266

randomly select 500 examples and another 500 267

from MAWPS, where all the problems require 268

multiple steps to solve, as described by Miao et al. 269

(2020). We filter out duplicates and problems with 270

non-numeric answers, resulting in 811 examples. 271

Target Language Selection. We select a typo- 272

logically diverse set of 48 languages, spanning 12 273

language families and 12 writing systems, with 274

a range of resource levels—low, medium, and 275

high. This includes 21 low-resource languages2, 276

17 medium-resource languages3, and 10 high- 277

resource languages4. Additional selection details 278

are provided in Appendix B.1. 279

Translation process. To ensure the high quality 280

of translations, we employed Google Translation 281

System to translate the selected English ques- 282

tions into 47 other languages. Moreover, five 283

2Afrikaans (AF), Arabic (AR), Belarusian (BE), Bengali
(BN), Basque (EU), Gujarati (GU), Hausa (HA), Hindi (HI),
Armenian (HY), Icelandic (IS), Kannada (KN), Luxembourgish
(LB), Macedonian (MK), Malayalam (ML), Marathi (MR),
Nepali (NE), Slovak (SK), Swahili (SW), Tamil (TA), Telugu
(TE), Thai (TH)

3Bulgarian (BG), Catalan (CA), Czech (CS), Danish (DA),
Finnish (FI), Croatian (HR), Hungarian (HU), Indonesian
(ID), Korean (KO), Norwegian Bokmål (NB), Polish (PL),
Portuguese (PT), Romanian (RO), Slovenian (SL), Serbian
(SR), Ukrainian (UK), Vietnamese (VI)

4German (DE), English (EN), Spanish (ES), French (FR),
Italian (IT), Japanese (JA), Dutch (NL), Russian (RU), Swedish
(SV), Chinese (ZH)
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annotators then post-edit and calibrate the trans-284

lation, followed by quality estimation through both285

human and automatic evaluation, as detailed in286

Appendix B.2.287

5 Experiments288

5.1 Datasets289

Evaluation Dataset. We use the MMWP and290

latest multilingual benchmarks, MGSM (Shi et al.,291

2023) and MSVAMP (Chen et al., 2023) to eval-292

uate the performance of LLMs in multilingual293

mathematical reasoning. We evaluate in zero-294

shot chain-of-thought reasoning (Wei et al., 2022)295

setting. To further assess the task generalization of296

LinguaLIFT, we incorporate several challenging297

multilingual datasets, including X-CSQA (Lin298

et al., 2021) for commonsense reasoning and299

XNLI (Conneau et al., 2018) for natural language300

inference.301

Training Dataset. We utilize English-only in-302

struction data following prior work (Lu et al.,303

2024; Huang et al., 2024), which include Meta-304

MathQA (Yu et al., 2024) for mathematical rea-305

soning, MultiNLI (Williams et al., 2018) for306

natural language inference, and a set of unified307

commonsense reasoning tasks, comprising the X-308

CSQA, OpenBookQA (Mihaylov et al., 2018),309

ARC (Clark et al., 2018), and QASC (Khot310

et al., 2020) datasets. Additionally, to further311

explore the potential of the proposed method,312

we incorporate the recent advanced mathematical313

reasoning instruction dataset, OpenMathInstruct-314

2 (Toshniwal et al., 2024). Statistics of the datasets315

involved are presented in Table 5, and the prompts316

for each task are given in Appendix A.3.317

5.2 Baselines318

We consider three categories of baselines: (1)319

Mono-SFT (Luo et al., 2023; Yue et al., 2024;320

Yu et al., 2024; Toshniwal et al., 2024; Zhu et al.,321

2024b), a vanilla method that fine-tunes the model322

on English task datasets. (2) Multi-SFT (Chen323

et al., 2023; Zhu et al., 2024b; She et al., 2024), a324

translation-based method that fine-tunes the model325

on multilingual task datasets. (3) Leveraging326

External Tools or Models (Shi et al., 2023; Yoon327

et al., 2024; Huang et al., 2024), a method that328

leverages external translation systems or models329

with existing powerful LLMs. More training details330

are presented in Appendix A.4.331

LLaMA-2-7B as base model LR. MR. HR. Avg.
BASELINE

Mono-SFT
MAmmoTH† 6.36 20.4 26.1 15.5
WizardMath† 10.1 28.0 32.2 21.0
MetaMath† 13.6 37.2 41.8 27.8
OpenMath2‡ 19.3 55.5 62.7 41.1

Multi-SFT
MathOctopus-Parallel† 11.0 20.8 25.2 17.4
MathOctopus-MAPO-DPO† 18.6 29.8 33.1 25.6
MetaMathOctopus-MAPO-DPO† 16.4 36.7 43.9 29.3
QAlign-MetaMathQA† 17.1 39.0 44.5 30.6

Leveraging External Tools or Models
Translate-En‡ (MetaMath) 27.6 36.4 40.6 33.4
LangBridge† (MetaMath) 33.4 36.8 39.4 35.9
MindMerger-Soft† (MetaMath) 36.6 40.7 43.2 39.4

(Add Low-Resource)‡ 36.7 39.8 41.5 38.8
(Low-Resource Retrain)‡ 33.4 36.8 39.4 35.9

Translate-En‡ (OpenMath2) 43.1 54.7 61.5 51.0
LangBridge‡ (OpenMath2) 47.9 53.8 59.2 52.3
MindMerger-Soft‡ (OpenMath2) 49.5 54.8 61.2 53.8

OUR METHODS

LinguaLIFT (MetaMath) 41.2 44.3 45.5 43.2
LinguaLIFT (OpenMath2) 55.4 61.2 62.5 58.9

Table 1: Results on the MMWP benchmark. "LR."
denotes the average performance for low-resource
languages, "MR." for medium-resource languages, and
"HR." for high-resource languages. The bold text
highlights the highest score among systems. The dagger
symbol (†) indicates results obtained using officially
released models, while the double dagger symbol (‡)
denotes results from our local implementation. The
LLM and extra data used in the third baseline category
are indicated in brackets.

5.3 Experimental Results 332

LinguaLIFT demonstrates significant improve- 333

ments across low-resource languages on MMWP. 334

Experimental results on the MMWP test set, 335

grouped by language resource levels, are presented 336

in Table 1. We elaborate on six key observations 337

from the results: (1) Mono-SFT models exhibit 338

substantial performance drops in low-resource 339

languages and slight drops in medium-resource 340

languages. (2) Multi-SFT models, while outper- 341

forming their monolingual counterparts in low- 342

resource settings, still show a considerable per- 343

formance gap between low-resource and high- 344

resource languages. (3) Models leveraging external 345

translation systems or pre-trained multilingual 346

models achieve limited generalization to unseen 347

languages, and they still lag behind in performance 348

compared to high-resource languages. (4) Mind- 349

Merger, retrained using additional open-source 350

parallel data in low-resource languages for a 351

fair comparison, performs well in high-resource 352

languages while hardly improving low-resource 353

tasks, demonstrating its limited applicability in low- 354
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resource scenarios. (5) LinguaLIFT significantly355

enhances low-resource reasoning performance,356

outperforming all competitive baselines. (6) In-357

corporating advanced English reasoning datasets358

(e.g., OpenMathInstruct-2) further enhances low-359

resource language reasoning, highlighting the im-360

portance of adapting to evolving, high-quality data361

for improving low-resource language reasoning.362

These results highlight the importance of com-363

prehensively evaluating multilingual reasoning364

models across diverse languages and further val-365

idate LinguaLIFT’s effectiveness in enhancing366

reasoning performance for low-resource languages.367

MGSM MSVAMPLLaMA-2-7B as base model LR. HR. Avg. LR. HR. Avg.
BASELINE

Mono-SFT
MAmmoTH† 3.40 32.4 21.9 6.57 40.1 30.1
WizardMath† 4.00 37.7 25.5 15.7 48.5 38.7
MetaMath† 4.60 51.7 34.6 15.2 61.2 47.4

OpenMath2‡ 5.60 60.2 40.4 18.8 70.5 55.0
Multi-SFT

MathOctopus-Parallel† 28.0 42.4 37.2 33.6 43.8 40.8
MathOctopus-MAPO-DPO† 30.6 43.4 38.8 52.5 58.8 56.9

MetaMathOctopus-MAPO-DPO† 31.0 55.6 46.7 57.8 67.4 64.5
QAlign-MetaMathQA† 26.3 55.9 45.2 48.4 61.5 57.6

Leveraging External Tools or Models
Translate-En-MetaMath‡ 39.6 55.1 49.4 47.4 52.3 50.9
LangBridge-MetaMath† 38.4 51.9 47.0 43.9 54.5 51.4

MindMerger-Soft-MetaMath† 53.1 57.9 56.2 52.7 60.6 58.2
Translate-En-OpenMath2‡ 41.3 63.8 55.6 51.9 62.2 59.1
LangBridge-OpenMath2‡ 42.6 60.8 54.2 47.9 64.4 59.5

MindMerger-Soft-OpenMath2‡ 60.5 67.5 65.0 63.4 74.2 70.9
OUR METHODS

AlignIFT-MetaMath 55.4 58.8 57.6 56.1 60.6 59.3
AlignIFT-OpenMath2 63.8 66.5 65.5 67.2 74.3 72.2

Table 2: Results on MGSM and MSVAMP datasets.
"LR" denotes the average multilingual performance
for low-resource languages, while "HR" represents the
performance for high-resource languages. The bold text
highlights the highest score among systems. The dagger
symbol (†) indicates results obtained using officially
released models, while the double dagger symbol (‡)
denotes results from our local implementation.

LinguaLIFT enhances LLM performance368

in low-resource languages on MGSM and369

MSVAMP test sets. Experimental results on370

the other two widely used multilingual reasoning371

benchmarks MGSM and MSVAMP are presented372

in Table 2. These findings are generally consistent373

with those from the MMWP test sets. LinguaLIFT374

notably outperforms previous competitive375

baselines in low-resource languages on both376

MGSM and MSVAMP test sets, highlighting its377

strong generalization to various out-of-domain378

reasoning tasks and robust performance across379

low-resource language mathematical reasoning380

tasks.381

XNLI X-CSQALLaMA-2-7B as base model LR. HR. Avg. LR. HR. Avg.
BASELINES

Mono-SFT(English-only Task Data)
Mono-SFT* 58.7 80.1 68.7 28.6 58.6 51.3

Multi-SFT(Multilingual Task Data with Query Translation)
Multi-SFT* 63.6 81.5 71.9 29.4 48.6 43.8

QAlign* 67.1 80.9 73.5 35.5 57.9 52.3
Freezing LLM with External Tools or Models

LangBridge* 73.9 79.4 76.5 30.9 37.8 36.1
Translate-En* 71.1 79.6 75.1 42.7 55.5 52.3

MindMerger-Soft* 74.4 83.1 78.4 47.9 65.4 61.0
OUR METHODS

LinguaLIFT 77.6 83.3 80.3 49.6 65.5 61.5

Table 3: Results on XNLI and X-CSQA datasets.
"LR" denotes the average performance for low-resource
languages, and "HR" denotes high-resource languages.
The bold text highlights the highest score among
systems. The asterisk symbol (*) indicates results are
taken from the published results of Huang et al. (2024).

