
Appendix of “Contextual Bandits with Knapsacks beyond Worst410

Cases via Re-Solving”411

A From Discrete Randomness to Continuous Randomness412

In the main body of this work, we explicitly assume that both the context set and the external factor413

set are discrete. Such an assumption can suitably capture most real-life situations. For example, in an414

agent’s online bidding problem with budget constraints, if we presume that the context is the agent’s415

actual value and the external factor is the highest competing bid, it is natural to suppose that all these416

three values are discrete. Nevertheless, for theoretical completeness, we expand our results in this417

section to circumstances where these two sets are infinite, i.e., the two underlying randomnesses is418

continuous. It is imperative to note that the scenario where one randomness is discrete and the other419

is continuous would be analogous in analysis by incorporating the techniques presented in Section 5.420

Conceptually, the re-solving heuristic still works: we solve the optimization problem in each round421

concerning the remaining resources based on previous estimates. However, technically, since the422

distributions of context and external factors are continuous, we should further elaborate on the setting.423

In this section, we suppose that the context set Θ = [0, 1]du and the external factor set Γ = [0, 1]dv .424

We denote u(θ) and v(γ) as the density function of U and V , respectively. We assume that p ∈ {u, v}425

belongs to the βp-order Lp-Hölder smooth class Σ(βp, Lp). Here, for the foundation, given a vector426

s = (s1, ..., sd), define427

|s| = s1 + · · ·+ sd, Ds =
∂s1+···+sd

∂xs1
1 · · · ∂x

sd
d

.

Subsequently, for a positive integer β, the β-order L-Hölder smooth class is defined as428

Σ(β, L) :={g : |Dsg(x)−Dsg(y)| ≤ L∥x− y∥2, for all s such that |s| = β − 1, and all x, y}.

Now, suppose X1, · · · , Xk are k i.i.d. samples from a distribution with density function p ∈ Σ(β, L).429

According to Wasserman [2019], we have the following result, which implies that we can calculate430

an estimator from these samples that converges to the density function.431

Proposition A.1 ([Wasserman, 2019]). Suppose X1, · · · , Xk are drawn i.i.d. from a d-dimension432

distribution P , with density p ∈ Σ(β, L) for some L > 0, and k is sufficiently large. Then there exists433

an estimator p̂k such that for any ϵ > 0,434

Pr

[
sup
x
|p(x)− p̂k(x)| >

C
√

log(k/ϵ)

kβ/(2β+d)

]
≤ ϵ,

with C a constant.435

The details of constructing such a density estimator are postponed to Appendix F.1. We now return436

to the re-solving heuristic and Algorithm 1. In the algorithm, with continuous randomness, the437

constrained optimization problem to be solved in each round Ĵ(ρt,Ht) for t = 1, 2, · · · becomes:438

Ĵ(ρt,Ht) := max
ϕ:Θ×A+→R

∫
θ

∑
a∈A+

ϕ(θ, a)

∫
γ

r(θ, a, γ)v̂t(γ)ût(θ) dγ dθ,

s.t.
∫
θ

∑
a∈A+

ϕ(θ, a)

∫
γ

c(θ, a, γ)v̂t(γ)ût(θ) dγ dθ ≤ ρt,∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.
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Correspondingly, the reference optimization problem J(ρt) is given below:439

J(ρt) := max
ϕ:Θ×A+→R

∫
θ

∑
a∈A+

ϕ(θ, a)

∫
γ

r(θ, a, γ)v(γ)u(θ) dγ dθ,

s.t.
∫
θ

∑
a∈A+

ϕ(θ, a)

∫
γ

c(θ, a, γ)v(γ)u(θ) dγ dθ ≤ ρt,∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

At this point, it is worth mentioning that solving Ĵ(ρt,Ht) in each round could be hard as it could440

be a continuous yet non-convex constrained optimization problem. Nevertheless, we assume the441

existence of an oracle that aids us in solving this optimization, and we focus on the regret of the442

re-solving method. Let αu := (βu + du)/(2βu + du) and αv := (βv + dv)/(2βv + dv), and we have443

the following two results, respectively, under full and partial information feedback.444

Theorem A.1. Under continuous randomness, with full information feedback, the expected accumu-445

lated reward Rew brought by Algorithm 1 satisfies:446

V FL −Rew = O((Tαu + Tαv + T 1/2)
√
log T ), T →∞.

Theorem A.2. Under continuous randomness, with partial information feedback, the expected447

accumulated reward Rew brought by Algorithm 1 satisfies:448

V FL −Rew = O((Tαu + T 1/2)
√
log T + Tαv log3/2−αv T ), T →∞.

The proofs of the above theorems are presented in Appendices F.2 and F.3, respectively, which almost449

follow the threads of Theorems 5.1 and 5.2.450

B Specifying the Worst-Case Location – Proof of Theorem 2.1451

To prove the lemma, we first introduce an intermediate value, which we denote as V Hyb, to upper452

bound V ON, and show that the gap between V Hyb and V FL is O(
√
T ) under the given condition.453

Specifically, we have the following definition:454

V Hyb := Eθ1,··· ,θT

[
max

ϕ1,··· ,ϕT :A+→R

T∑
t=1

∑
a∈A+

R(θt, a)ϕt(a)

]
,

s.t.

T∑
t=1

∑
a∈A+

C(θt, a)ϕt(a) ≤ ρT,

∑
a∈A+

ϕt(a) ≤ 1, ∀t ∈ [T ],

ϕt(a) ≥ 0, ∀(t, a) ∈ [T ]×A+.

(1)

To see that V Hyb gives an upper bound on V ON, we fix a request trajectory θ1, · · · , θT . Now, for any455

non-anticipating strategy π, we let456

pπt (a) = Pr[aπt = a | θ1, · · · , θt]
be the total probability that aπt = a conditioning on the pre-determined request sequence, with respect457

to γ1, · · · , γt−1 and the randomness of strategy π. We show that {pπt }t=1,··· ,T is a feasible solution458

to V Hyb under θ1, · · · , θT . Here, a key observation is that for any t ∈ [T ]:459

E [c(θt, a
π
t , γt) | θ1, · · · , θt] = Eγt

[ ∑
a∈A+

c(θt, a
π
t , γt) · Pr[aπt = a | θ1, · · · , θt]

]
=
∑
a∈A+

C(θt, a)p
π
t (a).
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In the above, the first expectation is taken on γ1, · · · , γt and the random choice of strategy π. Since460 ∑T
t=1 c(θt, a

π
t , γt) ≤ ρT always holds, we derive that461

T∑
t=1

∑
a∈A+

C(θt, a)p
π
t (a) = E

[
T∑

t=1

c(θt, a
π
t , γt) | θ1, · · · , θT

]
≤ ρT,

which indicates that {pπt }t=1,··· ,T is feasible to V Hyb under θ1, · · · , θT . To the same reason, we also462

have463
T∑

t=1

∑
a∈A+

R(θt, a)p
π
t (a) = E

[
T∑

t=1

r(θt, a
π
t , γt) | θ1, · · · , θT

]
equals the conditional expected reward of strategy π. Thus, since V Hyb is a maximization problem464

for any request trajectory, we conclude that V Hyb ≥ V ON.465

It remains to show that when V FL, or J(ρ) has a unique and degenerate solution, V FL − V Hyb =466

Ω(
√
T ). We first present a transformation of V Hyb. We let467

x(θ) :=
#[appearance of θ]

T

be the random variable indicating the frequency of θ when θ is drawn T times i.i.d. from U . Obviously,468

the mean of x is u. We now demonstrate that469

V Hyb = T · Ex

[
max

ϕ:Θ×A+→R

∑
θ∈Θ

x(θ)
∑
a∈A+

R(θ, a)ϕ(θ, a)

]
,

s.t.
∑
θ∈Θ

x(θ)
∑
a∈A+

C(θ, a)ϕ(θ, a) ≤ ρ,

∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

(2)

To see this, in form (1), it is not hard to see that conditioning on θ1, · · · , θT , the value of the470

optimization is only related to the number of times that any θ ∈ Θ appears in the sequence, and471

irrelevant with their arriving order. Therefore, by taking an average, it is without loss of generality472

to suppose that ϕ∗
t1 = ϕ∗

t2 as long as θt1 = θt2 . Under such an observation, it is natural that (1) is473

equivalent to (2).474

For convenience, we now recall the definition of V FL:475

V FL = T · max
ϕ:Θ×A+→R

∑
θ∈Θ

u(θ)
∑
a∈A+

R(θ, a)ϕ(θ, a),

s.t.
∑
θ∈Θ

u(θ)
∑
a∈A+

C(θ, a)ϕ(θ, a) ≤ ρ,

∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

By Sierksma [2001], we know that when J(ρ) has a unique and degenerate solution, then its dual476

form has multiple solutions. We then adopt the framework of Vera and Banerjee [2021]. In particular,477

we let λ ≥ 0 be the dual variable vector for the resource constraints, and µ ≥ 0 be the dual478

variable vector for the probability feasibility constraints. If we take ω(θ) = µ(θ)/u(θ), then the dual479

programming of V FL/T is the following as a function of u:480

D[Z(u)] = min
λ,ω

ρ⊤λ+ u⊤ω,

s.t. λ⊤C(θ, a) + ω(θ) ≥ R(θ, a), ∀(θ, a) ∈ Θ×A+,

λ ≥ 0, ω ≥ 0.

14



Now, suppose (λ1,ω1) and (λ2,ω2) are two different optimal solutions to D[Z(u)], which directly481

leads to λ1 ̸= λ2 by the programming formation. We let λ′ = λ1 − λ2 and ω′ = ω1 − ω2. Then,482

ρ⊤λ1 + u⊤ω1 = ρ⊤λ2 + u⊤ω2 =⇒ ρ⊤λ′ + u⊤ω′ = 0. (3)
Further, notice that (λ1,ω1) and (λ2,ω2) are both feasible for D[Z(x)] for any x. Since D[Z(x)]483

is a minimization problem, by a convex combination, we have484

D[Z(x)] ≤ (ρ⊤λ1 + x⊤ω1)1[ρ⊤λ′ + x⊤ω′ ≤ 0] + (ρ⊤λ2 + x⊤ω2)1[ρ⊤λ′ + x⊤ω′ > 0].

Further, by optimality, we know that for any x,485

D[Z(u)] = (ρ⊤λ1 + u⊤ω1)1[ρ⊤λ′ + x⊤ω′ ≤ 0] + (ρ⊤λ2 + u⊤ω2)1[ρ⊤λ′ + x⊤ω′ > 0].

