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ABSTRACT

Deep Neural Networks (DNNs) have achieved high accuracy in various machine
learning applications in recent years. As the recognition accuracy of deep learn-
ing applications increases, reducing the complexity of these neural networks and
performing the DNN computation on embedded systems or mobile devices be-
come an emerging and crucial challenge. Quantization has been presented to
reduce the utilization of computational resources by compressing the input data
and weights from floating-point numbers to integers with shorter bit-width. For
practical power reduction, it is necessary to operate these DNNs with quantized
parameters on appropriate hardware. Therefore, systolic arrays are adopted to be
the major computation units for matrix multiplication in DNN accelerators. To
obtain a better tradeoff between the precision/accuracy and power consumption,
using parameters with various bit-widths among different layers within a DNN
is an advanced quantization method. In this paper, we propose a novel decom-
position strategy to construct a low-power decomposable multiplier-accumulator
(MAC) for the energy efficiency of quantized DNNs. In the experiments, when
65% multiplication operations of VGG-16 are operated in shorter bit-width with
at most 1% accuracy loss on the CIFAR-10 dataset, our decomposable MAC has
50% energy reduction compared with a non-decomposable MAC.

1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have achieved high accuracy in various ma-
chine learning applications, such as image classification, object detection, and speech recognition.
AlexNet (Krizhevsky et al., 2012) applied 8 layers and 60 million parameters to achieve a top-5
error rate of 15.3%, which won the championship in the ILSVRC2012 competition, and thus has
driven research trends on DNNs and advanced machine learning applications. In the following
years, Szegedy et al. (2015); Simonyan & Zisserman (2014); He et al. (2016); Huang et al. (2017)
presented to apply deeper neural networks with more layers and parameters for higher accuracy.

As the accuracy of deep learning applications increases, optimizing these complex networks to be
simpler, more computational-efficient, or even suitable for embedded systems and mobile devices
becomes an emerging and crucial challenge. Therefore, many methods have been proposed to reduce
the complexity of neural networks. For example, pruning redundant connections within the model
(Han et al., 2015; Zhu & Gupta, 2017), reducing the kernels/filters within layers (Liu et al., 2017;
Luo et al., 2017; Howard et al., 2017), removing several layers (Wen et al., 2016; Li et al., 2016), or
using fewer bits (also known as quantization) during the computation (Lin et al., 2016; Zhou et al.,
2017; Jouppi et al., 2017; Hubara et al., 2017; Gysel et al., 2018; Mishra et al., 2017; Jacob et al.,
2018) have been presented to streamline DNNs with negligible accuracy loss.

According to the accuracy requirements of an application and its associated DNN structure, the
bit-width of the setting of parameters for the DNN may be different from one layer to another. In
addition, the activations and weights in some DNNs can be squeezed into 8 bits or less without
significant accuracy loss (Gysel et al., 2018; Mishra et al., 2017). Fig. 1a reveals the accuracy
(normalized to that of the original DNN operated with 32-bit floating-point activations and weights)
on CIFAR-10 dataset of DNNs with the activations and weights being quantized into uniform bit-
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(a) Normalized accuracy of quantized DNNs with
uniform bit-width (i.e., uniform quantization)

(b) Breakdown of layer-wise quantization with at
most 1% accuracy loss

Figure 1: Tradeoff between accuracy and bit-width of quantized activations (A) and weights (W)

width, 8 bits or 4 bits, across all layers within the specific neural networks. The accuracy loss can
be less than 1% when 8-bit activations and 8-bit weights are utilized in these DNNs. However,
directly compressing all activations and/or weights into 4 bits might devastate the accuracy. Instead
of quantizing all the parameters within a neural network to uniform bit-width, adjusting the bit-width
of quantized parameters from layer to layer (i.e., layer-wise quantization) can obtain a better tradeoff
between required computing resources and resulting accuracy (Mishra et al., 2017; Jacob et al.,
2018). Based on the quantization schemes presented by Lin et al. (2016); Jacob et al. (2018), Fig.
1b shows the breakdown of layer-wise quantization, in terms of the percentage of multiplication-
accumulations operations, within the quantized DNNs by trading with at most 1% accuracy loss.