Versatile Adaptation Across Various Tasks with 382

LinguaLIFT. As shown in Table 3, LinguaLIFT 383

outperforms all baselines on language understand- 384

ing tasks, such as XNLI and X-CSQA, demon- 385

strating its efficiency in adapting various tasks 386

than previous work, as it only needs English-only 387

instruction data while others need to translate in- 388

struction data to target language constantly. These 389

results highlight LinguaLIFT’s versatility in gen- 390

eralizing beyond mathematical reasoning, making 391

it a universal and effective approach for enhancing 392

low-resource language task performance. 393

LinguaLIFT Generalizes well on High-Resource 394

Tasks. Although LinguaLIFT is designed for low- 395

resource languages, it also boosts performance in 396

high-resource languages. LinguaLIFT outperforms 397

several competitive baselines on mathematical 398

reasoning tasks and multilingual understanding 399

tasks, as shown in Tables 1, 2 and 3. These results 400

highlight LinguaLIFT’s ability to improve both 401

reasoning and comprehension across low- and high- 402

resource languages. 403

Overall, LinguaLIFT demonstrates its effective- 404

ness in enhancing low-resource language capabil- 405

ities without relying on multilingual instruction 406

data. It established itself as a universally applicable 407

and strong potential method for LLMs to advance 408

low-resource language performance across various 409

tasks. More experimental results are provided in 410

Appendix C. 411

6 Analysis 412

6.1 Two-Stage Training Ablation Studies 413

Training Stage Ablation As shown in Figure 3a, 414

removing the Language-Align stage leads to a 415
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Figure 3: Ablation experiments of two-stage training and trainable modules on MGSM. LR., HR., and Avg. represent
the average accuracy across low-resource languages, high-resource languages, and all languages, respectively.

noticeable performance drop in low-resource416

languages, demonstrating the essential of the417

Language-Align stage in enhancing low-resource418

language tasks. Removing the Task-Transfer stage419

causes substantial performance degradation across420

all languages. These results suggest the necessity421

of the two stages. Further details are provided in422

Appendix D.1.423
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Figure 4: Ablation experiments on the impact of
varying code-switch ratios on multilingual alignment
and reasoning performance.

Trainable Modules Ablation As illustrated in424

Figure 3b, training the LLM during the Language-425

Align stage reduces performance on high-resource426

language reasoning. Freezing LLM training in the427

Task-Transfer stage significantly degrades reason-428

ing performance across all languages. Additionally,429

training the language alignment layer during the430

Task-Transfer stage harms performance on low-431

resource language reasoning. These results indicate 432

the benefit of first training the language alignment 433

layer, followed by LLM fine-tuning. Further details 434

are available in Appendix D.2. 435

6.2 Analysis of Code-Switched Tuning 436

Impact of Code-Switched Ratio to Multilingual 437

Alignment and Reasoning Tasks. We report 438

top-1 retrieval accuracy and reasoning accuracy 439

on Tatoeba (Artetxe and Schwenk, 2019) and 440

MGSM (Shi et al., 2023) to indicate language 441

alignment degree and reasoning performance, re- 442

spectively, as shown in Figure 4. Multilingual 443

alignment improves as the code-switch ratio in- 444

creases, especially for low-resource languages, and 445

reasoning performance also increases. Notably, at 446

an 80% code-switch ratio, the model’s reasoning 447

performance reaches comparable performance to 448

those trained with parallel corpora. 449

Impact of the Part-of-Speech in Code-Switched 450

to Reasoning tasks. As shown in Figure 6, 451

among the individual part-of-speech (POS) groups, 452

substituting nouns significantly affects the model’s 453

reasoning ability. Syntactic structures involving 454

subject-verb and prepositional phrase combinations 455

outperform other POS combinations, highlighting 456

the importance of core arguments (subjects and 457

verbs) and their relations (prepositions) for cap- 458

turing key relationships in reasoning tasks. These 459

structures are sufficient for the model to generalize 460

reasoning across languages. In contrast, adjective- 461

adverb and auxiliary-conjunction combinations 462

perform the worst, suggesting that modifiers are 463

less critical for reasoning tasks. More details are 464

provided in Appendix D.3 465

7
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outputs, and LinguaLIFT language alignment layer outputs.

N V
ADP

Pr
on N+V

N+ADP

V+Adv

Adj+
Adv

Aux
+Co

nj

Pr
on

+Aux
+Co

nj

LR
.

H
R.

Av
g.Ac

cu
ra

cy
 (

%
) 51.88 46.72 39.58 48.26 53.32 52.34 47.28 40.42 41.54 49.32

57.22 56.74 56.02 56.59 58.30 58.06 57.73 56.95 56.38 57.64

55.28 53.10 50.04 53.56 56.49 55.98 53.93 50.94 50.98 54.61 40

45

50

55

Figure 6: The reasoning performance on MGSM
group by the combinations of POS: (1) individ-
ual POS categories:Verb (V), Adposition (ADP),
Pronoun (Pron); (2) syntactic function combi-
nations:Verb+Adverb (V+Adv), Adjective+Adverb
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Aux + Conj); and (3) key syntactic structures:Subject-
Verb (N+V) and Prepositional Phrases (N+ADP).

6.3 LinguaLIFT better aligns low-resource466

languages467

For each low-resource language in the MMWP468

benchmark, we selected 100 texts with equivalent469

meaning from the Flores-101 dataset (Goyal et al.,470

2022). We obtained these input mean pooling rep-471

resentations from different methods and visualized472

them using T-SNE (van der Maaten and Hinton,473

2008). As shown in Figure 5, the LLM embed-474

dings of low-resource languages are distinct from475

English, indicating the challenges of understanding476

and transferring knowledge to these languages. In477

the case of MindMerger, some low-resource lan-478

guage representations closely overlap with English,479

while others remain isolated, demonstrating its480

limitations in scenarios involving a wide range of481

low-resource languages. In contrast, LinguaLIFT482

aligns low-resource language representations more483

closely with English, enabling better transfer of484

reasoning capabilities from English instruction485

data, thereby resulting in improved reasoning 486

performance. 487

6.4 Supplementary Experiments 488

We conducted several supplementary experiments, 489

including the quantitative analysis of the correla- 490

tion between multilingual alignment and reason- 491

ing performance (Appendix E.1), the analysis of 492

language transferability in language families and 493

writing systems (Appendix E.2), the adaptation of 494

different types and scales of LLMs (Appendix E.3, 495

the selection of the language alignment layer and 496

pre-trained multilingual encoder (Appendix E.4, 497

E.5), the incorporation of multilingual instruction 498

data into LinguaLIFT (Appendix E.6), and zero- 499

shot CoT examples in mathematical reasoning 500

tasks (Appendix E.7). 501

7 Conclusion 502

This paper introduced LinguaLIFT, a novel two- 503

stage instruction tuning framework that enhances 504

low-resource language tasks without relying on 505

parallel corpora or multilingual instruction data. 506

Additionally, we introduced MMWP, a multilingual 507

benchmark spanning 21 low-resource, 17 medium- 508

resource, and 10 high-resource languages, to com- 509

prehensively evaluate multilingual mathematical 510

reasoning tasks. Experiments on the MMWP and 511

other widely used benchmarks demonstrate its 512

effectiveness in advancing low-resource language 513

tasks and further alleviating the performance gap 514

between high-resource and low-resource language 515

tasks in LLMs. 516
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Limitations517

While our experimental results demonstrate that518

the proposed two-stage instruction tuning method519

significantly improves low-resource language rea-520

soning and understanding tasks, it does require a521

certain level of computational resources. Specifi-522

cally, the need for a moderately larger pre-trained523

multilingual encoder and full fine-tuning of the524

LLM may impose a computational burden. Addi-525

tionally, we have not explored parameter-efficient526

fine-tuning (PEFT) methods, so the effectiveness527

of our approach in PEFT settings remains untested.528

Future work could focus on developing more529

efficient and lightweight tuning strategies for Lin-530

guaLIFT to reduce the computational limits.531
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A Implementation Details1028

A.1 Collection of the Alignment Lexicons1029

To better construct multilingual alignment lexicons1030

for low-resource language tasks, we leveraged1031

the Unsupervised Bilingual Lexicon Induction1032

(UBLI) (Zhang et al., 2017; Lample et al., 2018;1033

Dou et al., 2018; Artetxe et al., 2019; Li et al.,1034

2023b), which has been proven effective in in-1035

ducing word translation pairs by aligning indepen-1036

dently trained word embeddings in two languages.1037

Initially, we tokenized the text using the Spacy1038

library’s tokenization function5. The resultant word1039

set comprised all words, barring specific named1040

entities, numbers, and date tokens. This step1041

is crucial in ensuring our focus on frequent and1042

pertinent terms that are likely to hold significance1043

in task-specific domains.1044

Following prior outstanding work MUSE6 (Lam-1045

ple et al., 2018), we construct multilingual lexicons1046

using adversarial training to establish a linear1047

mapping between source and target spaces without1048

relying on cross-lingual supervision. This process1049

involves training the model to align the word1050

embeddings of the source and target languages in1051

a shared semantic space. For each word in the1052

source language, we identify the most relevant1053

translations in the target language by projecting1054

the source word embeddings into the target space1055

and retrieving the top nearest neighbor words1056

based on cosine similarity. These translated1057

words form the bilingual lexicons, which are1058

essential for enhancing multilingual understanding.1059

Table 4 provides examples of word translations1060

derived from the multilingual alignment lexicons1061

we constructed, illustrating the effectiveness of this1062

approach.1063

English aviation railway era school

Bengali িবমান চলাচল (রলপথ যগু /ুল

Swahili anga reli zama shule

Telugu !మ#నయ#నం '()ల+, య-గం /ాఠ2ాల

Thai การบนิ ทางรถไฟ ยุค โรงเรียน

Table 4: Word translations examples for English to
several low-resource languages.