Now, by weak duality, since V Hyb/T for any given x is a maximization problem, we know from the486

above two equations that487

(V FL − V Hyb)/T

≥ D[Z(u)]− Ex [D[Z(x)]]

≥ Ex

[
((u− x)⊤ω1)1[ρ⊤λ′ + x⊤ω′ ≤ 0] + ((u− x)⊤ω2)1[ρ⊤λ′ + x⊤ω′ > 0]

]
(a)
= Ex

[
((u− x)⊤ω1)1[(u− x)⊤ω′ ≥ 0] + ((u− x)⊤ω2)(1− 1[(u− x)⊤ω′ ≥ 0])

]
(b)
= Ex

[
((u− x)⊤ω′)1[(u− x)⊤ω′ ≥ 0]

]
Here, (a) is due to (3), and (b) is since the mean of x is u. Now, we let ξ =

√
T (u − x)⊤ω′ be488

the normalized scaled variable. By Central Limit Theorem, ξ1[ξ ≥ 0] converges to a half-normal489

distribution, which has constant expectation. Thus, we arrive at V FL − V Hyb = Ω(
√
T ), which490

finish the proof.491

C Missing Proofs in Section 3492

C.1 Proof of Theorem 3.1493

We now give a proof of Theorem 3.1. The proof draws inspiration from that of Chen et al. [2022], but494

significantly diverges in terms of the problem setting.495

C.1.1 Regret Decomposition496

We start by presenting a regret decomposition approach, which stands on the dual viewpoint. We first497

recall the optimization problem V FL = T · J(ρ1):498

J(ρ1) := max
ϕ:Θ×A+→R

Eθ∼U

[ ∑
a∈A+

R(θ, a)ϕ(θ, a)

]
,

s.t. Eθ∼U

[ ∑
a∈A+

C(θ, a)ϕ(θ, a)

]
≤ ρ1,∑

a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

Recall that u(θ) denotes the mass function of U , then the above linear programming can be expanded499

as500

J(ρ1) := max
ϕ:Θ×A+→R

∑
θ∈Θ,a∈A+

u(θ)R(θ, a)ϕ(θ, a),

s.t.
∑

θ∈Θ,a∈A+

u(θ)C(θ, a)ϕ(θ, a) ≤ ρ1,∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.
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Now let λ ≥ 0 be the dual vector for the consumption constraint and {µ∗(θ)}θ∈Θ ≥ 0 be the dual501

variables for the action distribution constraint. By the strong duality of linear programming, there is502

an optimal dual variable tuple (λ∗, {µ∗(θ)}θ∈Θ) ≥ 0 such that:503

J(ρ1) =
∑

θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

)
ϕ∗
1(θ, a) + (λ∗)⊤ρ1 +

∑
θ∈Θ

µ∗(θ)

=
∑

θ∈Θ,a∈A+

u(θ)
(
R(θ, a)− (λ∗)⊤C(θ, a)

)
ϕ∗
1(θ, a) + (λ∗)⊤ρ1.

(4)

Here ϕ∗
1 is the optimal solution to J(ρ1). With (4), we have the following lemma for regret decompo-504

sition.505

Lemma C.1. For any stopping time Te ≤ T0 adapted to the process {Bt}’s, we have506

V FL −Rew

≤ E

 Te∑
t=1

∑
θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
)

+ E

[
Te∑
t=1

∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)]
+ (λ∗)⊤E [BTe+1] + max

θ∈Θ,a∈A+

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
· E [T − Te] .

(5)

The proof of Lemma C.1 is deferred to Appendix C.2. We now give a brief explanation on this result.507

The first two terms in (5) depicts the gap between the choice of Algorithm 1 and the optimal decision.508

This is apparent for the first term. For the second term, we should notice that by complementary509

slackness, for each θ ∈ Θ,510

µ∗(θ) ·

(
1−

∑
a∈A+

ϕ∗
1(θ, a)

)
= 0.

Therefore, the second term in (5) is bounded if ϕ̂∗
t is close to ϕ∗

1.511

On the other hand, the last two terms are closely related to the choice of stopping time Te and the512

consumption behavior of Algorithm 1. Intuitively, if Te is sufficiently close to T , then E[T − Te]513

should be appropriately bounded. Nevertheless, if the algorithm spends the resources too fast,514

then such a sufficiently large Te would be impossible. Conversely, if the resources are consumed515

substantially slower than the optimal, then the term E[BTe+1], the remaining resources at the stopping516

time, would be unbounded.517

In the following, we will deal with these two parts correspondingly. A crux to the analysis is to pick a518

satisfying stopping time Te, which we will first cover.519

C.1.2 The Gap to Optimal Decision520

We first give a realization of the stopping time Te, which relies on Assumption 3.1. As is shown by521

Mangasarian and Shiau [1987], Chen et al. [2022], local stability holds for an LP with unique and522

non-degenerate optimal solution, that is, the basic variables and binding constraints are kept within a523

minor purturbation on the coefficients. To this end, we first explicitly define the relevant concepts.524

Definition C.1. A context-action pair (θ, a) is a basic variable for J(ρ1) if ϕ∗
1(θ, a) > 0, or else, it525

is a non-basic variable. Similarly define basic/non-basic variables for Ĵ(ρt,Ht).526

Definition C.2. i ∈ [n] is a binding constraint for J(ρ1) if527 ∑
θ∈Θ,a∈A+

u(θ)Ci(θ, a)ϕ∗
1(θ, a) = ρi

1,

or else it is a non-binding constraint. We let528

S := {i ∈ [n] : i is a binding constraint for J(ρ1)},
T := {i ∈ [n] : i is a non-binding constraint for J(ρ1)},
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and use κ|S to define the sub-vector of κ confined on S , similar for κ|T . Further, θ ∈ Θ is a binding529

constraint for J(ρ1) if530 ∑
a∈A+

ϕ∗
1(θ, a) = 1,

or else it is a non-binding constraint. Similarly define binding/non-binding constraints for Ĵ(ρt,Ht).531

Under the above definitions, we have the following lemma, which is a derivation of the result in Chen532

et al. [2022]. We will provide the proof in Appendix C.3:533

Lemma C.2 (Stability). Under Assumption 3.1, there is a D > 0, such that when the following534

holds:535

max {∥(u(θ)− ût(θ))θ∈Θ∥∞, ∥(v(γ)− v̂t(γ))γ∈Γ∥1} ≤ D,

max {∥ρ1|S − ρt|S∥∞ ,max {ρ1|T − ρt|T }} ≤ D,
(6)

J(ρ1) and Ĵ(ρt,Ht) share the same sets of basic/non-basic variables and binding/non-binding536

constraints.537

With Lemma C.2 in hand, we can derive that when condition (6) is met, it holds that538 (
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
)
= 0, (7)∑

θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)
= 0. (8)

To see these, notice that by the dual feasibility of J(ρ1), we have u(θ)
(
R(θ, a)− (λ∗)⊤C(θ, a)

)
−539

µ∗(θ) ≤ 0. When u(θ)
(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ) < 0, by primal optimality, ϕ∗

1(θ, a) = 0540

and thus (θ, a) is non-basic for J(ρ1). By Lemma C.2, (θ, a) is also non-basic for Ĵ(ρt,Ht) and541

ϕ̂∗
t (θ, a) = 0 holds as well. This finishes the deduction of (7). A similar reasoning on binding542

constraints would help us achieve (8), which we omit here.543

As the above goes, it is then natural for us to define Te the stopping time in our analysis as follows:544

Te := min{T0,min{t : max{∥ρ1|S − ρt|S∥∞,max{ρ1|T − ρt|T }} > D} − 1}, (9)
where T0 is the stopping time of Algorithm 1. That is to say, we always have max{∥ρ1|S −545

ρt|S∥∞,max{ρ1|T − ρt|T }} ≤ D when t ≤ Te. What we are left is to bound the situation when546

max{∥(u(θ) − ût(θ))θ∈Θ∥∞, ∥(v(γ) − v̂t(γ))γ∈Γ∥1} > D for 1 ≤ t ≤ Te. In total, we arrive at547

the following result for this part, with the proof given in Appendix C.4:548

Lemma C.3. Under Assumption 3.1, with full information feedback, we have when T →∞:549

E

 Te∑
t=1

∑
θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
) = O(1),

E

[
Te∑
t=1

∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)]
= O(1).

We are now only left to bound the last two terms in (5).550

C.1.3 The Gap to Optimal Consumption551

As presented in (5), we now bound the remaining two terms, respectively E[BTe+1] and E[T − Te]552

for Te defined in (9). It turns out that these two terms are closely related. Due to this observation, we553

would first bound (λ∗)⊤ · E[BTe+1] by E[T − Te], and then bound E[T − Te].554

Now by the strong duality of J(ρ1), we know that complementary slackness holds, that is λ∗|T = 0.555

We therefore have556

(λ∗)⊤E [BTe+1] ≤ (λ∗)⊤E [BTe
] = (λ∗|S)⊤E [BTe

|S ] = (λ∗|S)⊤E [(T − Te + 1)ρTe
|S ]

(a)
≤ n(ρmax +D)∥λ∗∥∞ · E [T − Te + 1] .

(10)
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In the above, recall that ρmax denotes the maximum coordinate of ρ1, and D is specified in557

Lemma C.2. Consequently, (a) is due to the definition of Te and that ∥ρ1 +D1∥∞ ≤ ρmax +D.558

We are left to bound E[T − Te]. Nevertheless, this part would be rather technical and involved.559

Therefore we defer the analysis to Appendix C.5, and only give the final bounds.560

Lemma C.4. Under Assumption 3.1, with full information feedback, we have when T →∞:561

(λ∗)⊤E [BTe+1] + max
θ∈Θ,a∈A+

(
R(θ, a)− (λ∗)⊤ ·C(θ, a)

)
E [T − Te] = O(1).