For practical reduction in power consumption, it is necessary to run these DNNs with quantized
parameters on appropriate hardware. Fig. 2a illustrates a simple DNN with multiple hidden layers.
Within each layer, activations from the previous layer are multiplied by kernels/filters to obtain the
outputs of the current layer; throughout all layer in a DNN, numerous multiplications and accu-
mulations are involved. To accelerate DNN operations, Jouppi et al. (2017); Zhang et al. (2018);
Gupta et al. (2015); Chen et al. (2017) employ a systolic array of multiplier-accumulators (MACs)
(see Fig. 2b) as their major computation units for matrix multiplication, which perform 8-bit integer
multiplication and 16-bit fixed-point multiplication, respectively.

To obtain a better tradeoff between accuracy and power consumption by quantizing parameters with
various bit-width among different layers (i.e., layer-wise quantization), the processing elements for
DNNs should support multiplication operations with variable bit-widths. Configurable multipli-
ers (Sharma et al., 2018; Pfänder et al., 2004; Bermak et al., 1997; Haynes & Cheung, 1998) are
presented to adjust the bit-width of operating MACs for power saving, when shorter bit-width is suf-
ficient to satisfy the accuracy requirement; when longer bit-width is used, they generate the product
of multiplication by combining the outputs from neighbor small MACs. However, the power/energy
overhead for the combination of outputs from MAC neighbors may be significant and should not be
ignored. In other words, layer-wise quantization needs to supported by customized hardware; other-
wise the benefit in terms of power/energy consumption will be slashed (cut down significantly).

In this paper, we propose a novel decomposition strategy for low-power decomposable
multiplication-accumulation. Based on the strategy, multiplication with longer bit-width can be
departed and composed by its partial products with less computational quantity. In addition, accord-

(a) DNN architecture (b) Systolic array of MACs

Figure 2: DNN and systolic array

2



Under review as a conference paper at ICLR 2020

ing to the bit-width requirement of the current computation, a decomposable MAC based on our
strategy can dynamically adjust the bit-width of its final multiplication result. In addition, accord-
ing to the bit-width requirement of the current computation, a decomposable MAC based on our
strategy can dynamically adjust the bit-width of its final multiplication result. Instead of generating
multiplication results with required bit-width directly by connecting signals among neighbor MACs
for composition as straightforward/intuitive configurable MACs (Sharma et al., 2018; Pfänder et al.,
2004; Bermak et al., 1997; Haynes & Cheung, 1998), our strategy reduces the selection signals for
the operation bit-width of multiplication units. Therefore, our strategy can obtain significant energy
efficiency from multiplication with variable bit-widths.

2 BASIC IDEA OF OUR PROPOSED DECOMPOSITION STRATEGY

2.1 EXAMPLE OF OUR DECOMPOSABLE MAC OPERATION

(a) (b) (c) (d)

Figure 3: Example of matrix multiplication

To reduce the power overhead of a decomposable MAC, we first observe the behavior of matrix
multiplication. Fig. 3 illustrates an example of matrix multiplication with unsigned integers for
simplicity (the extension of signed numbers will be discussed in Section A.1). Suppose that the
inputs are matrices A = [7 6] and B = [1 2]

T , and the result matrix of A × B will be [7 ×
1 + 6 × 2] = [19]. If A and B are represented with 4-bit and 2-bit binaries, respectively, and only
2-bit×2-bit multipliers are provided, the matrix multiplication should be decomposed and composed
to obtain the correct result. As shown in Fig. 3a, each 4-bit×2-bit multiplication is decomposed into
two 2-bit×2-bit multiplications. Therefore, this computation needs four 2-bit×2-bit multiplications
and two of them have to be shifted left with 2 bits (see Fig. 3b). If we follow a straightforward
method presented by Sharma et al. (2018) to obtain “meaningful” intermediate values during the
computation, i.e., obtain the result of 7 × 1 and then the result of 6 × 2, four multiplications, two
shift operations and three additions are necessary, as shown in Fig. 3c. This indicates that four
2-bit×2-bit multipliers, two 4-bit adders and one 6-bit adder will be utilized for the computation.

Fig. 3d shows the decomposition and composition flow based on our idea: if we only care the final
result but not the intermediate values, the partial results which have the same shift distances can
be composed together before the shift operation. Afterwards, this matrix multiplication needs four
multiplications, three additions and only one shift operation. Thus, four 2-bit×2-bit multipliers and
three 4-bit adders will be utilized.