This unsupervised approach allowed us to obtain1064

diverse translations while preserving the general1065

meaning of the words, which is crucial for cap-1066

5https://spacy.io/
6https://github.com/facebookresearch/MUSE

turing cross-lingual alignment. Moreover, by 1067

avoiding context-specific translations, we ensured 1068

that the generated translations had broad applica- 1069

bility across multiple tasks and languages. This 1070

strategy reduced the reliance on large-scale parallel 1071

corpora or pre-existing bilingual dictionaries and 1072

provided a robust and scalable solution for building 1073

multilingual lexicons in an unsupervised manner. 1074

A.2 Dataset Statistics 1075

Dataset # Lang # Samples

Traing Datasets
MetaMathQA 1 395,000

OpenMathInstruct-2 1 1,000,000
MGSM8KInstruct 10 73,599

MetaMathQA 1 395,000
Multi-NLI 1 392,702

QASC 1 8,134
ARC 1 3,370

OpenBookQA 1 4,957
X-CSQA(En) 1 8,888

Evaluation Datasets
MMWP 48 38,400
MGSM 11 2,750

MSVAMP 10 10,000
XNLI 15 75,150

X-CSQA 16 16,000

Table 5: Statistics of involved datasets. "#Langs"
denotes the number of languages covered by the dataset,
and "#Sample" refers to the total number of samples it
contains. "Scenario" denotes the usage scenario of the
specific dataset discussed in the methodology section.

A.3 Instruction Tuning Prompts 1076

The prompt for code-switched tuning is adapted 1077

from Zhang et al. (2023), where the source lan- 1078

guage, source sentence, and target language are 1079

replaced with the relevant translations. 1080

The prompts for mathematical reasoning tasks, 1081

natural language inference, and commonsense 1082

question answering are modified from Toshniwal 1083

et al. (2024) and Lu et al. (2024), with the general 1084

instruction being replaced by the specific problems 1085

from the training data. 1086
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Prompt for Code-Switched Tuning

Translate the following code-switched sentence
from {source_lang} to pure {target_lang}:

{source_lang}: {source_sentence}
{target_lang}:

1087

Prompt for Mathematical Reasoning

Solve the following math problem. Make sure
to put the answer (and only the answer) inside
\\boxed{}.

{instruction}
1088

Prompt for XNLI

I will give you a premise and a hypothesis.
Choose the most appropriate relationship from
the following options: Entailment, Neutral,
Contradiction.

### Premise:

{premise}

### Hypothesis:

{hypo}

### Answer:
1089

Prompt for X-CSQA

Question:
{question}

Choices:
A. {choice_A}
B. {choice_B}
C. {choice_C}
D. {choice_D}
E. {choice_E}

Answer:
1090

A.4 Training Details1091

We use LlamaFactory7 (Zheng et al., 2024) as1092

the training codebase for our experiments. In the1093

first stage, we train only the additional alignment1094

modules (e.g., the language alignment layer and1095

the boundary tokens) for 3 epochs, with a constant1096

learning rate of 6e-4 and a batch size of 256. In1097

the second stage, we fine-tune all parameters of the1098

LLM for 3 epochs. The learning rate is set to 2e-5,1099

with a warm-up ratio of 0.05 and a cosine learning1100

7https://github.com/hiyouga/LLaMA-Factory

rate scheduler. We also apply a weight decay of 1101

1e-2 and use a batch size of 128. All experiments 1102

are conducted on eight NVIDIA A100 GPUs for a 1103

day. 1104

B Details of Constructing the MMWP 1105

Benchmark 1106

B.1 Selection of Target Languages and 1107

Categorization of Resource-level. 1108

In our study, we employ a unique categorization 1109

method for selecting target languages, which de- 1110

viates somewhat from the conventional definitions 1111

based on the abundance or scarcity of linguistic 1112

resources. This deviation is primarily due to our 1113

focus on LLMs. Rather than adhering to traditional 1114

classifications, we opt to categorize languages 1115

based on their language distribution in the pre- 1116

training corpus used for the LLMs. 1117

Guided by the LLaMA2 technical report (Tou- 1118

vron et al., 2023), we define low-resource lan- 1119

guages as those that constitute less than 0.005% 1120

of the available multilingual datasets. On the other 1121

hand, we categorize languages with a represen- 1122

tation percentage between 0.005% and 0.1% as 1123

medium-resource languages. This categorization 1124

method allows us to incorporate a diverse set 1125

of languages into our study, thereby enabling a 1126

more effective and wide-ranging assessment of the 1127

multilingual reasoning capabilities of our model. 1128

Furthermore, we believe that the comprehensive 1129

evaluation of multilingual tasks necessitates the 1130

inclusion of languages from various families and 1131

scripts. This diversity is crucial in understanding 1132

the robustness and versatility of our model, as 1133

it allows us to evaluate its performance and gen- 1134

eralization capabilities across different linguistic 1135

contexts and resource levels. By incorporating lan- 1136

guages from various families, scripts, and resource 1137

categories, we can ensure more comprehensive 1138

coverage in our multilingual settings evaluation. 1139

This unique approach to language selection and 1140

categorization provides a more nuanced under- 1141

standing of language resource levels in LLMs while 1142

also ensuring a broader and more diverse evaluation 1143

of multilingual tasks for LLMs. It also underscores 1144

the importance of considering language families 1145

and scripts for the assessment of LLMs, thereby 1146

contributing to a more comprehensive and inclusive 1147

approach to language model development and 1148

evaluation. 1149
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B.2 Quality Estimation proves the1150

effectiveness of the proposed MMWP1151

benchmark.1152

To ensure the quality of the proposed MMWP1153

benchmark, we conducted both human and auto-1154

matic quality estimation evaluations.1155

For human evaluation, we employed five anno-1156

tators, each of whom was responsible for post-1157

calibrating and assessing the quality of the trans-1158

lated dataset. To facilitate this, we utilized GPT-41159

for back-translation of the problems into English,1160

a process that allowed the annotators to compare1161

the translated versions with their original counter-1162

parts. The evaluators were tasked to scrutinize the1163

translations for grammatical correctness, fluency,1164

and semantic accuracy. Any significant deviations1165

in meaning between the original and translated1166

versions were carefully addressed. The annotators1167

were guided to revise such instances to better1168

align with the original intent, thereby ensuring1169

the preservation of the original linguistic integrity.1170

Moreover, the post-editing process was carried out1171

to maintain native language properties, such as1172

syntactical flexibility and natural phrasing, thus1173

ensuring the fluency and native-like quality of the1174

back-translations. This rigorous human calibration1175

process aimed to certify that the final MMWP1176

dataset was linguistically accurate and culturally1177

appropriate for all represented languages.1178

The prompt for back-translating the low-1179

resource language texts and assisting the1180

post-editing process are presented below.1181

GPT-4 Prompt for Back-Translating

You are a translation assistant. Directly
translate the mathematical problems from
{source_lang} to English without additional
explanations.
{source_sentence}

1182

BLEU↑ chrF↑ TER↓
Average 78.71 86.08 1.09

Table 6: Automatic quality estimation of MMWP using
back-translations, showing average results across all
languages.

GPT-4 Prompt for Assisting Annotators Post-
Editing

You are provided with the following:

1. A low-resource source language text.

2. The back-translated English text (BT).

3. The reference English translation (REF).

Your task is to evaluate the quality of the back-
translated English text (BT) based on three
criteria: grammatical correctness, fluency,
and semantic accuracy. Then, propose three
alternative revisions to improve the BT. For
each revision, explain why it was made and how
it improves the translation.

1. Grammatical Correctness:
Does the back-translated text adhere to
standard English grammar rules (e.g.,
subject-verb agreement, punctuation, tense
consistency)?

2. Fluency:
Is the back-translated text natural and
smooth? Does it sound like it was written
by a native speaker?

3. Semantic Accuracy:
Does the back-translated text accurately
reflect the meaning of the source language
text? Are there any discrepancies in the
interpretation of the source?

Provide three revision suggestions for
improving the BT:

1. Each revision should aim to enhance
either grammatical correctness, fluency, or
semantic accuracy.

2. For each suggestion, explain:

• Why the revision is necessary.
• Which aspect of translation quality

(grammar, fluency, or accuracy) it
improves.

1183
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Complementing the human evaluation, we1184

conducted an automatic evaluation to assess the1185

MMWP dataset’s translation quality quantitatively.1186

In this process, we adopted a back-translation1187

strategy, translating the MMWP problems into1188

the target languages and then back into English.1189

Subsequently, we used widely-accepted automatic1190

evaluation metrics such as BLEU (Papineni et al.,1191

2002), chrF (Popović, 2015), and TER (Olive et al.,1192

2011) to compare the back-translated problems1193

with the original MMWP dataset. These metrics1194

provided a quantitative measure of the overlap1195

between the original and back-translated versions,1196

thereby offering a quantifiable estimation of the1197

translation fidelity. The results of this quality1198

estimation, presented in Table 6, attest to the1199

reliable quality of the translations.1200

The results from both the human and automatic1201

evaluations indicate that the dataset is properly1202

constructed and adequately reflects the multilingual1203

nature of the tasks. The human post-editing process1204

ensured that the translated problems maintained1205

their semantic integrity, while the automatic eval-1206

uation confirmed that the translations preserved1207

the necessary linguistic structure for multilingual1208

reasoning. Overall, the quality assurance mea-1209

sures we implemented guarantee that the MMWP1210

benchmark is reliable and effective in evaluating1211

multilingual mathematical reasoning across diverse1212

languages and resource levels.1213

C Complete Experimental Results1214

C.1 Evaluation Results on MMWP1215

The complete experimental results on MMWP are1216

shown in Table 7, 8 and 9. These tables present1217

Mono-SFT, Multi-SFT, and Leveraging External1218

Tools or Models category comparison baselines.1219

C.2 Evaluation Results on MGSM and1220

MMWP1221

The complete experimental results on MGSM and1222

MSVAMP are shown in Table 10, and 11.1223

C.3 Evaluation Results on XNLI and1224

X-CSQA1225

The complete experimental results on XNLI and1226

X-CSQA are shown in Table 10, and 11.1227

D Analysis Experiments Details1228

This section outlines the experimental implementa-1229

tion for the various analysis experiments presented1230

in the main text. 1231

D.1 Ablation of Two-Stage Training 1232

To demonstrate the necessity of the proposed two- 1233

stage instruction tuning approach, we perform 1234

an ablation study on the distinct components 1235

of the two-stage process: the Language-Align 1236

stage and the Task-Transfer stage. This study is 1237

conducted on the mathematical reasoning datasets 1238

MGSM and MSVAMP to assess the impact of each 1239

stage’s removal on reasoning performance across 1240

all languages. The detailed results are presented 1241

in Tables 14 and 15 for MGSM and MSVAMP, 1242

respectively, where “w/o” indicates the absence of 1243

the specific stage. 1244

When the Language-Align stage was removed, 1245

we fine-tuned both the language-alignment layer 1246

and the LLM using only English reasoning data. 1247

This resulted in a noticeable decline in performance 1248

in low-resource languages, such as a 10.2% perfor- 1249

mance drop in Bengali (Bn), 13.2% performance 1250

drop in Thai (Th), 21.2% performance drop in 1251

Telugu (Te), and 7.6% performance drop in Swahili 1252

(Sw) on the MGSM dataset and a 14.4% perfor- 1253

mance drop in Bengali (Bn), 15.7% performance 1254

drop in Swahili (Sw) and 19.8% performance drop 1255

in Thai (Th) on the MSVAMP dataset. This decline 1256

highlights the importance of using code-switched 1257

multilingual input as a warm-up strategy before 1258

directly applying English-only instruction data. By 1259

incorporating this stage, LinguaLIFT can better 1260

leverage the multilingual model’s representation 1261

space, which contains valuable information from 1262

low-resource languages. 1263

When the Task-Transfer stage was removed, we 1264

fine-tuned the language alignment layer using only 1265

code-switched translation data without updating 1266

the LLM’s parameters. After ablating the Task- 1267

Transfer stage, the models couldn’t complete rea- 1268

soning tasks across all languages, resulting in an 1269

average accuracy of just 8.49% on the MGSM 1270

dataset and 9.74% on the MSVAMP dataset. This 1271

demonstrates that task-specific instruction tuning 1272

is critical for enabling the LLM to perform task- 1273

solving operations effectively. 1274

These results underscore the complementary 1275

nature of the two stages: the Language-Align stage 1276

enhances the cross-lingual transferability within 1277

models, which allows the models to better transfer 1278

task-solving capabilities to low-resource languages 1279

in the Task-Transfer stage. 1280
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Resource Level Language MAmmoTH-7B WizardMath-7B MetaMath-7B OpenMath2