Combining Lemmas C.1, C.3 and C.4, we arrive at Theorem 3.1.562

C.2 Proof of Lemma C.1563

The proof is obtained by the following set of (in)equalities.564

V FL −Rew

= T · J(ρ1)− E

[
T0∑
t=1

r(θt, at, γt)

]
(a)
≤ T · J(ρ1)− E

[
Te∑
t=1

r(θt, at, γt)

]

(b)
= T · J(ρ1)− E

 Te∑
t=1

∑
θ∈Θ,a∈A+

u(θ)R(θ, a)ϕ̂∗
t (θ, a)


(c)
= T ·

 ∑
θ∈Θ,a∈A+

(
u(θ)(R(θ, a)− (λ∗)⊤C(θ, a))− µ∗(θ)

)
ϕ∗
1(θ, a) + (λ∗)⊤ρ1 +

∑
θ∈Θ

µ∗(θ)


− E

 Te∑
t=1

∑
θ∈Θ,a∈A+

u(θ)R(θ, a)ϕ̂∗
t (θ, a)


(d)
= E

 Te∑
t=1

∑
θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
)

+ E

[
Te∑
t=1

∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)]
+

(∑
θ∈Θ∗

µ∗(θ)

(
1−

∑
a∈A+

ϕ∗
1(θ, a)

))
· E [T − Te]

+ (λ∗)⊤E

Tρ1 −
Te∑
t=1

∑
θ∈Θ,a∈A+

u(θ)C(θ, a)ϕ̂∗
t (θ, a)


+

 ∑
θ∈Θ,a∈A+

(
u(θ)(R(θ, a)− (λ∗)⊤C(θ, a))

)
ϕ∗
1(θ, a)

 · E [T − Te]

(e)
≤ E

 Te∑
t=1

∑
θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
)

+ E

[
Te∑
t=1

∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)]
+ (λ∗)⊤E [BTe+1] + max

θ∈Θ,a∈A+

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
· E [T − Te] .
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In the above set of derivations, (a) holds since T0 ≥ Te, (b) is due to Optional Stopping Theorem565

since Te is a stopping time, (c) is by the strong duality of J(ρ1) as given by (4), (d) establishes by566

rearranging terms. At last, for (e), the diminishing term is by strong duality, the transformation from567

the fourth term in (d) to the third term in (e) is derived by another application of Optional Stopping568

Theorem on the accumulated consumption vector, and for the last term, the upper bound is achieved569

since
∑

a∈A+ ϕ∗
1(θ, a) ≤ 1 for any θ ∈ Θ and

∑
θ∈Θ u(θ) = 1.570

C.3 Proof of Lemma C.2571

We will apply the stability result in Chen et al. [2022] as an intermediate to prove our version.572

As given, we know that J(ρ1) and Ĵ(ρt,Ht) has the same set of basic/non-basic variables and573

binding/non-binding constraints as long as the following conditions hold for some constant D0 > 0:574 ∥∥∥∥∥∥
(
u(θ)

∑
γ

v(γ)r(θ, a, γ)− ût(θ)
∑
γ

v̂t(γ)r(θ, a, γ)

)
(θ,a)∈Θ×A+

∥∥∥∥∥∥
∞

≤ D0,

∥∥∥∥∥∥
(
u(θ)

∑
γ

v(γ)ci(θ, a, γ)− ût(θ)
∑
γ

v̂t(γ)c
i(θ, a, γ)

)
(θ,a)∈Θ×A+

∥∥∥∥∥∥
∞

≤ D0, ∀i ∈ [n],

∥ρ1|S − ρt|S∥∞ ≤ D0, max {ρ1|T − ρt|T } ≤ D0.

(11)

Now, by a standard insertion technique, we have575

u(θ)
∑
γ

v(γ)r(θ, a, γ)− ût(θ)
∑
γ

v̂t(γ)r(θ, a, γ)

= (u(θ)− ût(θ))
∑
γ

v(γ)r(θ, a, γ) + ût(θ)
∑
γ

(v(γ)− v̂t(γ))r(θ, a, γ)

(a)
≤ ∥(u(θ)− ût(θ))θ∈Θ∥∞ + ∥(v(γ)− v̂t(γ))γ∈Γ∥1. (12)

For (a), the first term is bounded since r(θ, a, γ) ≤ 1 and
∑

γ v(γ) = 1. The second term is similarly576

bounded as ût(θ) ≤ 1. Therefore, we let D = D0/2, then when we have577

∥(u(θ)− ût(θ))θ∈Θ∥∞ ≤ D, ∥(v(γ)− v̂t(γ))γ∈Γ∥1 ≤ D,

the first condition in (11) is met. An almost identical reasoning also holds for the second condition in578

(11). Consequently we finish the proof of the lemma.579

C.4 Proof of Lemma C.3580

Recall that we are going to prove that581

E

 Te∑
t=1

∑
θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
) = O(1),

E

[
Te∑
t=1

∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)]
= O(1),

when T →∞ under Assumption 3.1. For simplicity, we give the following abbreviations:582

Pt :=
∑

θ∈Θ,a∈a+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
)
,

Qt :=
∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)
,

Eu,t := [∥(u(θ)− ût(θ))θ∈Θ∥∞ ≤ D], Ev,t := [∥(v(γ)− v̂t(γ))γ∈Γ∥1 ≤ D].
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On this end, we first utilize Lemma C.2 to show that when condition (6) holds, we have583

Pt = Qt = 0.

Specifically, for Pt, by the dual feasibility of J(ρ1), we have u(θ)
(
R(θ, a)− (λ∗)⊤C(θ, a)

)
−584

µ∗(θ) ≤ 0. When u(θ)
(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ) < 0, by primal optimality, ϕ∗

1(θ, a) = 0585

and thus (θ, a) is non-basic for J(ρ1). By Lemma C.2, (θ, a) is also non-basic for Ĵ(ρt,Ht) and586

ϕ̂∗
t (θ, a) = 0 holds as well. In conjunction with the case that u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
−587

µ∗(θ) = 0, we obtain that Pt = 0.588

For Qt, notice that we have µ∗(θ) ≥ 0 for any θ ∈ Θ. The case that µ∗(θ) = 0, again, does not589

contribute to the total sum. When µ∗(θ) > 0, by complementary slackness,
∑

a∈A+ ϕ∗
1(θ, a) = 1,590

i.e., θ is a binding constraint for J(ρ1). This, by Lemma C.2, implies that θ is also binding for591

Ĵ(ρt,Ht), which shows that the second term is also zero.592

With the above, it remains to consider the situation that condition (6) does not hold when t ≤ Te, or593

in other words, Eu,t ∧ Ev,t does not hold. Note that Pt ≤ 1 and Qt ≤ 1 always hold. Thus, we only594

need to bound the probability that ¬(Eu,t ∧ Ev,t). By a union bound, we have595

Pr[¬(Eu,t ∧ Ev,t)] = Pr[¬Eu,t ∨ ¬Ev,t] ≤ Pr[¬Eu,t] + Pr[¬Ev,t].

For the first term above, we apply the Hoeffding’s inequality and a union bound to derive that596

Pr[¬Eu,t] = Pr[∥(u(θ)− ût(θ))θ∈Θ∥∞ > D] ≤ 2|Θ| exp
(
−2D2(t− 1)

)
.

Whereas for the second term, we use the concentration result in Weissman et al. [2003] to derive that597

Pr[¬Ev,t] = Pr[∥(v(γ)− v̂t(γ))γ∈Γ∥1 > D] ≤
(
2|Γ| − 2

)
exp

(
−D2(t− 1)/2

)
.

Synthesizing the above all, we have598

E[Pt] = E[Pt | Eu,t ∧ Ev,t] · Pr[Eu,t ∧ Ev,t] + E[Pt | ¬(Eu,t ∧ Ev,t)] · Pr[¬(Eu,t ∧ Ev,t)]
≤ 0 + 1 · Pr[¬(Eu,t ∧ Ev,t)]

≤ 2|Θ| exp
(
−2D2(t− 1)

)
+
(
2|Γ| − 2

)
exp

(
−D2(t− 1)/2

)
, (13)

E[Qt] ≤ 2|Θ| exp
(
−2D2(t− 1)

)
+
(
2|Γ| − 2

)
exp

(
−D2(t− 1)/2

)
. (14)

Summing (13) and (14) from 1 to Te, we achieve that599 {
E

[
Te∑
t=1

Pt

]
,E

[
Te∑
t=1

Qt

]}

≤
T∑

t=1

(
2|Θ| exp

(
−2D2(t− 1)

)
+
(
2|Γ| − 2

)
exp

(
−D2(t− 1)/2

))
≤ 2|Θ|

1− exp (−2D2)
+

2|Γ| − 2

1− exp (−D2/2)
,

which conclude the proof of the lemma.600

C.5 Proof of Lemma C.4601

As implied by (10), the proof of this lemma reduces to bound E[T − Te], i.e., showing that Te is602

sufficiently close to T . On this side, we first recall the definition of Te in (9):603

Te := min{T0,min{t : max{∥ρ1|S − ρt|S∥∞,max{ρ1|T − ρt|T }} > D} − 1},

where T0 is the stopping time of Algorithm 1, and S and T correspondingly represent the set of604

binding/non-binding resource constraints in LP J(ρ1). For simplicity, we define605

N (ρ1, D,S) := {κ : max{∥ρ1|S − κ|S∥∞,max{ρ1|T − κ|T }} ≤ D}.
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It is without loss of generality to suppose that D < ρmin. We let606

TD := min{t : ρt /∈ N (ρ1, D,S)} − 1, T− = ⌊T + 1− 1/(ρmin −D)⌋.
We show that if t ≤ T− and t ≤ TD, then t ≤ Te. In fact, under the condition, we derive that607

Bt ≥ (T − t+ 1)(ρ1 −D1) ≥ 1

ρmin −D
(ρ1 −D1) ≥ 1,

which implies that t ≤ T0, and therefore t ≤ Te. As a result, we have608

E [Te] =

T∑
t=1

Pr [Te ≥ t] ≥
T−∑
t=1

Pr [Te ≥ t] ≥
T−∑
t=1

Pr [TD ≥ t] = T− −
T−∑
t=1

Pr [t > TD] . (15)

Before we continue to bound (15), we first give an observation on the dynamics of ρt. By the update609

process of the budget, we have for any t ≥ 1,610

Bt+1 = Bt − ct =⇒ ρt+1(T − t) = ρt(T − t+ 1)− ct

=⇒ ρt+1 = ρt +
ρt − ct
T − t

.

Now let611

MC
t :=

ρt − Eθ∼U

[∑
a∈A+ ϕ̂∗

t (θ, a)C(θ, a)
]

T − t
, NC

t :=
Eθ∼U

[∑
a∈A+ ϕ̂∗

t (θ, a)C(θ, a)
]
− ct

T − t
.

We then have612

ρt+1 − ρt =
ρt − ct
T − t

= MC
t +NC

t . (16)

We now define an auxiliary process which benefits the analysis. Specifically, for t ∈ [T ], let613

ρ̃t :=

{
ρt, t ≤ TD;

ρTD
, t > TD.

Therefore,614

ρ̃t+1 − ρ̃t =

{
MC

t +NC
t , t ≤ TD;

0, t > TD.

We further define the following two auxiliary variables for t ∈ [T ]:615

M̃C
t :=

{
MC

t , t ≤ TD;

0, t > TD.
, ÑC

t :=

{
NC

t , t ≤ TD;

0, t > TD.

As a result, we have616

ρ̃t+1 − ρ̃t = M̃C
t + ÑC

t .