2.2 CONTRIBUTIONS OF OUR PROPOSED DECOMPOSITION STRATEGY

The contributions and advantages of this proposed work are twofold:

• We propose a decomposition strategy for low-power decomposable multiplication-
accumulation operations. Based on our decomposition strategy, longer bit-width multi-
plication can be departed and composed with the results of shorter bit-width MACs. There-
fore, compared with a non-decomposable multiplier/MAC, when a DNN has its activations
and weights being quantized into variable bit-widths among different layers, our decom-
posable MAC can generate the matrix multiplication results with less energy consumption.

• According to our proposed decomposition strategy, the partial results which have the same
shift distance are composed together before shifted and added with other partial results.
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(a)

(b) (c)

Figure 4: 2m-bit×2m-bit multiplication

Instead of designing a decomposable multiplier to construct a systolic array by straight-
forward decomposition methods, we efficiently utilize the shorter bit-width MACs within
a systolic array. Hence, our decomposable MAC has less power overhead of connecting
signals among multiplication blocks/modules physically.

3 DETAILS OF OUR PROPOSED DECOMPOSABLE MAC

After given an illustrative example for the major idea of our decomposition strategy, we will intro-
duce the detailed concept and architecture of our proposed decomposable MAC in this section.

3.1 CONCEPT OF OUR DECOMPOSITION STRATEGY

Our decomposition strategy can be extended to any multiplication with variable bit-widths. As illus-
trated in Fig. 4a, if the inputs of a multiplication are represented as 2m-bit integers andm-bit×m-bit
multipliers are provided, the multiplication can be departed into four m-bit×m-bit multiplications.
Fig. 4b shows that when the straightforward method presented by Sharma et al. (2018) is applied,
it needs two kinds of shifters (one is for left-shift with 2m bits and the other is for left-shift with m
bits) and three shift operations for the computation. With our decomposition strategy, it needs one
shifter and two shift operations as shown in Fig. 4c. For both Fig. 4b and 4c, two 2m-bit adders
and one 3m-bit adder will be used. If an m-bit×m-bit multiplier is provided and the inputs of a
multiplication are l ×m-bit integers a and b, the multiplication result can be obtained by:

c = a× b = (

l−1∑
i=0

2i·mai)(

l−1∑
i=0

2i·mbi) =

2l−2∑
i=0

(2i·m
i∑

j=0

ajbi−j) (1)

where ai and bi are m-bit integers expressing a and b by a =
∑l−1

i=0 2
i·mai and b =

∑l−1
i=0 2

i·mbi,
respectively. With our decomposition strategy, the multiplication only needs l2m-bit×m-bit multi-
plications, 2l − 2 shifts and totally (4l2 − 5l + 1)×m 1-bit full adders (FAs), which are much less
than l2 − 1 shifts and at least (l2 × log2 l + l/2) × m FAs with a straightforward decomposition
method.

Furthermore, when our decomposition strategy is applied on matrix multiplication, the number of
FAs for the composition of partial results can be reduced significantly. Suppose that the inputs of
a matrix multiplication are matrices A and B, and the result is matrix C, then every element in C

can be calculated by: cij =
∑N

k=1 akbk where ak and bk are the kth element in row i of matrix A
and the kth element in column j of matrix B, respectively. If the elements in matrices A and B are
2m-bit integers and the given multiplier can perform m-bit×m-bit multiplication, the element cij
can be obtained by departing and composing:

cij =

N∑
k=1

(ak1 × 2m + ak0)(bk1 × 2m + bk0)

= 22m
N∑

k=1

(ak1bk1) + 2m
N∑

k=1

(ak1bk0 + ak0bk1) +

N∑
k=1

ak0bk0

(2)
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(a) A decomposable MAC based on
our proposed decomposition strategy

(b) A configurable multiplier based on the method
presented by Sharma et al. (2018)

Figure 5: Decomposable MAC/multiplier for 2m-bit×2m-bit multiplication

where ak1, ak0, bk1, and bk0 are numbers expressed inm bits and their combination, ak1×2m+ak0
and bk1 × 2m + bk0, represent the value of elements ak and bk, respectively. In addition, the result
of multiplication with power of 2 can be obtained by left-shift operation. Furthermore, the shift
distance can be a constant with the value being m if Equation 2 is rewritten as:

cij = 2m[2m
N∑

k=1

(ak1bk1) +

N∑
k=1

(ak1bk0 + ak0bk1)] +

N∑
k=1

ak0bk0 (3)