Low-Resource

af 20.0 25.3 32.4 48.1
ar 14.8 18.6 23.6 33.1
be 7.6 12.5 17.9 30.3
bn 4.8 7.9 9.9 15.7
eu 2.2 4.2 6.3 6.5
gu 2.5 3.6 4.8 4.0
ha 2.8 4.4 5.9 6.4
hi 7.6 17.0 24.5 34.4
hy 3.2 3.7 5.8 6.2
is 6.5 10.1 14.3 24.3
kn 2.1 3.6 6.4 4.8
lb 6.8 10.9 14.6 25.7

mk 15.9 20.1 30.1 45.6
ml 2.5 4.2 5.2 5.7
mr 3.0 8.4 9.6 14.9
ne 2.0 5.8 8.4 12.3
sk 15.0 23.7 32.3 47.5
sw 3.1 6.5 7.5 8.4
ta 2.6 6.0 6.3 5.4
te 2.5 4.9 6.2 4.4
th 6.0 11.6 13.4 21.5

Average 6.4 10.1 13.6 19.3

Medium-Resource

bg 23.2 29.1 38.7 59.7
ca 23.9 31.4 38.8 59.1
cs 19.7 28.7 37.5 56.7
da 23.4 30.3 40.3 55.7
fi 17.3 22.9 32.6 51.1
hr 19.9 24.8 35.1 54.5
hu 13.4 24.3 31.0 47.2
id 22.2 30.0 38.4 57.6
ko 14.4 25.9 35.0 47.4
nb 23.2 29.4 37.9 56.5
pl 21.2 28.0 37.9 57.3
pt 25.5 36.3 42.9 65.0
ro 20.4 27.1 39.5 56.1
sl 18.3 24.5 33.1 51.7
sr 18.4 26.8 36.1 54.0
uk 20.7 27.6 40.3 58.8
vi 21.8 28.4 37.0 54.8

Average 20.4 28.0 37.2 55.5

High-resource

de 25.2 32.3 41.9 62.8
en 36.6 37.6 42.7 75.0
es 30.2 33.8 43.4 66.7
fr 28.7 30.8 43.5 64.4
it 28.1 34.7 42.9 63.1
ja 19.7 28.6 40.8 56.4
nl 23.9 31.2 41.2 58.9
ru 23.9 30.3 41.6 60.8
sv 24.2 30.3 42.5 59.7
zh 20.7 32.1 37.9 59.2

Average 26.1 32.2 41.8 62.7

Table 7: Detailed results(Accuracy) of Mono-SFT baselines on the MMWP benchmark across 48 languages.
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Resource Level Language MathOctopus-Parallel-7B MathOctopus-MAPO-DPO-7B MetaMathOctopus-MAPO-DPO-7B QAlign-MetaMathQA-7B

Low-Resource

af 19.1 27.5 32.2 37.4
ar 8.6 17.1 20.4 22.4
be 14.6 23.2 21.8 18.1
bn 20.1 28.1 28.4 26.6
eu 5.6 11.2 9.4 7.5
gu 6.2 10.9 5.3 6.3
ha 5.6 10.6 8.8 6.3
hi 11.1 24.3 14.7 22.2
hy 6.0 8.4 6.0 6.5
is 10.5 18.9 15.7 17.4
kn 5.4 13.9 5.2 5.2
lb 8.8 15.5 18.0 14.7

mk 15.9 26.5 32.2 31.3
ml 5.9 9.9 7.3 6.7
mr 6.8 15.2 5.4 11.0
ne 6.5 16.3 9.1 10.2
sk 16.3 25.8 33.2 31.6
sw 21.7 26.9 30.7 30.2
ta 4.0 11.0 4.1 6.8
te 10.2 17.9 4.0 5.1
th 21.3 31.1 33.8 35.4

Average 11.0 18.6 16.4 17.1

Medium-Resource

bg 20.6 30.1 36.4 39.2
ca 22.8 32.9 41.8 41.2
cs 18.9 28.0 36.3 39.1
da 22.1 28.7 39.5 40.7
fi 19.2 27.1 35.5 36.7
hr 21.5 28.7 33.1 36.4
hu 19.1 30.0 31.7 35.4
id 20.8 29.1 36.5 39.5
ko 18.0 29.4 33.4 38.5
nb 22.6 28.5 40.3 40.3
pl 21.0 31.3 38.1 39.2
pt 24.3 32.4 44.1 43.8
ro 19.6 30.7 36.4 38.8
sl 19.2 30.2 32.6 36.3
sr 18.5 29.4 33.3 37.2
uk 24.8 31.2 37.7 41.1
vi 20.4 28.9 36.6 39.3

Average 20.8 29.8 36.7 39.0

High-resource

de 27.7 33.5 41.3 45.1
en 29.6 36.0 53.5 52.9
es 25.8 33.7 46.4 46.0
fr 24.8 32.4 44.1 43.4
it 24.0 31.6 44.8 43.4
ja 25.4 33.5 40.6 43.9
nl 21.7 30.7 39.6 42.2
ru 26.5 33.8 43.5 44.1
sv 21.1 30.5 40.9 42.2
zh 25.8 35.0 44.8 41.7

Average 25.2 33.1 43.9 44.5

Table 8: Detailed results of Multi-SFT on the MMWP benchmark across 48 languages.
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Resource Level Language Translate-En Langbridge MindMerger AlignIFT-MetaMath

Low-Resource

af 33.0 40.7 40.2 46.4
ar 34.9 33.4 35.8 42.5
be 31.2 35.1 37.1 39.6
bn 27.7 31.9 37.6 39.5
eu 18.8 30.2 35.4 39.6
gu 21.6 31.8 35.8 41.0
ha 19.9 28.0 29.1 34.4
hi 27.4 35.3 39.4 41.7
hy 31.5 33.3 34.7 39.7
is 31.5 34.7 35.6 41.9
kn 26.7 29.7 33.8 37.4
lb 29.2 36.0 37.6 43.4

mk 35.9 40.8 40.7 43.9
ml 19.3 28.4 37.4 40.7
mr 25.6 30.5 34.3 37.6
ne 25.9 31.8 37.9 40.6
sk 29.2 36.4 38.6 42.5
sw 27.3 41.2 36.4 47.6
ta 24.4 27.1 35.0 40.5
te 28.5 29.7 37.1 41.9
th 30.3 34.9 38.7 41.7

Average 27.6 33.4 36.6 41.2

Medium-Resource

bg 38.4 40.3 40.6 46.5
ca 35.3 37.0 41.7 45.4
cs 37.7 37.4 44.1 47.4
da 39.4 39.5 42.1 46.0
fi 34.1 33.4 37.7 41.3
hr 31.0 33.7 37.4 40.2
hu 36.1 33.9 37.1 41.4
id 38.0 36.9 39.8 43.0
ko 30.7 33.1 39.5 42.6
nb 38.2 40.0 40.9 48.1
pl 38.8 38.5 40.6 43.8
pt 42.4 41.7 42.9 49.1
ro 38.0 37.5 42.3 43.7
sl 34.4 34.8 40.4 44.1
sr 38.1 36.7 42.4 44.8
uk 36.3 37.9 41.9 43.7
vi 31.6 33.9 39.8 42.0

Average 36.4 36.8 40.7 44.3

High-resource

de 41.0 40.7 43.9 44.6
en 42.5 47.1 47.8 49.7
es 40.6 39.6 43.9 49.0
fr 40.2 39.3 42.5 45.6
it 42.6 41.9 42.7 47.7
ja 39.6 37.0 40.2 40.4
nl 39.8 41.9 43.5 47.5
ru 38.9 40.4 42.4 46.5
sv 38.8 31.0 42.2 41.4
zh 41.5 35.1 43.3 42.1

Average 40.6 39.4 43.2 45.5

Table 9: Detailed results(Accuracy) of Leveraging External Tools or Models baseline and LinguaLIFT on the
MMWP benchmark across 48 languages.
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LLaMA-2-7B as base model Bn De En Es Fr Ja Ru Sw Te Th Zh LR. HR. Avg.
Baseline

Mono-SFT
MAmmoTH† 3.20 33.2 47.2 34.4 32.4 23.2 30.4 2.00 1.60 6.80 26.0 3.40 32.4 21.9
WizardMath† 4.40 37.2 51.6 43.2 39.2 27.2 36.8 4.40 1.60 5.60 28.8 4.00 37.7 25.5
MetaMath† 5.60 56.4 68.0 54.4 56.0 34.8 52.8 5.20 2.00 5.60 39.6 4.60 51.7 34.6

OpenMath2‡ 6.80 65.6 79.2 66.0 62.4 42.4 57.6 6.00 2.80 6.80 48.4 5.60 60.2 40.4
Multi-SFT

MathOctopus-Parallel† 31.2 46.0 51.6 42.8 43.6 34.0 40.0 36.4 10.8 33.6 38.8 28.0 42.4 37.2
MathOctopus-MAPO-DPO† 33.2 47.2 46.8 43.2 39.6 41.6 40.8 37.2 13.6 38.4 44.8 30.6 43.4 38.8

MetaMathOctopus-MAPO-DPO† 35.6 52.4 70.0 58.0 51.2 46.4 56.0 42.4 2.00 44.0 55.2 31.0 55.6 46.7
QAlign-MetaMathQA† 29.6 54.0 68.4 57.6 59.2 45.2 58.4 35.6 2.40 37.6 48.8 26.3 55.9 45.2

Leveraging External Tools or Models
Translate-En-MetaMath‡ 49.0 59.6 65.6 59.8 56.2 49.0 48.4 37.4 34.6 37.2 47.0 39.6 55.1 49.4
LangBridge-MetaMath† 41.2 53.2 62.4 58.0 51.6 39.6 55.2 39.6 28.0 44.8 43.2 38.4 51.9 47.0

MindMerger-Soft-MetaMath† 50.4 59.6 67.2 58.4 55.6 50.0 61.6 55.2 52.8 54.2 53.2 53.1 57.9 56.2
Translate-En-OpenMath2‡ 52.1 69.8 76.9 71.6 63.4 57.4 54.2 38.4 35.6 39.2 53.2 41.3 63.8 55.6
LangBridge-OpenMath2‡ 43.2 63.0 73.8 69.8 58.9 47.6 60.2 41.0 39.8 46.2 52.2 42.6 60.8 54.2

MindMerger-Soft-OpenMath2‡ 60.0 69.4 77.8 74.2 63.4 57.8 71.8 61.2 57.2 63.6 58.4 60.5 67.5 65.0
Our Methods

LinguaLIFT-MetaMath 54.4 62.0 64.8 63.6 56.8 50.0 60.4 55.6 54.0 57.6 54.0 55.4 58.8 57.6
LinguaLIFT-OpenMath2 63.0 69.6 76.0 75.2 62.8 52.0 71.6 64.2 61.2 66.6 58.0 63.8 66.5 65.5

Table 10: Experimental Results on the MGSM Dataset. "LR." "HR." and "Avg." represent the average performance
for low-resource languages, high-resource languages, and all languages, respectively. Following prior work (Yoon
et al., 2024), we classify Bn, Te, Th, and Sw as low-resource languages, while the remaining languages are
categorized as high-resource. The dagger symbol (†) indicates results obtained using officially released models,
while the double dagger symbol (‡) denotes results from our local implementation.