Now we come back to (15). Notice that617

Pr [t > TD] (17)
= Pr [ρs /∈ N (ρ1, D,S) for some s ≤ t] = Pr [ρ̃t /∈ N (ρ1, D,S)]

≤ Pr

[∥∥∥∥∥
t−1∑
τ=1

(
M̃C

τ + ÑC
τ

) ∣∣
S

∥∥∥∥∥
∞

> D or min

t−1∑
τ=1

(
M̃C

τ + ÑC
τ

) ∣∣
T < −D

]

≤ Pr

[∥∥∥∥∥
t−1∑
τ=1

M̃C
τ

∣∣
S

∥∥∥∥∥
∞

> D/2 or min

t−1∑
τ=1

M̃C
τ

∣∣
T < −D/2

]
+ Pr

[∥∥∥∥∥
t−1∑
τ=1

ÑC
τ

∥∥∥∥∥
∞

≥ D/2

]
.

(18)

For the second term in (18), we observe that each entry of {
∑

τ<t Ñ
C
τ }t is a martingale with the618

absolute value of the τ -th increment bounded by 1/(T − τ). Since619

t−1∑
τ=1

1

(T − τ)2
≤ 1

T − t
,
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by applying the Azuma–Hoeffding inequality and a union bound, we achieve that620

Pr

[∥∥∥∥∥
t−1∑
τ=1

ÑC
τ

∥∥∥∥∥
∞

≥ D/2

]
≤ 2n exp

(
− (T − t)D2

8

)
.

We now come back to the first term in (18), for any {D1, · · · , Dt−1} such that
∑t−1

τ=1 Dτ/(T − τ) ≤621

D/2, we have622 {∥∥∥∥∥
t−1∑
τ=1

M̃C
τ

∣∣
S

∥∥∥∥∥
∞

> D/2 or min

t−1∑
τ=1

M̃C
τ

∣∣
T < −D/2

}

=⇒
{∥∥∥M̃C

τ

∣∣
S

∥∥∥
∞

>
Dτ

T − τ
or minM̃C

τ

∣∣
T < − Dτ

T − τ

}
for some τ ∈ [T − 1].

We now define623

Eτ (Dτ ) :=

(∥∥MC
τ

∣∣
S

∥∥
∞ ≤

Dτ

T − τ

)
∧
(
minMC

τ

∣∣
T ≥ −

Dτ

T − τ

)
holds for ∀ρτ ∈ N (ρ1, D,S).

Since M̃C
τ ̸= 0 only when t ≤ TD, i.e., ρt ∈ N (ρ1, D,S), by the definition of Eτ (Dτ ), we have624

the following claim:625 {∥∥∥∥∥
t−1∑
τ=1

M̃C
τ

∣∣
S

∥∥∥∥∥
∞

> D/2 or min

t−1∑
τ=1

M̃C
τ

∣∣
T < −D/2

}
⊆

t−1⋃
τ=1

¬Eτ (Dτ ), ∀
t−1∑
τ=1

Dτ

T − τ
≤ D/2.

(19)

Thus, we forward to bound Pr[¬Eτ (Dτ )] for a suitable choice of {Dτ}1≤τ≤T . Recall that we have626

defined events Eu,τ and Ev,τ as follows:627

Eu,τ := [∥(u(θ)− ûτ (θ))θ∈Θ∥∞ ≤ D], Ev,τ := [∥(v(γ)− v̂τ (γ))γ∈Γ∥1 ≤ D].

We have the following lemma, which we are going to prove in Appendix C.6:628

Lemma C.5. When ρτ ∈ N (ρ1, D,S) and Eu,τ ∧ Ev,τ hold,629

(T − τ)
∥∥MC

τ

∣∣
S

∥∥
∞ ≤ ∥(u(θ)− ûτ (θ))θ∈Θ∥1 + ∥(v(γ)− v̂τ (γ))γ∈Γ∥1,

(T − τ)minMC
τ

∣∣
T ≥ −∥(u(θ)− ûτ (θ))θ∈Θ∥1 − ∥(v(γ)− v̂τ (γ))γ∈Γ∥1.

Further, it is clear that (T − τ)
∥∥MC

τ

∣∣
S

∥∥
∞ ≤ 1 and (T − τ)MC

τ

∣∣
T ≥ −1 holds. Inspired by the

above observations, we let the series of D1, · · · , DT−1 be the following form:

Dτ =

{
1, τ ≤ ηT ;

(τ − 1)−1/4, τ > ηT ,

where η ∈ (0, 1) is a constant to be specified. We need to satisfy the following constraints:630

T−1∑
t=1

Dt

T − t
≤ D/2, (ηT )−1/4 < D.

Here, the first constraint is instructed by (19), and the second is to guarantee that when ∥(u(θ) −631

ûτ (θ))θ∈Θ∥1 + ∥(v(γ)− v̂τ (γ))γ∈Γ∥1 < (τ − 1)−1/4 for τ > ηT , Eu,τ ∧ Ev,τ naturally holds, and632

therefore we can apply Lemma C.5. For the first one, we notice that633

T−1∑
τ=1

Dτ

T − τ
=

ηT∑
τ=1

1

T − τ
+

T−1∑
τ=ηT+1

1

(T − τ)(τ − 1)1/4
≤ log

T − 1

(1− η)T − 1
+

log T

(ηT )1/4
.
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Therefore, for some η such that log(1 − η) ≥ −D/4,
∑T

t=1 Dt/(T − t) ≤ D/2 establishes for634

sufficiently large T ≫ 1, and the second constraint is also satisfied.635

We are now prepared to bound Pr[¬Eτ (Dτ )] for the {Dτ} we just proposed. To start with, when636

τ ≤ ηT , Eτ (Dτ ) always holds, thus Pr[¬Eτ (Dτ )] = 0. When τ > ηT , since τ−1/4/2 < D, by637

Hoeffding’s inequality and union bound, we have638

Pr[¬Eτ (Dτ )]

(a)
≤ Pr

[
∥(u(θ)− ûτ (θ))θ∈Θ∥1 ≤ (τ − 1)−1/4/2

]
+ Pr

[
∥(v(γ)− v̂τ (γ))γ∈Γ∥1 ≤ (τ − 1)−1/4/2

]
≤ 2|Θ| exp

(
− (τ − 1)1/2

8|Θ|2

)
+ 2|Γ| exp

(
− (τ − 1)1/2

8|Γ|2

)
.

Here, (a) is by Lemma C.5 and a union bound. Therefore, according to (19), we have639

Pr

[∥∥∥∥∥
t−1∑
τ=1

M̃C
τ

∣∣
S

∥∥∥∥∥
∞

> D/2 or min

t−1∑
τ=1

M̃C
τ

∣∣
T < −D/2

]
≤

t−1∑
τ=1

Pr[¬Eτ (Dτ )],

and therefore,

Pr

[∥∥∥∥∥
t−1∑
τ=1

M̃C
τ

∣∣
S

∥∥∥∥∥
∞

> D/2 or min

t−1∑
τ=1

M̃C
τ

∣∣
T < −D/2

]
≤


0, t ≤ ηT + 1;

t−1∑
τ=ηT+1

exp
{
−τ1/2

}
, t > ηT + 1.

Plugging the into (18) and (15), we obtain that when T →∞,640

E [T − Te]

≤ T − T−

+

T−∑
t=1

(
Pr

[∥∥∥∥∥
t−1∑
τ=1

M̃C
τ

∣∣
S

∥∥∥∥∥
∞

> D/2 or min

t−1∑
τ=1

M̃C
τ

∣∣
T < −D/2

]
+ 2n exp

(
− (T − t)D2

8

))

≤ 1

ρmin −D
+ 2n(1− exp(−D2/8))−1 +O(T 2) exp

(
−T 1/2

)
= O(1).

At last, combining with (10), we finally finish the proof of Lemma C.4.641

C.6 Proof of Lemma C.5642

To start with, we notice that643

(T − τ)MC
τ = ρτ − Eθ∼U

[ ∑
a∈A+

ϕ̂∗
τ (θ, a)C(θ, a)

]
.

Now, notice that ρτ ∈ N (ρ1, D,S) and Eu,τ ∧ Ev,τ are the condition of Lemma C.2, therefore, the644

set of resource binding constraints of Ĵ(ρt,Ht) are identical to that of J(ρ1), i.e., S . Hence, for any645

i ∈ [n],646

ρi
τ |S − Eθ∼U

[ ∑
a∈A+

ϕ̂∗
τ (θ, a)C

i(θ, a)|S

]
=

∑
θ∈Θ,a∈A+

ûτ (θ)ϕ̂
∗
τ (θ, a)

∑
γ

v̂τ (γ)c
i(θ, a, γ)|S −

∑
θ∈Θ,a∈A+

u(θ)ϕ̂∗
τ (θ, a)

∑
γ

v(γ)ci(θ, a, γ)|S

=
∑

θ∈Θ,a∈A+

(u(θ)− ûτ (θ))ϕ̂
∗
τ (θ, a)

∑
γ

v(γ)ci(θ, a, γ)|S

+
∑

θ∈Θ,a∈A+

ûτ (θ)ϕ̂
∗
τ (θ, a)

∑
γ

(v̂τ (γ)− v(γ))ci(θ, a, γ)|S

(a)
≤ ∥(u(θ)− ûτ (θ))θ∈Θ∥1 + ∥(v(γ)− v̂τ (γ))γ∈Γ∥1.
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Here, the bound on the first term in (a) establishes because for any θ ∈ Θ,647 ∑
a∈A+

ϕ̂∗
τ (θ, a)

∑
γ

v(γ)ci(θ, a, γ)|S ≤ 1

since
∑

a∈A+ ϕ̂∗
τ (θ, a) ≤ 1. The bound on the second term is similar. Thus, we achieve the result for648

binding constraints. The proof for non-binding constraints resembles the above by noticing that649

ρτ |T ≥
∑

θ∈Θ,a∈A+

ûτ (θ)ϕ̂
∗
τ (θ, a)

∑
γ

v̂τ (γ)c(θ, a, γ)|T .

D Missing Proofs in Section 4650

D.1 Proof of Theorem 4.1651

With Lemma 4.1 in hand, we now show how to derive Theorem 4.1. Specifically, the regret decompo-652

sition technique in Lemma C.1 still works fine. We only need to re-derive corresponding results for653

Lemmas C.3 and C.4. We have the following results on this side, which are proved respectively in654

Appendices D.3 and D.4.655

Lemma D.1. Under Assumption 3.1, with partial information feedback, we have when T →∞:656

E

 Te∑
t=1

∑
θ∈Θ,a∈A+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
) = O(1),

E

[
Te∑
t=1

∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)]
= O(log T ).