D.2 Ablation of Trainable Modules1281

To further demonstrate the essential design of1282

the two-stage training approach, we conduct an1283

ablation study on the trainable modules during each1284

stage. This study is performed on the mathematical1285

reasoning datasets MGSM and MSVAMP to assess1286

the impact of training each module at the appro-1287

priate stage. The detailed results are presented1288

in Tables 16 and 17 for MGSM and MSVAMP,1289

respectively, where “w/o” indicates the absence of1290

a specific operation.1291

The results reveal that performance on high-1292

resource languages suffers when the LLM is frozen1293

during the Language-Align stage. We attribute1294

this decline to catastrophic forgetting, where the1295

initial training on low-resource languages interferes1296

with the model’s ability to retain its high-resource1297

language capabilities. Specifically, the average1298

performance on high-resource languages decreases1299

by 3.5% on the MGSM dataset and 2.6% on the1300

MSVAMP dataset.1301

When the LLM training is ablated in the Task-1302

Transfer stage, performance significantly deteri-1303

orates across all languages. This indicates that1304

relying solely on the language alignment layer1305

is insufficient for learning high-level reasoning1306

tasks and effectively transferring knowledge to1307

low-resource languages. The average performance1308

across all languages drops to 35.4% on the MGSM 1309

dataset and 37.8% on the MSVAMP dataset. 1310

Furthermore, freezing the language alignment 1311

layer during the Task-Transfer stage results in a 1312

decline in performance on low-resource languages. 1313

This suggests that the alignment learned in the 1314

language alignment layer is disrupted during con- 1315

tinuous training, as the average performance on 1316

low-resource languages drops by 9.1% on the 1317

MGSM dataset and 5.3% on the MSVAMP dataset. 1318

These findings emphasize the benefit of training 1319

the language alignment layer first, followed by the 1320

LLM training, to improve performance on both 1321

low-resource and high-resource languages. 1322

D.3 Analysis of Code-Switch Tuning 1323

In our experiment, we aimed to scrutinize the influ- 1324

ence of the part-of-speech (POS) of the substitution 1325

words on the multilingual reasoning performance in 1326

the context of code-switched tuning. This analysis 1327

is essential as it provides insights into the role of 1328

various word categories and their combinations in 1329

the effectiveness of language model tuning and 1330

reasoning capabilities. 1331

Our initial step involved an examination of the 1332

distribution of part-of-speech (POS) tags in the 1333

reasoning queries, the results of which are tabulated 1334

in Table 18. This analysis facilitated a preliminary 1335

understanding of the prevalence of different word 1336
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LLaMA-2-7B as base model Bn De En Es Fr Ja Ru Sw Th Zh LR. HR. Avg.
BASELINES

Mono-SFT
MAmmoTH† 6.2 44.1 39.5 45.4 42.3 34.1 38.1 5.1 8.4 37.5 6.57 40.1 30.1
WizardMath† 16.4 49.1 56.1 50.5 50.8 45.4 44.8 13.4 17.2 43.1 15.7 48.5 38.7
MetaMath† 12.5 63.5 67.2 64.7 64.9 54.2 58.2 16.7 16.5 55.5 15.2 61.2 47.4

OpenMath2‡ 19.9 72.7 78.6 72.5 72.9 64.6 68.5 13.1 23.5 63.8 18.8 70.5 55.0
Multi-SFT

MathOctopus-Parallel† 27.8 43.8 46.1 45.4 44.9 41.4 43.8 38.1 34.9 41.4 33.6 43.8 40.8
MathOctopus-MAPO-DPO† 48.3 57.6 59.0 59.4 60.0 58.7 58.0 54.6 54.7 59.1 52.5 58.8 56.9

MetaMathOctopus-MAPO-DPO† 50.3 67.7 71.5 68.7 67.5 65.4 64.7 61.3 61.7 66.0 57.8 67.4 64.5
QAlign-MetaMathQA† 41.9 63.5 65.5 63.0 62.8 58.0 61.5 53.6 49.7 56.2 48.4 61.5 57.6

Leveraging External Tools or Models
Translate-En-MetaMath‡ 47.9 43.9 60.6 51.4 50.9 50.4 53.4 43.1 51.3 55.8 47.4 52.3 50.9
LangBridge-MetaMath† 39.6 58.8 60.1 56.8 57.9 45.2 53.6 45.8 46.3 49.4 43.9 54.5 51.4

MindMerger-Soft-MetaMath† 52.0 61.1 64.5 62.9 60.8 59.0 58.6 54.0 52.1 57.3 52.7 60.6 58.2
Translate-En-OpenMath2‡ 56.3 54.1 72.0 59.5 59.3 60.9 64.6 40.2 59.2 64.9 51.9 62.2 59.1
LangBridge-OpenMath2‡ 48.0 68.6 71.9 64.8 66.6 56.5 64.4 42.3 53.5 58.3 47.9 64.4 59.5

MindMerger-Soft-OpenMath2‡ 61.2 77.2 77.1 73.6 73.5 74.1 70.8 64.8 64.1 72.8 63.4 74.2 70.9
OUR METHODS

LinguaLIFT-MetaMath 54.3 62.8 65.2 59.9 62.7 57.9 59.7 56.8 57.2 56.0 56.1 60.6 59.3
LinguaLIFT-OpenMath2 65.2 76.4 77.9 74.2 74.5 73.5 71.4 68.6 67.9 72.2 67.2 74.3 72.2

Table 11: Experimental Results on the MSVAMP Dataset. "LR." "HR." and "Avg." represent the average
performance for low-resource languages, high-resource languages, and all languages, respectively. Following
prior work (Yoon et al., 2024), we classify Bn, Th, and Sw as low-resource languages, while the remaining
languages are categorized as high-resource. The dagger symbol (†) indicates results obtained using officially
released models, while the double dagger symbol (‡) denotes results from our local implementation.

LLaMA-2-7B as base model Ar Bg Sw Th Tr Ur El Hi Zh Ru Vi De Fr Es En LR. HR. Avg.
BASELINES

Mono-SFT
Mono-SFT* 60.9 76.7 45.9 55.4 61.9 49.2 63.7 55.7 74.7 77.6 73.7 80.6 82.2 82.2 90.0 58.7 80.1 68.7

Multi-SFT
Multi-SFT* 61.7 78.7 56.3 60.1 65.6 57.5 67.0 61.7 79.1 79.7 73.7 82.3 82.9 83.9 88.8 63.6 81.5 71.9

QAlign* 67.0 79.4 65.2 65.2 67.9 62.2 66.5 63.3 76.6 79.2 73.7 80.9 83.1 83.8 89.1 67.1 80.9 73.5
Leveraging External Tools or Models

LangBridge* 75.2 79.6 71.7 72.4 74.8 66.9 79.1 71.1 77.4 77.4 78.5 78.8 79.9 80.5 83.4 73.9 79.4 76.5
Translate-En* 68.9 80.8 65.3 69.5 74.5 61.6 79.3 68.7 74.8 76 76.7 80.6 80.4 81.4 87.4 71.1 79.6 75.1

MindMerger-Soft* 76.2 82.4 66.6 71.8 75.7 69.4 78.5 74.7 80.0 80.7 80.3 83.5 83.9 84.4 88.7 74.4 83.1 78.4
OUR METHODS

LinguaLIFT 78.4 83.5 75.1 77.0 77.1 72.4 82.2 75.1 80.2 80.5 80.8 83.6 84.0 84.4 89.5 77.6 83.3 80.3

Table 12: Experimental Results on the XNLI Dataset. "LR." "HR." and "Avg." represent the average performance
for low-resource languages, high-resource languages, and all languages, respectively. The asterisk symbol (*)
indicates results obtained directly from the published results (Huang et al., 2024).

LLaMA-2-7B as base model Ar De En Es Fr Hi It Ja Nl Pl Pt Ru Sw Ur Vi Zh LR. HR. Avg.
BASELINES

Mono-SFT
Mono-SFT* 32.3 61.2 76.3 64.0 63.5 32.9 56.0 49.1 57.5 50.6 61.7 56.0 24.2 25.1 50.9 56.5 28.6 58.6 51.3

Multi-SFT
Multi-SFT* 28.7 49.1 67.2 54.3 52.1 32.0 50.2 38.7 45.9 45.5 51.2 46.5 27.6 29.2 38.8 43.8 29.4 48.6 43.8

QAlign* 36.3 58.8 75.7 63.1 60.3 37.8 58.3 49.2 56.3 51.3 59.8 56.3 35.1 32.6 50.5 54.8 35.5 57.9 52.3
Leveraging External Tools or Models

LangBridge* 30.6 37.4 44.4 38.4 38.2 30.6 39.1 33.9 38.4 39.8 36.3 35.1 31.8 30.5 33.3 39.8 30.9 37.8 36.1
Translate-En* 44.6 57.3 71.3 55.5 57.2 48.4 56.3 47.1 55.0 53.3 54.7 54.4 36.5 41.3 51.8 51.5 42.7 55.5 52.3

MindMerger-Soft* 51.4 67.0 78.1 69.1 68.1 48.4 66.8 53.9 63.8 63.3 67.1 63.7 45.5 46.2 60.6 62.9 47.9 65.4 61.0
OUR METHODS

LinguaLIFT 54.1 68.7 78.3 67.9 68.7 50.6 65.7 53.8 63.5 62.9 68.2 63.5 46.7 46.8 60.4 64.1 49.6 65.5 61.5

Table 13: Experimental Results on the X-CSQA Dataset. "LR." "HR." and "Avg." represent the average performance
for details of the low-resource, high-resource, and all languages, respectively. The asterisk symbol (*) indicates
results obtained directly from the published results (Huang et al., 2024).

classes within the reasoning queries, setting the1337

stage for further investigation into their impact on1338

multilingual reasoning.1339

Subsequently, we categorized the POS combina- 1340

tions into three distinct groups for a more granular 1341

analysis. The first group comprised individual POS 1342
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MGSM Bn De En Es Fr Ja Ru Sw Te Th Zh LR. HR. Avg.
LinguaLIFT 52.8 62.8 64.8 65.2 55.6 48.4 61.2 53.2 50.4 56.0 54.8 54.0 59.0 57.5
w/o language-align 41.6 56.8 67.2 60.4 58.8 38.4 56.4 45.6 29.2 42.8 46.4 39.8 54.9 49.4

w/o task-transfer 3.20 12.8 14.6 12.4 12.0 9.20 11.2 2.40 1.60 3.60 10.8 2.60 11.9 8.49
Mono-SFT 6.00 58.0 64.8 55.6 55.6 37.6 52.4 4.40 0.00 4.80 40.80 3.80 52.1 34.6

Table 14: Two-stage Training Ablation Experimental Results on the MGSM Dataset. "LR." "HR." and "Avg."
represent the average performance for low-resource languages, high-resource languages, and all languages,
respectively. Following prior work (Huang et al., 2024), we classify Bn, Te, Th, and Sw as low-resource languages,
while the remaining languages are categorized as high-resource.

MSVAMP Bn De En Es Fr Ja Ru Sw Th Zh LR. HR. Avg.
LinguaLIFT 51.3 62.8 67.2 59.9 62.7 54.3 59.7 56.5 55.2 56.0 54.3 60.4 58.6
w/o language-align 36.9 58.7 63.6 58.8 62.1 53.5 55.3 40.8 35.4 53.1 37.7 57.9 51.8

w/o task-transfer 3.8 10.4 16.5 11.7 15.3 7.7 12.0 2.2 4.1 13.7 3.37 12.5 9.74
Mono-SFT 15.2 59.5 64.9 62.9 61.7 52.4 58.3 15.2 18.3 53.7 16.2 59.1 46.2

Table 15: Two-stage Training Ablation Experimental Results on the MSVAMP Dataset. "LR." "HR." and
"Avg." represent the average performance for low-resource languages, high-resource languages, and all languages,
respectively. Following prior work (Huang et al., 2024), we classify Bn, Te, Th, and Sw as low-resource languages,
while the remaining languages are categorized as high-resource.

MGSM Bn De En Es Fr Ja Ru Sw Te Th Zh LR. HR. Avg.
LinguaLIFT 52.8 62.8 64.8 65.2 55.6 48.4 61.2 53.2 50.4 56.0 54.8 54.0 59.0 57.5

w/o freezing LLM in Language-Align 50.6 59.3 62.0 60.1 52.7 45.0 58.2 52.6 48.2 54.5 51.5 51.5 55.5 54.1
w/o training LLM in Task-Transfer 26.4 42.4 47.6 45.6 40.4 30.4 41.2 26.8 24.8 28.4 35.6 26.6 40.5 35.4

w/o freezing Language Alignment Layer in Task-Transfer 46.8 60.2 66.4 59.2 57.8 46.8 58.8 45.2 39.6 48.0 49.6 44.9 57.0 52.6

Table 16: Trainable Modules Ablation Experimental Results on the MGSM Dataset. "LR." "HR." and "Avg."
represent the average performance for low-resource languages, high-resource languages, and all languages,
respectively. Following prior work (Huang et al., 2024), we classify Bn, Te, Th, and Sw as low-resource languages,
while the remaining languages are categorized as high-resource.

MSVAMP Bn De En Es Fr Ja Ru Sw Th Zh LR. HR. Avg.
LinguaLIFT 51.3 62.8 67.2 59.9 62.7 54.3 59.7 56.5 55.2 56.0 54.3 60.4 58.6

w/o freezing LLM in Language-Align 50.7 59.9 65.4 57.4 55.6 50.1 57.5 55.6 54.9 53.0 53.7 57.0 56.0
w/o training LLM in Task-Transfer 29.3 49.7 51.3 45.6 47.4 28.8 35.8 27.1 24.8 38.3 27.1 42.4 37.8

w/o freezing Language Alignment Layer in Task-Transfer 42.4 60.4 65.6 60.2 60.8 53.3 58.5 53.1 51.6 50.8 49.0 58.8 55.9

Table 17: Trainable Modules Ablation Experimental Results on the MSVAMP Dataset. "LR." "HR." and "Avg."
represent the average performance for low-resource languages, high-resource languages, and all languages,
respectively. Following prior work (Huang et al., 2024), we classify Bn, Te, Th, and Sw as low-resource languages,
while the remaining languages are categorized as high-resource.
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Part-of-Speech #Nums
Noun 84726
Verb 42451

Adposition 37727
Pronoun 25012
Adjective 21790

Conjunction 20764
Auxiliary 16409
Adverb 9150

Table 18: Part-of-speech statistics results from the
MGSM English test set.

categories, specifically Verbs, Adpositions, and1343

Pronouns. These categories were selected due to1344

their fundamental role in sentence construction and1345

their potential to affect the meaning and structure1346

of statements significantly.1347

The second group consisted of syntactic func-1348

tion combinations, including Verb+Adverb, Adjec-1349

tive+Adverb, and Pronoun+Auxiliary+Conjunction1350

combinations. These combinations were chosen1351

based on their syntactic roles and capacity to1352

influence sentence structure and meaning. They are1353

integral to creating complex sentence structures and1354

are often pivotal in conveying nuanced meanings.1355

The third group focused on key syntactic struc-1356

tures: Subject-Verb (Noun+Verb) and Prepositional1357

Phrases (Adposition+Noun). These structures1358

were selected due to their central role in sentence1359

construction and their potential to encapsulate core1360

semantic information. They form the backbone of1361

many sentence structures and play a crucial role in1362

interpreting a sentence’s meaning.1363

By analyzing the impact of these POS categories1364

and combinations on the performance of code-1365

switched tuning, we aim to provide a comprehen-1366

sive understanding of the interplay between syntax1367

and semantics in the context of multilingual reason-1368

ing. This analysis will shed light on the importance1369

of different word classes and their combinations1370

in improving the efficacy of multilingual language1371

models.1372

Further experiments were conducted to inves-1373

tigate the effects of replacing different types of1374

words (e.g., nouns, verbs, prepositions, etc.) on the1375

multilingual reasoning capabilities of LinguaLIFT1376

models. As indicated in Figure 6, we observed that1377

replacing nouns significantly impacted the model’s1378

reasoning performance within the individual POS1379

categories. This finding leads to the hypothesis that1380

reasoning in query sentences may be closely tied1381

to noun-based understanding, possibly due to the1382

central role nouns play in representing key entities 1383

and concepts in the task. 1384

Additionally, we found that syntactic structures 1385

involving Subject-Verb combinations and Preposi- 1386

tional Phrases performed the best, surpassing all 1387

other POS combinations. This suggests that core 1388

arguments (subjects and verbs) and their relational 1389

elements (prepositions) are crucial for capturing 1390

the key relationships in reasoning tasks. 1391

In contrast, the Adjective+Adverb combination 1392

showed the weakest performance, indicating that 1393

modifiers are less critical for reasoning tasks. This 1394

supports the rationale of previous work (Gaur and 1395

Saunshi, 2023; Mirzadeh et al., 2024) that proposed 1396

transforming mathematical word problems into 1397

symbolic reasoning tasks. 1398

Overall, these findings highlight that, for reason- 1399

ing tasks, word alignment—particularly involving 1400

nouns and verbs—is sufficient to enable the model 1401

to generalize reasoning abilities across multiple 1402

languages. 1403

E Supplementary Experiments 1404

E.1 Quantitative Analysis of the Correlation 1405

between Multilingual Alignment and 1406

Reasoning Performance 1407

To evaluate the cross-lingual alignment capabilities 1408

of LLMs, we employ the multilingual sentence re- 1409

trieval benchmark Tatoeba (Artetxe and Schwenk, 1410

2019), a widely used dataset for assessing ML- 1411

LMs. The dataset includes up to 1,000 sentences 1412

per language, along with their English translations. 1413

In our study, we focus on a subset of the original 1414

benchmark that aligns with the language categories 1415

used in the reasoning test sets MGSM, ensuring 1416

consistency with our experimental design. 1417

We adopt the evaluation procedure outlined in 1418

XTREME (Hu et al., 2020) to evaluate cross- 1419

lingual alignment. For each language pair, we 1420

compute the cosine similarity between sentences in 1421

the source language and their closest counterparts 1422

in the target language. Following the methods 1423

of Yang et al. (2021) and Xie et al. (2022), 1424

we use top-1 retrieval accuracy as a metric to 1425

quantify alignment between the two languages. A 1426

higher retrieval accuracy score indicates a stronger 1427

alignment. 1428

Figure 7 illustrates that the performance of low- 1429

resource languages lags significantly behind that 1430

of other languages in both mathematical reasoning 1431

tasks and the cross-lingual sentence retrieval task. 1432
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Figure 7: Performances on MGSM and MSVAMP test set, where languages are sorted by decreasing retrieval
accuracy. The trend indicates the mathemtical reasoning performance worsens along with the decreasing cross-
lingual alignment degree.

Test set MGSM MSVAMP
Resource-Level Low-Resource High-Resource Low-Resource High-Resource

ρ 0.733* 0.778* 0.763* 0.783*

Table 19: Spearman’s rank correlation coefficient (ρ) between retrieval accuracy (%) on Tatoeba and reasoning
accuracy on MGSM. An asterisk (*) signifies a statistically significant correlation (p-value < 0.05).

It also shows that a higher alignment degree tends1433

to correlate with improved mathematical reason-1434

ing performance. Additionally, we compute the1435

Spearman’s rank correlation between the retrieval1436

accuracy scores and reasoning performance, as1437

presented in Table 19, which reveals a strong1438

correlation between the two. Both the observed1439

trend and the correlation coefficient confirm that1440

the consistency of multilingual mathematical rea-1441

soning is closely tied to the cross-lingual alignment1442

degree.1443

E.2 Language Transferability in Language1444

Families and Writing Systems1445

Germanic

Slavic

Indo-Iranian

Dravidian

Other

Language Families

Latin

Arabic

Cyrillic

Devanagari

Other

Writing Systems

MetaMath-7B
MathOctopus-Parallel-7B

MindMerger
LinguaLIFT

Figure 8: The experimental results grouped by diverse
language families and writing systems of different
models.