Lemma D.2. Under Assumption 3.1, with partial information feedback, we have when T →∞:657

(λ∗)⊤E [BTe+1] + max
θ∈Θ,a∈A+

(
R(θ, a)− (λ∗)⊤ ·C(θ, a)

)
E [T − Te] = O(1).

Lemmas C.1, D.1 and D.2 in together leads to Theorem 4.1.658

D.2 Proof of Lemma 4.1659

Some preparations are required before we come to prove the lemma. To start with, we notice that660

Yτ = Pr[a1 ̸= 0] + · · ·+ Pr[at−1 ̸= 0]. By the control rule of Algorithm 1, we have661

Pr[aτ ̸= 0] = Eθ∼U

[ ∑
a∈A+

ϕ̂∗
τ (θ, a) | Hτ

]
.

We first give a lower bound on Eθ∼U [
∑

a∈A+ ϕ̂∗
τ (θ, a) | Hτ ] with ρτ , taking662

Eθ∼Ûτ
[
∑

a∈A+ ϕ̂∗
τ (θ, a) | Hτ ] as an intermediate.663

Lemma D.3.

Eθ∼Ûτ

[ ∑
a∈A+

ϕ̂∗
τ (θ, a) | Hτ

]
≥ min {1,minρτ} .

Proof of Lemma D.3. To start with, when ρτ ≥ 1, then clearly, all the resource constraints in664

Ĵ(ρτ ,Hτ ) are satisfied even when
∑

a∈A+ ϕ(θ, a) = 1 holds for any θ ∈ Θ. Therefore, an optimal665

solution should have this form.666
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We now consider the case that minρτ < 1. In this case, if there is a feasible solution that667 ∑
a,∈A+ ϕ̂∗

τ (θ, a) = 1 holds for any θ ∈ Θ, then the proof is also finished. Otherwise, there is668

at least a binding resource constraint in Ĵ(ρτ ,Hτ ), which we denote by i∗. Consequently,669

Eθ∼Ûτ

[ ∑
a∈A+

ϕ̂∗
τ (θ, a)

]
≥ Eθ∼Ûτ

[ ∑
a∈A+

ϕ̂∗
τ (θ, a)Ĉ

i∗

τ (θ, a)

]
= ρi∗

τ ≥ minρτ .

This finishes the proof of the lemma.670

Thus, we have671

Pr[aτ ̸= 0] = Eθ∼U

[ ∑
a∈A+

ϕ̂∗
τ (θ, a) | Hτ

]
≥ Eθ∼Ûτ

[ ∑
a∈A+

ϕ̂∗
τ (θ, a) | Hτ

]
− ∥u(θ)− ûτ (θ)∥1

≥ min {1,minρτ} − ∥u(θ)− ûτ (θ)∥1. (20)

Further, we have the following result bounding minρτ when t is no larger than a fraction of T .672

Lemma D.4. When t ≤ (ρmin/2) · T , minρτ ≥ ρmin/2.673

Proof of Lemma D.4. In fact, for t ≤ (ρmin/2) · T ,674

ρτ =
T · ρ1 −

∑t−1
τ=1 cτ

T − t+ 1
≥ T · ρ1 − t · 1

T
≥ ρ1

2
.

This concludes the proof.675

Now, by Weissman et al. [2003], with probability 1−O(1/T ), we have676

∥u(θ)− ûτ (θ)∥1 ≤
ρmin

4
, ∀τ ≥ Θ(log T ).

Taking into (20), we derive that677

Pr[aτ ̸= 0] ≥ ρmin

4
, ∀Θ(log T ) ≤ t ≤ ρmin

2
· T.

Consequently, within the period, the probability that there are Ω(log T ) consecutive rounds in which678

the agent chooses to quit in all these rounds is O(1/T ). This proves the first part. Meanwhile, at time679

t = ⌈(ρmin/2) ·T ⌉+1, by Azuma–Hoeffding inequality, we derive that with probability 1−O(1/T ),680

Yt =
∑t−1

τ=1 Pr[aτ ̸= 0] ≥ Ω(T ), which proves the second part.681

D.3 Proof of Lemma D.1682

We concentrate on adapting the proof of Lemma C.3 into the partial information feedback setting.683

To start with, we suppose that the conditions given in Lemma 4.1 hold. In fact, since the failure684

probability is only O(1/T ), and the sum is upper bounded by O(T ), therefore the failure case only685

contributes O(1) to the total expectation.686

Now, recall the following definitions:687

Pt :=
∑

θ∈Θ,a∈a+

(
u(θ)

(
R(θ, a)− (λ∗)⊤C(θ, a)

)
− µ∗(θ)

) (
ϕ∗
1(θ, a)− ϕ̂∗

t (θ, a)
)
,

Qt :=
∑
θ∈Θ

µ∗(θ)

(
1−

∑
a∈A+

ϕ̂∗
t (θ, a)

)
,

Eu,t := [∥(u(θ)− ût(θ))θ∈Θ∥∞ ≤ D], Ev,t := [∥(v(γ)− v̂t(γ))γ∈Γ∥1 ≤ D],

and by (13) and (14), we have688

E[Pt] ≤ Pr[¬Eu,t] + Pr[¬Ev,t], E[Qt] ≤ Pr[¬Eu,t] + Pr[¬Ev,t].
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Now, the bound on Pr[¬Eu,t] inherits the analysis in the proof of Lemma C.3, as partial information689

feedback does not affect the learning of the request distribution. That is,690

Pr[¬Eu,t] = Pr[∥(u(θ)− ût(θ))θ∈Θ∥∞ > D] ≤ 2|Θ| exp
(
−2D2(t− 1)

)
.

For Pr[¬Ev,t], when t ≤ Θ(log T ), it is obviously bounded by 1. By Lemma 4.1, when Θ(log T ) ≤691

t ≤ Cb · T , by Weissman et al. [2003], we have692

Pr[¬Ev,t] = Pr[∥(v(γ)− v̂t(γ))γ∈Γ∥1 > D] ≤
(
2|Γ| − 2

)
exp

(
−D2Cf (t− 1)

2 log T

)
.

Further, when t > Cb · T , we correspondingly derive693

Pr[¬Ev,t] ≤
(
2|Γ| − 2

)
exp

(
−D2Cr(t− 1)

2

)
.

Putting the above together, we achieve that694 {
E

[
Te∑
t=1

Pt

]
,E

[
Te∑
t=1

Qt

]}

≤
T∑

t=1

2|Θ| exp
(
−2D2(t− 1)

)
+Θ(log T )

+
(
2|Γ| − 2

) Cb·T∑
t=Θ(log T )

exp

(
−D2Cf (t− 1)

2 log T

)
+

T∑
t=Cb·T+1

exp

(
−D2Cr(t− 1)

2

)
≤ Θ(1) + Θ(log T ) +

(
2|Γ| − 2

)( Θ(1)

1− exp (−Θ(1/ log T ))
+ exp(−Θ(T ))

)
≤ O(log T ).

Here, for the last inequality, by Taylor expansion, we have 1− e−x ≥ x− x2/2 for x > 0, therefore,695

1

1− exp (−Θ(1/ log T ))
≤ 1

Θ(1/ log T − 1/ log2 T )
≤ Θ(log T ).

This finishes the proof.696

D.4 Proof of Lemma D.2697

As in Appendix D.3 when we prove Lemma C.3, we only consider the case when the conditions in698

Lemma 4.1 establish, as the contribution of the failure cases on the expectation-sum is O(1). We now699

bound E[T − Te] in the good case when the sample accessing frequency under partial information700

feedback is guaranteed. Specifically, as predefined in the proof of Lemma C.3, we only need to701

re-calculate the following, as the other terms remain unchanged with partial information:702

T−∑
t=ηT+2

t−1∑
τ=ηT+1

Pr
[
∥(v(γ)− v̂τ (γ))γ∈Γ∥1 ≤ (τ − 1)−1/4/2

]
.

Here, η is specified in the definition of Dτ . It is hard for us to directly compare η and Cb in Lemma 4.1.703

Nevertheless, in any case, we know that when T is sufficiently large, Yτ/(τ − 1) = Ω(1/ log T ) for704

τ ≥ ηT . Therefore, we have705

Pr
[
∥(v(γ)− v̂τ (γ))γ∈Γ∥1 ≤ (τ − 1)−1/4/2

]
≤ 2|Γ| exp

(
− (τ − 1)1/2

|Γ|2O(log T )

)
.
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Hence,706

T−∑
t=ηT+2

t−1∑
τ=ηT+1

Pr
[
∥(v(γ)− v̂τ (γ))γ∈Γ∥1 ≤ (τ − 1)−1/4/2

]

≤ 2|Γ|
T−∑

t=ηT+2

t−1∑
τ=ηT+1

exp

(
− (τ − 1)1/2

|Γ|2O(log T )

)

= O(T 2) exp

(
−Ω

(
T 1/2

log T

))
= O(1).

Combining with the other parts, Lemma D.2 is proved.707

E Missing Proofs in Section 5708

E.1 Proof of Theorem 5.1709

We will prove Theorem 5.1 in the following, and we are inspired by the analysis in Chen et al. [2022].710

E.1.1 Another Regret Decomposition711

Different from our analysis for the regular cases, in general circumstances, we introduce another regret712

decomposition method. The reason for involving such an alternative is that without the regularity713

assumptions, we no longer have any local stability guarantee even when the estimates are close.714

Therefore, the decision given by Algorithm 1 does not coincides with the optimal decision even when715

the distribution learning process converges well, and the corresponding analysis in Section 3 does not716

work out anymore.717

We now present a more general regret decomposition as follows:718

V FL −Rew = T · J(ρ1)− E

[
T0∑
t=1

r(θt, at, γt)

]
(a)
= T · J(ρ1)− E

[
T0∑
t=1

Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]]

(b)
= J(ρ1) · E [T − T0] + E

[
T0∑
t=1

(
J(ρ1)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

])]
.

(21)

Here, (a) holds due to the Optimal Stopping Theorem, since T0 is a stopping time. Meanwhile, by719

the decision process, we have for any θt:720

Eat,γt
[r(θt, at, γt) | θt] =

∑
a∈A+

ϕ̂∗
t (θt, a)R(θt, a).