In our analysis, we considered the influence1446

of language families and writing systems on Lin-1447

guaLIFT’s performance. This approach allowed us1448

to delve into the nuances of language transferability, 1449

particularly in low-resource languages that share 1450

linguistic characteristics with English. 1451

We organized the MMWP benchmark results ac- 1452

cording to language family and writing system, fol- 1453

lowing the categorization proposed by Zhang et al. 1454

(2023). As depicted in Figure 8, and detailed results 1455

of specific low-resource languages reasoning tasks 1456

presented in Table 20, LinguaLIFT demonstrates 1457

superior performance over all baseline models 1458

across different language families. Notably, it 1459

excels in languages from the Indo-European-Indo- 1460

Iranian, Indo-European-Germanic, and Dravidian 1461

families. The Indo-European-Germanic languages, 1462

which share a common lineage with English, 1463

register stronger performance, underscoring the 1464

potential benefits of shared ancestry in cross- 1465

lingual transfer. In contrast, languages that diverge 1466

significantly from English in terms of syntax, such 1467

as those from the Dravidian family, present a more 1468

challenging scenario, yet LinguaLIFT still yields 1469

impressive results. 1470

In Figure 8 and in Table 21, we also observed 1471

similar trends in the context of writing system trans- 1472

fer. LinguaLIFT exhibits exceptional performance 1473

in languages that employ shared scripts, particu- 1474

larly those using Latin-based orthographies. This 1475

observation underscores the critical role of script 1476

similarity in facilitating the transfer of knowledge 1477

across languages. The shared orthographic features 1478
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can provide an additional layer of shared structure1479

that aids in the cross-lingual transfer process,1480

enabling more effective learning and translation1481

across related languages.1482

In summary, our findings underscore the impres-1483

sive transferability of LinguaLIFT across different1484

low-resource languages from various language fam-1485

ilies and writing systems. The method significantly1486

enhances cross-lingual transfer, particularly when1487

linguistic factors such as language family and1488

writing system align with English ones. These1489

results highlight the potential of LinguaLIFT as a1490

robust approach for multilingual processing, capa-1491

ble of leveraging shared linguistic characteristics1492

for improved performance, even in low-resource1493

settings.1494

E.3 Adapting to different types and scales of1495

LLMs1496

LinguaLIFT can be flexibly adapted to different1497

LLMs. To validate this, we conducted experiments1498

on Mistral-7B (Jiang et al., 2023) and the larger1499

Llama-2-13B (Touvron et al., 2023). As shown in1500

Tables 22 and 23, LinguaLIFT outperforms various1501

baselines, with average accuracy improvements of1502

at least 1.6% and 0.9% for low-resource languages1503

based on Llama-2-13B and Mistral-7B, respec-1504

tively. These results demonstrate LinguaLIFT’s1505

potential for broader applicability across LLMs.1506

E.4 Impact of Different Language Alignment1507

Layers1508

In the main experiment, we utilize two layers of1509

MLP as the language alignment layers to trans-1510

fer multilingual alignment from the pre-trained1511

multilingual encoder into the LLMs. We also1512

conducted experiments to evaluate the performance1513

of LinguaLIFT when ablating different mapping1514

layers, as shown in Table 24. In contrast to the1515

findings of Yoon et al. (2024), the two layers of1516

MLP used in our main experiment achieved the1517

best performance. In comparison, using a linear1518

layer resulted in lower performance, likely due to1519

its limited capacity to effectively adapt the pre-1520

trained multilingual encoder to LLM, attributed to1521

the smaller number of parameters.1522

E.5 Impact of Multilingual Encoder Size on1523

Language Alignment1524

We experimented with various multilingual en-1525

coders regarding types and sizes and evaluated the1526

corresponding reasoning performance on the XNLI1527
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Figure 9: MGSM accuracy(%) of LinguaLIFT models
using different kinds and types of multilingual encoders.

dataset. Figure 9 illustrates the XNLI performance 1528

across five different sizes of the mT5 encoder: 1529

270M (Small), 470M (Base), 820M (Large), 2.2B 1530

(XL), and 6.7B (XXL). Additionally, we evaluate 1531

five types of multilingual encoders: mT5, mBERT, 1532

XLM, XLM-R, and LaBSE. Our findings indicate 1533

that performance improves significantly as the 1534

encoder size increases from 270M to 2.2B for the 1535

mT5 encoder, with diminishing returns observed 1536

as the model scales beyond 2.2B to 6.7B. These 1537

results suggest that while enlarging the encoder size 1538

leads to better performance, there is a point beyond 1539

which further scaling offers limited improvements. 1540

In terms of encoder types, we observe that encoders 1541

with stronger language alignment capabilities yield 1542

better performance. Specifically, more powerful 1543

multilingual models like LaBSE, which is fine- 1544

tuned with parallel corpus, are more effective at en- 1545

hancing the capabilities of low-resource languages, 1546

demonstrating that greater language alignment 1547

leads to better transfer and generalization across 1548

diverse languages. 1549

E.6 Incorporating multilingual reasoning 1550

data in LinguaLIFT 1551

In some settings, we observed that incorporat- 1552

ing multilingual reasoning data during the first 1553

stage can further enhance task transfer perfor- 1554

mance in the second stage. This is evidenced 1555

by the improved performance compared to the 1556

pure English-only reasoning task training. In the 1557

mixed supervision setting, we first fine-tune the lan- 1558

guage alignment layer during the Language-Align 1559

stage using multilingual reasoning instruction data 1560

GSM8KINSTRUCT (Chen et al., 2023) and code- 1561

switching translation instruction data, followed 1562

by fine-tuning LLM with English-only instruction 1563
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Language Family Language MetaMath-7B MathOctopus-Parallel-7B MindMerger AlignIFT-MetaMath

Indo-European-Germanic

af 32.4 19.1 40.2 46.4
is 14.3 10.5 35.6 41.9
lb 14.6 8.75 37.6 43.4

Average 20.4 12.8 37.8 43.9

Indo-European-Slavic

be 17.9 14.6 37.1 39.6
mk 30.1 15.9 40.7 42.9
sk 32.3 16.3 38.6 42.5

Average 26.8 15.6 38.8 41.7

Indo-European-Indo-Iranian

bn 9.86 20.1 37.6 39.5
gu 4.81 6.17 35.8 39.0
hi 24.5 11.1 39.4 41.7
mr 9.62 6.78 34.3 32.6
ne 8.38 6.54 37.9 38.6

Average 11.4 10.1 37.0 38.3

Dravidian

ta 6.29 3.95 35.0 36.5
te 6.17 10.2 37.1 36.9
kn 6.41 5.43 33.8 33.4
ml 5.18 5.92 37.4 36.7

Average 6.01 6.38 35.8 35.9

Other

ar 23.6 8.63 40.2 42.5
eu 6.29 5.55 35.4 35.6
ha 5.92 5.55 29.1 33.4
hy 5.80 6.04 34.7 39.7
sw 7.52 21.7 36.4 47.6
th 13.4 21.3 38.7 41.7

Average 10.4 11.5 35.8 40.1

Table 20: The detailed experimental results of LinguaLIFT on MMWP benchmark grouped by language family.

Writing Scripts Language MetaMath-7B MathOctopus-Parallel-7B MingMerger AlignIFT-MetaMath

Latin

af 32.4 19.1 40.2 46.4
eu 6.29 5.55 35.4 35.6
is 14.3 10.5 35.6 41.9
lb 14.6 8.8 37.6 43.4
sw 7.52 21.7 36.4 47.6
sk 32.3 16.3 38.6 42.5

Average 17.9 13.7 37.3 42.9

Arabic
ar 23.6 8.63 40.2 42.5
ha 5.92 5.55 29.1 33.4

Average 14.8 7.09 34.7 38.0

Cyrillic
be 17.8 14.6 37.1 39.6
mk 30.1 15.9 40.7 42.9

Average 24.0 15.3 38.9 41.3

Devanagari

hi 24.5 11.1 39.4 41.7
mr 9.6 6.8 34.3 32.6
ne 8.4 6.5 37.9 38.6

Average 14.2 8.1 37.2 37.6

Other

ta 6.29 3.95 35.0 36.5
te 6.17 10.2 37.1 36.9
ml 5.18 5.92 37.4 36.7
bn 9.86 20.1 37.6 39.5
hy 5.8 6.04 34.7 39.7
kn 6.41 5.43 33.8 33.4
gu 4.81 6.17 35.8 39.0
th 13.4 21.3 38.7 41.7

Average 7.6 10.8 36.3 38.3

Table 21: The detailed experimental results of LinguaLIFT on MMWP benchmark grouped by writing systems.
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Llama-2-13B as base model Bn De En Es Fr Ja Ru Sw Th Zh LR. HR. Avg.
BASELINE

Mono-SFT
MetaMath* 11.6 64.8 67.2 65.2 65.2 42.8 63.6 7.60 6.40 49.2 8.53 59.7 44.4

Multi-SFT
MathOctopus-Parallel* 35.2 44.4 53.2 48.0 48.4 43.2 47.6 42.8 46.8 48.8 41.6 47.7 45.8
QAlign-MetaMathQA* 38.4 62.0 69.2 67.2 62.4 52.4 64.4 46.0 49.6 59.2 44.7 62.4 57.1

Leveraging External Tools or Models
Translate-En* 34.8 53.6 70.8 62.4 54.0 44.4 45.6 44.4 54.0 58.0 44.4 55.5 52.2
LangBridge* 39.2 55.2 65.2 60.8 54.8 33.6 58.8 42.0 42.8 42.0 41.3 52.9 49.4

MindMerger-Soft* 55.2 65.2 68.8 69.6 63.6 60.0 68.0 56.4 59.6 60.4 57.1 65.1 62.7
OUR METHODS

LinguaLIFT 57.6 64.4 67.8 70.4 64.0 59.8 67.2 57.8 60.8 59.4 58.7 64.7 62.9

Table 22: Experimental Results on the MGSM Dataset. "LR." "HR." and "Avg." represent the average performance
for low-resource languages, high-resource languages, and all languages, respectively. Following prior work (citation:
LLaMA2), we classify Bn, Te, Th, and Sw as low-resource languages, while the remaining languages are categorized
as high-resource. The asterisk symbol (*) denotes results taken directly from the published results of Zhu et al.
(2024b); Huang et al. (2024).

Mistral-7B as base model Bn De En Es Fr Ja Ru Sw Th Zh LR. HR. Avg.
BASELINE

Mono-SFT
MetaMath* 38.4 70.4 78.0 71.2 70.8 50.8 67.2 16.8 34.8 57.2 30.0 66.5 55.6

Multi-SFT
MathOctopus-Parallel* 44.0 50.0 58.4 53.2 47.2 48.0 49.6 51.6 48.8 51.6 48.1 51.1 50.2
QAlign-MetaMathQA* 45.6 59.2 65.8 63.6 59.8 49.4 60.2 55.2 51.2 57.2 50.7 59.3 56.7

Leveraging External Tools or Models
Translate-En* 54.6 50.4 69.7 58.6 56.7 57.2 64.9 47.7 58.7 63.1 53.7 60.1 58.2
LangBridge* 50.0 68.4 65.6 65.6 68.8 58.4 68.4 47.2 60.0 65.6 52.4 65.8 61.8

MindMerger-Soft* 57.6 69.2 79.2 71.6 69.6 57.2 68.4 53.2 59.6 68.8 56.8 69.1 65.4
OUR METHODS

LinguaLIFT 58.4 67.2 77.6 72.1 70.6 56.4 66.8 58.4 63.2 68.2 60.0 68.4 65.9

Table 23: Experimental Results on the MGSM Dataset. "LR." "HR." and "Avg." represent the average performance
for low-resource languages, high-resource languages, and all languages, respectively. Following prior work (Huang
et al., 2024), we classify Bn, Te, Th, and Sw as low-resource languages, while the remaining languages are
categorized as high-resource. The asterisk symbol (*) denotes results taken directly from the published results
of Zhu et al. (2024b); Huang et al. (2024).

Architecture # Params Bn De En Es Fr Ja Ru Sw Te Th Zh LR. HR. Avg.

Linear 4 M 53.1 61.6 63.9 63.8 56.6 46.0 56.6 49.0 44.4 50.6 52.2 49.3 57.2 54.4
2 layers MLP 10 M 54.4 62.0 64.8 63.6 56.8 50.0 60.4 55.6 54.0 57.6 54.0 55.4 58.8 57.6
3 layers MLP 14 M 53.8 62.8 66.6 56.6 58.8 50.0 59.4 53.8 53.6 58.2 53.4 54.9 58.2 57.0

Table 24: The ablation experiments of the selection of language alignment layer results on the MGSM Dataset.
"LR." "HR." and "Avg." represent the average performance for low-resource languages, high-resource languages,
and all languages, respectively. Following prior work (Huang et al., 2024), we classify Bn, Te, Th, and Sw as
low-resource languages, while the remaining languages are categorized as high-resource.

Bengali German English Spanish French Japanese Russian Swahili Telugu Thai Chinese LR. HR. Avg.
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Figure 10: Effects of tuning LLM with mixed supervised data. Generally, incorporating multilingual supervised
data into LinguaLIFT can achieve a higher ceiling for low-resource language tasks performance.
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data, METAMATHQA. The experimental results on1564

MGSM are presented in Figure 10. We find that1565

incorporating additional multilingual supervision1566

yields an average performance gain of 1.0% on low-1567

resource reasoning tasks and allows the model to1568

achieve comparable performance on high-resource1569

reasoning tasks relative to the vanilla setting.1570

E.7 LinguaLIFT CoT Examples1571

In this section, we present three examples of CoT1572

reasoning generated by LinguaLIFT models. These1573

examples demonstrate the ability of LinguaLIFT to1574

effectively understand low-resource languages and1575

generate corresponding mathematical reasoning1576

processes using the chain-of-thought reasoning1577

strategy.1578

Figure 11 illustrates a zero-shot CoT example1579

from the MGSM Bengali dataset. In this case,1580

the vanilla Mono-SFT model produces incorrect1581

reasoning, while the LinguaLIFT model generates1582

a correct reasoning process, ultimately leading to1583

the correct answer. Similar trends are observed1584

in the Thai and Swahili examples, shown in1585

Figures 12 and 13, where the LinguaLIFT model1586

corrects the erroneous reasoning produced by the1587

Mono-SFT model when presented with the same1588

mathematical problems.1589
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Solve the following math problem. Make sure to put the answer (and only the answer) 
inside \\boxed{}.

!": #টির িদেন 2* ইেয়াগাট/ খান। সPিত 4* ইেয়াগাট/ \$5.00-এর ছাড়য89 মূেল= িবি? হেA। 30 
িদেন িতিন ইেয়াগােট/ র জন= কত ডলার ব=য় কেরন?

(Question: Terry eats 2 yogurts a day. 4 yogurts are currently on sale for a discounted 
price of \$5.00. How many dollars does he spend on yogurt in 30 days?)

Let's think step by step.
Response:  Terry eats 2 yogurts per day, so in 30 days, he will eat 2 * 30 = 60 
yogurts.
The 4 yogurts are on sale for $5.00, so each yogurt costs $5.00 / 4 = $1.25.
Therefore, Terry will spend 60 * $1.25 = $75.00 on yogurt in 30 days.
\\boxed{75}

সPিত 4% ইেয়াগাট, $5.00-এর ছাড়য23 মূেল7 িবি9 হে;, তাই এ% 4*5 = 
$<<4*5=20.00>>20.00 <টির িদেন 2% ইেয়াগাট, খান, তাই 30 িদেন িতিন 2*30 = 
<<2*30=60>>60 ইেয়াগাট, খান যিদ সPিত 4% ইেয়াগাট, $5.00-এর ছাড়য23 মূেল7
িবি9 হে;, তাহেল এক% ইেয়াগাট, খান তার জন7 5-2 = $<<5-2=3.00>>3.00 যিদ <টির
30 িদেন 60 ইেয়াগাট, খান, তাহেল িতিন 30*3 = $<<30*3=90.00>>90.00 ডলার খরচ
কেরন।

(Response: Recently 4 yogurts are on sale at a discounted price of $5.00, so it 
costs 4*5 = $<<4*5=20.00>>20.00 Terry eats 2 yogurts a day, so in 30 days he 
eats 2*30 = <<2*30=60>>60 yogurts If recently 4 yogurts are on sale at a 
discounted price of $5.00, then eating one yogurt costs him 5-2 = $<<5-
2=3.00>>3.00 If Terry eats 60 yogurts in 30 days, then he spends 30*3 = 
$<<30*3=90.00>>90.00 dollars.)

Vanilla Response Bn

Model Input Query Bn

LinguaLIFT Response Bn

Figure 11: Example of zero-shot CoT generated by MetaMath-7B when prompted with an example from MGSM
Bengali. Translation of the input and response is provided in brown text.
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Solve the following math problem. Make sure to put the answer (and only the answer) 
inside \\boxed{}.

โจทย์: ชีล่าซื-อโทรศัพท์มือถือเครื7องละ $150 โดยแบ่งผ่อนชําระนาน 3 เดือน โทรศัพท์แต่ละเครื7องจะมกีารเรียกเกบ็ดอกเบี-ย 2% ดงันั-น ใน
3 เดือนนี- ชีล่าจะต้องชําระเงนิเดือนละกี7ดอลลาร์

(Question: Sheila purchases a $150 cell phone, to be paid in 3 installments. Each phone is 
charged 2% interest. How much will Sheila pay each month over the next 3 months?)

Let's think step by step.
Response:  Sheila bought a cellphone, so the total cost is 1 * $150 = $150.
The interest rate is 2%, so the total interest is 2/100 * $150 = $3.
Therefore, Sheila will have to pay $150 + $3 = $153 in total.
Since she is paying over 3 months, she will have to pay $153 / 3 = $51 per month.
\\boxed{51}

ชีล่าซื(อโทรศัพท์มือถือ 3 เครื5อง ดงันั(นต้นทุนรวมคือ 3 * 150 เหรียญ = 450 เหรียญ อตัราดอกเบี(ยคือ 2% ดงันั(น
ดอกเบี(ยรวมคือ 2/100 * 450 เหรียญ = 9 เหรียญ ดงันั(น ชีล่าจะต้องจ่ายเงนิทั(งหมด 450 เหรียญ + 9 เหรียญ = 459 
เหรียญ เนื5องจากเธอต้องผ่อนชําระเป็นเวลา 3 เดือน เธอจงึต้องจ่ายเงนิ 459 / 3 = 153 เหรียญต่อเดือน

(Response: Sheila bought 3 cellphones, so the total cost is 3 * $150 = $450. The 
interest rate is 2%, so the total interest is 2/100 * $450 = $9. Therefore, Sheila 
will have to pay $450 + $9 = $459 in total. Since she is paying over 3 months, she 
will have to pay $459 / 3 = $153 per month.)

Vanilla Response Th

Model Input Query Th

LinguaLIFT Response Th

Figure 12: Example of zero-shot CoT generated by MetaMath-7B when prompted with an example from MGSM
Thai. Translation of the input and response is provided in brown text.
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Solve the following math problem. Make sure to put the answer (and only the answer) 
inside \\boxed{}.
Swali: Mary mkulima wa bustani mwenye shauku. Jana, alipokea mimea 18 iliyowekwa
kwenye nyungu kutoka kwa bustani ya miche anayopendelea zaidi. Tayari ana mimea 2 
kwenye nyungu kwenye kila vishubaka 40 vya dirisha lake katika boma lake kubwa la 
mashambani. Kwa kuwa na ukarimu, ameamua kuwa kesho atapeana mmea 1 ulio
kwenye chungu kutoka kwa kila kishubaka kwa marafiki na familia. Mary atasalia na
mimea mingapi iliyo kwenye nyungu?
(Question: Question: Mary is an avid gardener. Yesterday, she received 18 potted plants 
from her favorite nursery. She already has 2 plants in pots on each of her 40 window sills 
in her large country home. Being generous, she has decided that tomorrow she will give 1 
potted plant from each sill to friends and family. How many potted plants will Mary have 
left?)

Let's think step by step.
Response:  Mary already has 2 plants on each of the 40 planters, so she has a 
total of 2 x 40 = 80 plants.
She also received 18 more plants, so she now has a total of 80 + 18 = 98 plants.
Mary plans to give away 1 plant from each planter, so she will give away 1 x 40 = 
40 plants.
After giving away the plants, Mary will have 98 - 40 = 58 plants left in the 
planters.
\\boxed{58}

Mary anapata mimea 18 mpya kutoka kwa bustani ya miche, na tayari ana 
mimea 2 kwenye nyungu kwa kila kishubaka 40. Kwa hivyo, ana jumla ya
mimea 80 kwenye nyungu (2 x 40). Kisha, anaamua kutoa mmea 1 kwa kila
kishubaka kwa marafiki na familia kesho. Hivyo, atatoa jumla ya mimea 40 (1 
kwa kila kishubaka). Kwa hiyo, ataachwa na mimea 120 kwenye nyungu.

(Response: Mary gets 18 new plants from the nursery, and she already has 2 
plants in pots for each of the 40 pots. So, she has a total of 80 plants in pots (2 x 
40). Then, she decides to give 1 plant per pot to friends and family tomorrow. So, 
she will give away a total of 40 plants (1 per pot). So, she will be left with 120 
plants in pots.)

Vanilla Response Sw

Model Input Query Sw

LinguaLIFT Response Th

Figure 13: Example of zero-shot CoT generated by MetaMath-7B when prompted with an example from MGSM
Swahili. Translation of the input and response is provided in brown text.
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