Further, (b) is by a re-arrangement. To give a bound for (21), we respectively analyze E[T − T0] the721

stopping time, and difference between the optimal accumulated rewards and the real ones.722

E.1.2 Bounding the Stopping Time723

To settle the stopping time, we first reduce it to max(ρ1 − ρt, 0) for t ≤ T0, and then deals with724

these values. We notice that t ≤ T0 as long as that Bt ≥ 1, or ρt ≥ 1/(T − t+ 1). Now, since for725

any i ∈ [n],726

ρi
t = ρi

1 − (ρ1 − ρt)
i ≥ ρmin −max (ρ1 − ρt, 0) ,

we have minρt ≥ ρmin −max(ρ1 − ρt, 0). Therefore,727

t ≤ T0 ⇐= ρmin −max (ρ1 − ρt, 0) ≥
1

T − t+ 1

⇐⇒ max (ρ1 − ρt, 0) ≤ ρmin − 1

T − t+ 1
. (22)
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Since E[T0] ≥ Pr[T0 ≥ t] · t for any t ∈ [T ], we only need to bound the following term for some728

certain t:729

Pr

[
max (ρ1 − ρt, 0) ≤ ρmin − 1

T − t+ 1

]
.

We will further prove the following lemma in Appendix E.3:730

Lemma E.1. It holds for any t < T that731

Pr

[
max (ρ1 − ρt, 0) ≥ Θ

(
1

T − 1
+

t−1∑
τ=2

√
log T

(T − τ)2(τ − 1)
+

√
log T

T − t

)]
≤ O

(
1

T

)
.

With the light of Lemma E.1, it is natural for us to compute

t−1∑
τ=2

√
log T

(T − τ)2(τ − 1)
≤


√
log T · 4

√
t− 2

T − 1
, 2 ≤ t ≤ (T + 1)/2;√

log T · 2√
T − t

, t > (T + 1)/2.

In fact, to derive the above, we notice that when 2 ≤ t ≤ (T + 1)/2,732

t−1∑
τ=1

1

(T − τ)(τ − 1)1/2
≤ 2

T − 1

t−1∑
τ=2

1

(τ − 1)1/2
≤ 4
√
t− 1

T − 1
.

Meanwhile, when t > (T + 1)/2, we have T − t < t− 1, which leads to733

t−1∑
τ=2

1

(T − τ)(τ − 1)1/2
≤
√

8

T − 1
+

t−1∑
τ=(T+1)/2

1

(T − τ)3/2
≤ 2√

T − t
.

With these calculations, we come back to the bound on E[T0], we notice that when T is sufficiently734

large and t = T −O(log T ), it holds that735

Θ

(
1

T − 1
+

t−1∑
τ=2

√
log T

(T − τ)2(τ − 1)
+

√
log T

T − t

)
+

1

T − t+ 1
= O(1) ≤ ρmin.

Thus, we have736

E [T − T0] = T − E[T0]
(a)
≤ T − Pr[T0 ≥ T −O(log T )] · (T −O(log T ))

(b)
≤ T −

(
1−O

(
1

T

))
· (T −O(log T )) = O(log T ). (23)

In the above, (a) is because E[T0] ≥ Pr[T0 ≥ t] · t for any fixed t, and (b) is due to Lemma E.1.737

Consequently, we finish the analysis of the stopping time in (21).738

E.1.3 The Gap to the Optimal Reward739

The rest part of (21) that we are left to consider is the following:740

J(ρ1)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]

=
(
J(ρ1)− Ĵ(ρt,Ht)

)
+

(
Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

])
. (24)

Note that the second difference term in (24) reflects the estimation error on distributions of the context741

and the external factor, which leads to the following result as to be proved in Appendix E.4:742

28



Lemma E.2. We have for t ≥ 2:743

E

[
Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]]
≤ O

(√
log T

t− 1
+

1

T

)
.

Lemma E.2 induces an O(
√
T log T ) accumulated regret considering (24) when summing from t = 2744

to T0 ≤ T . While for the first term in (24), our main thread here is to bound Ĵ(ρt,Ht) with J(ρt).745

To fix the idea, we compare these two optimization problems:746

J(ρt) := max
ϕ:Θ×A+→R+

∑
θ∈Θ,a∈A+

u(θ)ϕ(θ, a)
∑
γ

r(θ, a, γ)v(γ),

s.t.
∑

θ∈Θ,a∈A+

u(θ)ϕ(θ, a)
∑
γ

c(θ, a, γ)v(γ) ≤ ρt,∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

Ĵ(ρt,Ht) := max
ϕ:Θ×A+→R+

∑
θ∈Θ,a∈A+

ût(θ)ϕ(θ, a)
∑
γ

r(θ, a, γ)v̂t(γ),

s.t.
∑

θ∈Θ,a∈A+

ût(θ)ϕ(θ, a)
∑
γ

c(θ, a, γ)v̂t(γ) ≤ ρt,∑
a∈A+

ϕ(θ, a) ≤ 1, ∀θ ∈ Θ,

ϕ(θ, a) ≥ 0, ∀(θ, a) ∈ Θ×A+.

Now, conceptually, if there is a 0 < ηt ≤ 1 such that for any (θ, a) ∈ Θ×A+,747

u(θ)
∑
γ

c(θ, a, γ)v(γ) ≥ ηtût(θ)
∑
γ

c(θ, a, γ)v̂t(γ),

then for an optimal solution ϕ∗
t of J(ρt), we see that ηtϕ∗

t is a feasible solution of the programming748

Ĵ(ρt,Ht). Thus,749

Ĵ(ρt,Ht) ≥ ηt
∑

θ∈Θ,a∈A+

ût(θ)ϕ
∗
t (θ, a)

∑
γ

r(θ, a, γ)v̂t(γ)

(a)
≥ ηt

∑
θ∈Θ,a∈A+

u(θ)ϕ∗
t (θ, a)

∑
γ

r(θ, a, γ)v(γ)

− ηt(∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1)
= ηtJ(ρt)− (∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1).

Here, since r(θ, a, γ) ≤ 1 and
∑

a∈A+ ϕ̂∗
t (θ, a) ≤ 1 for any θ, (a) is expanded as750 ∑

θ∈Θ,a∈A+

ût(θ)ϕ
∗
t (θ, a)

∑
γ

v̂t(γ)r(θ, a, γ)−
∑

θ∈Θ,a∈A+

u(θ)ϕ∗
t (θ, a)

∑
γ

v(γ)r(θ, a, γ)

=
∑

θ∈Θ,a∈A+

(ût(θ)− u(θ))ϕ∗
t (θ, a)

∑
γ

v̂t(γ)r(θ, a, γ)

+
∑

θ∈Θ,a∈A+

u(θ)ϕ∗
t (θ, a)

∑
γ

(v̂t(γ)− v(γ))r(θ, a, γ)

≤ ∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1.
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Consequently,751

J(ρ1)− Ĵ(ρt,Ht)

≤ (1− ηt)J(ρ1) + ηt(J(ρ1)− J(ρt)) + ∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1. (25)

On top of this, a key observation is that752

J(ρ1)− J(ρt) ≤
max (ρ1 − ρt, 0)

ρmin
· J(ρ1). (26)

In fact, when ρ1 ≤ ρt, (26) is natural as J(ρ1) ≤ J(ρt). Otherwise, let ϕ∗
1 be the optimal solution to753

the programming J(ρ1). Let i∗ be the index that minimizes ρi∗

t /ρi∗

1 . We have ρi∗

1 > ρi∗

t . Evidently,754

we know that ϕ∗
1 · ρi∗

t /ρi∗

1 is a feasible solution to the programming of J(ρt). By the optimality of755

J(ρt), we have756

J(ρt) ≥
ρi∗

t

ρi∗
1

· J(ρ1),

which leads to757

J(ρ1)− J(ρt) ≤
(
1− ρi∗

t

ρi∗
1

)
· J(ρ1) =

ρi∗

1 − ρi∗

t

ρi∗
1

· J(ρ1) ≤
max (ρ1 − ρt)

ρmin
· J(ρ1).

Synthesizing the above two parts, (26) is proved.758

As for E[max(ρ1 − ρt, 0)], we note that for any non-negative random variable X with upper bound759

X̄ and any positive ξ, we have760

E[X] ≤ ξ Pr[X ≤ ξ] + X̄ (1− Pr[X ≤ ξ]) ≤ ξ + X̄ (1− Pr[X ≤ ξ]) . (27)

Notice that max(ρ1−ρt, 0) is certainly upper bounded by 1. Therefore, as a corollary of Lemma E.1,
we have

E [max (ρ1 − ρt, 0)] ≤


O

(√
(t− 2) log T

T
+

√
log T

T − t
+

1

T

)
, 2 ≤ t ≤ (T + 1)/2;

O

(√
log T

T − t
+

1

T

)
, t > (T + 1)/2.

We almost finish the bound now except for determining ηt in (25), which we hope is asclose to 1 as761

possible. Nevertheless, we leave the technical parts to Appendix E.5 which derives the following762

lemma on the total bound:763

Lemma E.3.

E

[
T0∑
t=1

(
J(ρ1)− Ĵ(ρt,Ht)

)]
= O(

√
T log T ).

Now, we sum the result in (21) from t = 2 to T0, and plus the constant term for t = 1 to obtain that764

E

[
T0∑
t=1

(
Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

])]
= O(

√
T log T ).

Synthesizing Lemma E.3, (24), (23), and (21), we derive Theorem 5.1.765

E.2 Proof of Theorem 5.2766

The proof of this theorem follows the line of Theorem 5.1, and the only difference is to adopt767

Lemma 4.1 when considering the concentration of estimates. On this side, we can disregard the cases768

when t ≤ Θ(log T ), as the accumulated regret in this phase is bounded by O(log T ). On the other769

hand, the time range that t ≥ Θ(T ) is asymptotically identical to the full information setting since770

30



the accessing frequency is a constant. We only need to consider the case that Θ(log T ) ≤ t ≤ Θ(T ),771

when we have772

Pr

[
∥(u(θ)− ût(θ))θ∈Θ∥1 ≤ −Θ

(√
log T

t− 1

)]
≤ O

(
1

T 2

)
,

Pr

[
∥(v(γ)− v̂t(γ))γ∈Γ∥1 ≤ −Θ

(
log T√
t− 1

)]
≤ O

(
1

T 2

)
.

(28)

Taking into the proof of Lemma E.1 and then into the main body, we should find a sufficient large t773

such that774

Θ

 log T

T − 1
+

Θ(T )∑
τ=Θ(log T )

log T√
(T − τ)2(τ − 1)

+

t−1∑
τ=Θ(T )

√
log T

(T − τ)2(τ − 1)
+

√
log T

T − t


≤ ρmin − 1

T − t+ 1
,

and t = T − O(log T ) still suffices. Therefore, E[T − T0] = O(log T ) also holds under partial775

information feedback.776

Nevertheless, for the counterpart of Lemma E.2, by (28), when we sum from t = 1 to T0 ≤ T , we777

derive that778

E

[
T0∑
t=1

(
Ĵ(ρt,Ht)− Eθ∼U

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

])]
≤ O(

√
T log T ).

At last, for J(ρ1)− Ĵ(ρt,Ht), we face the same degradation on the estimation accuracy, which leads779

to780

E

[
T0∑
t=1

(
J(ρ1)− Ĵ(ρt,Ht)

)]
= O(

√
T log T ).

Therefore, Theorem 5.2 is achieved.781

E.3 Proof of Lemma E.1782

Now that we are going to bound max(ρ1 − ρt, 0). Recall the definitions below which we give in783

Appendix C.5 when we prove Lemma C.4:784

MC
t :=

ρt − Eθ∼U

[∑
a∈A+ ϕ̂∗

t (θ, a)C(θ, a)
]

T − t
, NC

t :=
Eθ∼U

[∑
a∈A+ ϕ̂∗

t (θ, a)C(θ, a)
]
− ct

T − t
.

By (16), we have785

ρt+1 − ρt =
ρt − ct
T − t

= MC
t +NC

t .

Consequently,786

max(ρ1 − ρt) = max

(
−

(
t−1∑
τ=1

MC
τ +

t−1∑
τ=1

NC
τ

))
≤ −min

t−1∑
τ=1

MC
τ −min

t−1∑
τ=1

NC
τ .

For the second term, we notice that each entry of {
∑

τ<t N
C
τ }t is a martingale with the absolute787

value of the τ -th increment bounded by 1/(T − τ). Since788

t−1∑
τ=1

1

(T − τ)2
≤ 1

T − t
,

by applying the Azuma–Hoeffding inequality and a union bound, we achieve that789

Pr

[
−min

t−1∑
τ=1

NC
τ ≥

√
2 log T

T − t

]
≤ n

T
. (29)
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On the other hand, for the first term, when τ = 1, it is apparent that −minMC
1 ≤ 1/(T − 1). When790

τ ≥ 2, we have for any i ∈ [n],791

(T − τ)
(
MC

τ

)i
= ρi

τ − Eθ∼U

[ ∑
a∈A+

ϕ̂∗
τ (θ, a)C

i(θ, a)

]
(a)
≥

∑
θ∈Θ,a∈A+

ûτ (θ)ϕ̂
∗
τ (θ, a)

∑
γ

v̂τ (γ)c
i(θ, a, γ)−

∑
θ∈Θ,a∈A+

u(θ)ϕ̂∗
τ (θ, a)

∑
γ

v(γ)ci(θ, a, γ)

=
∑

θ∈Θ,a∈A+

(ûτ (θ)− u(θ))ϕ̂∗
τ (θ, a)

∑
γ

v̂τ (γ)c
i(θ, a, γ)

+
∑

θ∈Θ,a∈A+

u(θ)ϕ̂∗
τ (θ, a)

∑
γ

(v̂τ (γ)− v(γ))ci(θ, a, γ)

≥ −∥(u(θ)− ûτ (θ))θ∈Θ∥1 − ∥(v(γ)− v̂τ (γ))γ∈Γ∥1.

In the above, (a) is because ϕ̂∗
τ is feasible for Ĵ(ρτ ,Hτ ). By Hoeffding’s inequality and a union792

bound, we have793

Pr

[
∥(u(θ)− ûτ (θ))θ∈Θ∥1 ≤ −|Θ|

√
log T

τ − 1

]
≤ |Θ|

T 2
,

Pr

[
∥(v(γ)− v̂τ (γ))γ∈Γ∥1 ≤ −|Γ|

√
log T

τ − 1

]
≤ |Γ|

T 2
.

Thus, suppose the above events hold for all τ ≤ T with failure probability only O(1/T ),794

Pr

[
−min

t−1∑
τ=1

MC
τ ≥ Θ

(
1

T − 1
+

t−1∑
τ=2

√
log T

(T − τ)2(τ − 1)

)]
≤ O

(
1

T

)
. (30)

Combining (29) and (30), we derive the lemma.795

E.4 Proof of Lemma E.2796

We notice that797

Ĵ(ρt,Ht) =
∑

θ∈Θ,a∈A+

ût(θ)ϕ̂
∗
t (θ, a)

∑
γ

r(θ, a, γ)v̂t(γ),

and798 ∑
θ∈Θ,a∈A+

ût(θ)ϕ̂
∗
t (θ, a)

∑
γ

v̂t(γ)r(θ, a, γ)−
∑

θ∈Θ,a∈A+

u(θ)ϕ̂∗
t (θ, a)

∑
γ

v(γ)r(θ, a, γ)

=
∑

θ∈Θ,a∈A+

(ût(θ)− u(θ))ϕ̂∗
t (θ, a)

∑
γ

v̂t(γ)r(θ, a, γ)

+
∑

θ∈Θ,a∈A+

u(θ)ϕ̂∗
t (θ, a)

∑
γ

(v̂t(γ)− v(γ))r(θ, a, γ)

≤ ∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1.

Thus,799

Ĵ(ρt,Ht)− Eθ∼U

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]
≤ ∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1.
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By Hoeffding’s inequality and a union bound, we have800

Pr

[
∥(u(θ)− ût(θ))θ∈Θ∥1 ≥ |Θ|

√
log T

2(t− 1)

]
≤ |Θ|

T
,

Pr

[
∥(v(γ)− v̂t(γ))γ∈Γ∥1 ≥ |Γ|

√
log T

2(t− 1)

]
≤ |Γ|

T
.

Further, the difference we hope to analyze is certainly upper bounded by 1. As a result, with (27), we801

finish the proof.802

E.5 Proof of Lemma E.3803

We come to consider J(ρ1)− Ĵ(ρt,Ht). As per the thread in the main body, we let804

δt :=
∥(u(θ)− ût(θ))θ∈Θ∥∞ + ∥(v(γ)− v̂t(γ))γ∈Γ∥1

minθ∈Θ,a∈A+{min{u(θ)C(θ, a) > 0}}
.

We now claim that for any (θ, a, i) ∈ Θ×A+ × [n],805

ût(θ)
∑
γ

ci(θ, a, γ)v̂t(γ) ≤ (1 + δt)u(θ)
∑
γ

ci(θ, a, γ)v(γ).

The above is obvious if Ci(θ, a) = 0, or ci(θ, a, γ) = 0 holds for any γ. When C(θ, a) ̸= 0, then806

for any i ∈ [n],807

ût(θ)
∑
γ

ci(θ, a, γ)v̂t(γ)− u(θ)
∑
γ

ci(θ, a, γ)v(γ)

= (ût(θ)− u(θ))
∑
γ

ci(θ, a, γ)v̂t(γ) + u(θ)
∑
γ

ci(θ, a, γ)(v̂t(γ)− v(γ))

≤ ∥(u(θ)− ût(θ))θ∈Θ∥∞ + ∥(v(γ)− v̂t(γ))γ∈Γ∥1
≤ δtu(θ)

∑
γ

ci(θ, a, γ)v(γ).

This finish the explanation of the claim. Upon that, if we let ηt := 1− δt ≤ 1/(1+ δt), we derive that808

u(θ)
∑
γ

c(θ, a, γ)v(γ) ≤ 1

1 + δt
ût(θ)

∑
γ

c(θ, a, γ)v̂t(γ)

≤ ηtût(θ)
∑
γ

c(θ, a, γ)v̂t(γ).

With respect to (25) and (26), we obtain that809

J(ρ1)− Ĵ(ρt,Ht)

≤ J(ρ1) ·
(
1− ηt +

max (ρ1 − ρt, 0)

ρmin

)
+ ∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1

= J(ρ1) ·
(
δt +

max (ρ1 − ρt, 0)

ρmin

)
+ ∥(u(θ)− ût(θ))θ∈Θ∥1 + ∥(v(γ)− v̂t(γ))γ∈Γ∥1. (31)

As we have already shown in the main body that

E [max (ρ1 − ρt, 0)] ≤


O

(√
(t− 2) log T

T
+

√
log T

T − t
+

1

T

)
, 2 ≤ t ≤ (T + 1)/2;

O

(√
log T

T − t
+

1

T

)
, t > (T + 1)/2,
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it suffices for us to bound810

E[∥(u(θ)− ût(θ))θ∈Θ∥∞],E[∥(u(θ)− ût(θ))θ∈Θ∥1],E[(v(γ)− v̂t(γ))γ∈Γ∥1].

On this side, as we have shown that811

Pr

[
∥(u(θ)− ût(θ))θ∈Θ∥1 ≥ |Θ|

√
log T

2(t− 1)

]
≤ |Θ|

T
,

Pr

[
∥(v(γ)− v̂t(γ))γ∈Γ∥1 ≥ |Γ|

√
log T

2(t− 1)

]
≤ |Γ|

T
,

it is natural that812

{E[∥(u(θ)− ût(θ))θ∈Θ∥∞],E[∥(u(θ)− ût(θ))θ∈Θ∥1],E[(v(γ)− v̂t(γ))γ∈Γ∥1]}

≤ O

(√
log T

t− 1
+

1

T

)
.

Thus, putting all the above into (31) and summing from t = 1 to T0 ≤ T , we have813

E

[
T0∑
t=1

(
J(ρ1)− Ĵ(ρt,Ht)

)]
= O(

√
T log T ).

This concludes the proof.814

F Missing Details in Appendix A815

F.1 The Density Estimator816

We now present details on the kernel density estimator which we apply in Appendix A for approximat-817

ing continuous distributions, which comes from Wasserman [2019]. We consider a one-dimensional818

kernel function K such that819

•
∫
K(x) dx = 1;820

•
∫
xsK(x) dx = 0, ∀1 ≤ s ≤ β;821

•
∫
|x|β |K(x)|dx <∞.822

Now, given k independent samples X1, · · · , Xk from P and a positive number h called the bandwidth,823

the kernel density estimator is defined as824

p̂k(x) =
1

k

k∑
i=1

1

hd
K

(
∥x−Xi∥2

h

)
.

Furthermore, to satisfy Proposition A.1, we should choose h ≍ k1/(2β+d) log k when p ∈ Σ(β, L) is825

the density of P on Rd.826

F.2 Proof of Theorem A.1827

By (21), we know that828

V FL −Rew = J(ρ1) · E [T − T0] + E

[
T0∑
t=1

(
J(ρ1)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

])]
,

and we bound these terms in order. For the expected stopping time E[T0], by the analysis in Section 5,829

our goal turns into bounding max(ρ1 − ρt, 0), which further by (16) and (29), reduces to bound830
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MC
τ . With continuous randomness, we have for any i ∈ [n],831

(T − τ)
(
MC

τ

)i
= ρi

τ − Eθ

[ ∑
a∈A+

ϕ̂∗
τ (θ, a)C

i(θ, a)

]
(a)
≥
∫
θ

∑
a∈A+

ϕ̂∗
τ (θ, a)

∫
γ

ci(θ, a, γ)v̂τ (γ)ûτ (θ) dγ dθ

−
∫
θ

∑
a∈A+

ϕ̂∗
τ (θ, a)

∫
γ

ci(θ, a, γ)v(γ)u(θ) dγ dθ

=

∫
θ

∑
a∈A+

ϕ̂∗
τ (θ, a)

∫
γ

ci(θ, a, γ)v̂τ (γ)(ûτ (θ)− u(θ)) dγ dθ

+

∫
θ

∑
a∈A+

ϕ̂∗
τ (θ, a)

∫
γ

ci(θ, a, γ)(v̂τ (γ)− v(γ))u(θ) dγ dθ

(b)
≥ − sup

θ
|u(θ)− ûτ (θ)| − sup

γ
|(v(γ)− v̂τ (γ)|.

In the above, (a) is by the constraint feasibility of ϕ̂∗
τ , and (b) is because

∑
a∈A+ ϕ̂∗

τ (θ, a) ≤ 1 holds832

for any θ ∈ Θ. Further, by Proposition A.1, we have for τ = Ω(1),833

Pr

[
sup
θ
|u(θ)− ûτ (θ)| ≤ −Θ

(√
log T (τ − 1)αu−1

)]
≤ 1

T 2
,

Pr

[
sup
γ
|v(θ)− v̂τ (θ)| ≤ −Θ

(√
log T (τ − 1)αv−1

)]
≤ 1

T 2
.

Thus, when t = Ω(1), we derive that with failure probability O(1/T ), it holds that834

max (ρ1 − ρt, 0) ≤ Θ

 1

T − 1
+
√
log T

t−1∑
τ=Θ(1)

(
(τ − 1)αu−1

T − τ
+

(τ − 1)αv−1

T − τ

)
+

√
log T

T − t

 .

Further, for p ∈ {u, v}, when t ≤ (T + 1)/2,835

t−1∑
τ=Θ(1)

(τ − 1)αp−1

T − τ
≤ 2

T − 1

t−1∑
τ=2

(τ − 1)αp−1 ≤ 2(t− 2)αp

αp(T − 1)
;

and when t > (T + 1)/2, we have836

t−1∑
τ=Θ(1)

(τ − 1)αp−1

T − τ
≤ 1

αp

(
2

T − 1

)1−αp

+

t−1∑
τ=(T+1)/2

(T − τ)αp−2 ≤ (T − t)αp−1

1− αp
.

Thus, when t = T −Θ(log(2(1−max{1/2,αu,αv}))−1

T ), we have837

Θ

 1

T − 1
+
√
log T

t−1∑
τ=Θ(1)

(
(τ − 1)αu−1

T − τ
+

(τ − 1)αv−1

T − τ

)
+

√
log T

T − t


≤ ρmin − 1

T − t+ 1
,

which leads to838

E [T − T0] = O
(
log(2(1−max{1/2,αu,αv}))−1

T
)
.

This concludes the analysis of the stopping time.839
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For the second part, By (24), we have840

J(ρ1)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]

=
(
J(ρ1)− Ĵ(ρt,Ht)

)
+

(
Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

])
.

On the second difference term, similar to the proof of Lemma E.2, we have841

Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]

=

∫
θ

∑
a∈A+

ϕ̂∗
t (θ, a)

∫
γ

r(θ, a, γ)v̂t(γ)ût(θ) dγ dθ −
∫
θ

∑
a∈A+

ϕ̂∗
t (θ, a)

∫
γ

r(θ, a, γ)v(γ)u(θ) dγ dθ

≤ sup
θ
|u(θ)− ût(θ)|+ sup

γ
|(v(γ)− v̂t(γ)|.

Thus, when t = Ω(1), by taking ϵ = 1/T in Proposition A.1 and (27), we arrive that842

E

[
Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]]
= O

(√
log T

(
(t− 1)αu−1 + (t− 1)αv−1

)
+

1

T

)
.

We now focus on J(ρ1)− Ĵ(ρt,Ht). We let843

δt :=
supθ |u(θ)− ût(θ)|+ supγ |(v(γ)− v̂t(γ)|
minθ∈Θ,a∈A+{min{u(θ)C(θ, a) > 0}}

.

We prove that844

ût(θ)

∫
γ

ci(θ, a, γ)v̂t(γ) dγ ≤ (1 + δt)u(θ)

∫
γ

ci(θ, a, γ)v(γ) dγ

holds for any (θ, a, i) tuple, which is obvious if ci(θ, a, γ) is almost surely zero with respect to γ.845

Otherwise, we observe that846

ût(θ)

∫
γ

ci(θ, a, γ)v̂t(γ) dγ − u(θ)

∫
γ

ci(θ, a, γ)v(γ) dγ

= (ût(θ)− u(θ))

∫
γ

ci(θ, a, γ)v̂t(γ) dγ + u(θ)

∫
γ

ci(θ, a, γ)(v̂t(γ)− v(γ)) dγ

≤ sup
θ
|u(θ)− ût(θ)|+ sup

γ
|(v(γ)− v̂t(γ)|

≤ δtu(θ)

∫
γ

ci(θ, a, γ)v(γ) dγ.

and thus, with ηt := 1− δt ≤ 1/(1 + δt), we derive that847

u(θ)

∫
γ

ci(θ, a, γ)v(γ) dγ ≤ 1

1 + δt
ût(θ)

∫
γ

ci(θ, a, γ)v̂t(γ) dγ

≤ ηtût(θ)

∫
γ

ci(θ, a, γ)v̂t(γ) dγ.
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This proves the above inequality. Thus, for an optimal solution ϕ∗
t of J(ρt), we see that ηtϕ∗

t is a848

feasible solution of the programming Ĵ(ρt,Ht). Thus, we notice that849

Ĵ(ρt,Ht) ≥ ηt

∫
θ

∑
a∈A+

ϕ∗
t (θ, a)

∫
γ

r(θ, a, γ)v̂t(γ)ût(θ) dγ dθ

≥ ηt

∫
θ

∑
a∈A+

ϕ∗
t (θ, a)

∫
γ

r(θ, a, γ)v(γ)u(θ) dγ dθ

− ηt(sup
θ
|u(θ)− ût(θ)|+ sup

γ
|(v(γ)− v̂t(γ)|)

= ηtJ(ρt)− (sup
θ
|u(θ)− ût(θ)|+ sup

γ
|(v(γ)− v̂t(γ)|).

With respect to (26), we obtain that850

J(ρ1)− Ĵ(ρt,Ht)

≤ J(ρ1) ·
(
1− ηt +

max (ρ1 − ρt, 0)

ρmin

)
+ sup

θ
|u(θ)− ût(θ)|+ sup

γ
|(v(γ)− v̂t(γ)|

= J(ρ1) ·
(
δt +

max (ρ1 − ρt, 0)

ρmin

)
+ sup

θ
|u(θ)− ût(θ)|+ sup

γ
|(v(γ)− v̂t(γ)|.

Now, when t = Θ(1), we have851

E
[
sup
θ
|u(θ)− ût(θ)|

]
= O

(√
log T (t− 1)αu−1 +

1

T

)
,

E
[
sup
γ
|v(γ)− v̂t(γ)|

]
= O

(√
log T (t− 1)αv−1 +

1

T

)
.

By the previous reasoning on max(ρ1 − ρt, 0), we obtain that when t = Ω(1),852

E [max(ρ1 − ρt, 0)]

≤ Θ

 1

T − 1
+
√
log T

t−1∑
τ=Θ(1)

(
(τ − 1)αu−1

T − τ
+

(τ − 1)αv−1

T − τ

)
+

√
log T

T − t

 .

Therefore, summing from t = 1 to T0 ≤ T , we achieve that853

E

[
T0∑
t=1

(
J(ρ1)− Ĵ(ρt,Ht)

)]
= O

(
(T 1/2 + Tαu + Tαv )

√
log T

)
.

Combining with previous bounds on E[T − T0] and the estimation errors, we derive the theorem.854

F.3 Proof of Theorem A.2855

Similar to the proof of Theorem 5.2, we concentrate on re-bounding the three terms under partial856

information feedback, respectively E[T−T0], Ĵ(ρt,Ht)−Eθ[
∑

a∈A+ ϕ̂∗
t (θ, a)R(θ, a)], and J(ρ1)−857

Ĵ(ρt,Ht). As for E[T − T0], with Lemma 4.1, we argue here that the main term in bounding858

max(ρ1 − ρt, 0) when t = Θ(T ) becomes859

Θ

√log T

 t−1∑
τ=Θ(1)

(τ − 1)αu−1

T − τ
+

Θ(T )∑
τ=Θ(1)

((τ − 1)/ log T )αv−1

T − τ
+

t−1∑
τ=Θ(T )

(τ − 1)αv−1

T − τ

 .

Consequently, when t is close to T , we have with failure probability O(1/T ),860

max(ρ1 − ρt, 0)

≤ Θ

(
1

T − 1
+
√
log T

(
(T − t)αu−1 + (T − t)−1/2

)
+ (T − t)αv−1 log3/2−αv T

)
.
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This leads to861

E[T − T0] = O
(
logmax(1,1/(2−2αu),(3−2αv)/(2−2αv)) T

)
.

For the estimation error term Ĵ(ρt,Ht) − Eθ[
∑

a∈A+ ϕ̂∗
t (θ, a)R(θ, a)], when Ω(1) ≤ t ≤ Θ(T ),862

the bound now becomes863

E

[
Ĵ(ρt,Ht)− Eθ

[ ∑
a∈A+

ϕ̂∗
t (θ, a)R(θ, a)

]]

= O

(√
log T (t− 1)αu−1 + log3/2−αv T · (t− 1)αv−1 +

1

T

)
.

At last, for J(ρ1)− Ĵ(ρt,Ht), we derive that864

E

[
T0∑
t=1

max(ρ1 − ρt, 0)

]
= O

(√
log T

(
Tαu + T 1/2

)
+ log3/2−αv T · Tαv

)
,

E

[
T0∑
t=1

sup
θ
|u(θ)− ût(θ)|

]
= O

(√
log T · Tαu

)
,

E

[
T0∑
t=1

sup
γ
|v(γ)− v̂t(γ)|

]
= O

(
log3/2−αv T · Tαv

)
.

Putting together, we obtain that865

E

[
T0∑
t=1

(
J(ρ1)− Ĵ(ρt,Ht)

)]
= O

(√
log T

(
Tαu + T 1/2

)
+ log3/2−αv T · Tαv

)
.

Synthesizing all the above, we finish the proof of the theorem.866
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