When the elements in matrices A and B are represented as l×m-bit integers, the elements in result
matrix C can be obtained by replacing the expressions of ak and bk in Equation 2 as appropriate
polynomials in form of

∑l−1
k=0 dk2

km, where dk is a m-bit integer. In this condition, a straightfor-
ward method needs Nl2−N shifts, but our decomposition strategy still needs only 2l− 2 shifts. To
perform the matrix multiplication with appropriate hardware, we describe the detailed architecture
in the following subsection.

3.2 ARCHITECTURE OF OUR PROPOSED DECOMPOSABLE MAC

According to our decomposition strategy, a decomposable MAC can be constructed by connecting
the output of an m-bit×m-bit MAC to a multiplexer (MUX) for the selection between shifted and
non-shifted results as illustrated in Fig. 5a.

Table 1 lists the number of FAs and 1-bit 2-to-1 MUXs of two multipliers and one MAC, including
a non-decomposable 2m-bit×2m-bit multiplier, a straightforward decomposable multiplier and the
MAC based on our decomposition strategy. Suppose that these multipliers use array multipliers
for the multiplication and the decomposable ones use ripple-carry adders for the partial product
combination (the applied multipliers and adders can be any kind of existing multipliers and adders,
and we choose array multipliers and ripple-carry adders here for simplicity). In this condition, the
non-decomposable multiplier contains 2m(2m− 1) = 4m2 − 2m FAs.

Based on a straightforward method, a decomposable multiplier requires enough multiplication units
in their design, e.g., fourm-bit×m-bit multipliers are necessary for a 2m-bit×2m-bit multiplication.
In addition, the decomposable multiplier needs to select the required combination of the results
(four m-bit×m-bit, two m-bit×2m-bit, two 2m-bit×m-bit, or one 2m-bit×2m-bit multiplication

Table 1: Comparisons of required FAs and MUXs

#FAs for multiplication #FAs for composition #MUXs
Non-decomposition

(one 2m× 2m multiplier) 4m2 − 2m 0 0
Straightforward decomposition method

(four m×m multipliers) 4m2 − 4m 7m 42m
Our decomposition strategy

(one m×m MAC) m2 −m 4m 4m
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Figure 6: Architecture of our systolic array of decomposable MACs

results), and then add them together. Therefore, 7m FAs and 42m MUXs are required for the
composition of a straightforward decomposable multiplier.

However, the decomposable MAC based on our decomposition strategy can use a single m-bit×m-
bit multiplication unit and a 4m-bit adder to achieve scalability, as illustrated in Fig. 5. The number
of required MUXs can be 4m because our decomposable MAC only needs to select the result with
correct shift distance from the accumulation result. Thus, the number of required FAs and MUXs
for composition based on our decomposition strategy can be less than those required by the straight-
forward decomposable multiplier. Because the longest path in our decomposable MAC is shorter,
the delay of our decomposable MAC can be less than both delays of the non-decomposable multi-
plier and the straightforward decomposable multiplier. Accordingly, the energy consumption of our
decomposable MAC can also be less.

Our decomposition strategy can be applied on a systolic array (Kung & Leiserson, 1979; Kung,
1982) of MACs to construct a more energy-efficient MAC for DNN computation. Fig. 6 illustrates
the block diagram of our decomposable MAC, which consists of a systolic array of anN×N grid of
shorter bit-width MACs and N accumulation units. Each MAC unit can perform m-bit×m-bit mul-
tiplication and (2m+ log2N)-bit accumulation, where m is the basic length for the decomposable
multiplication and 2m+log2N is the minimum length for representing the maximum accumulation
result of N MACs within the same column of the systolic array. In addition, each accumulation unit
contains an M -bit accumulator and a MUX for the selection between shifted and non-shifted partial
results, where M is the minimum length for the representation of elements in a result matrix.

In our proposed decomposable MAC, a 2-dimensional systolic array of shorter bit-width MACs is
employed to calculate the partial results of matrix multiplication. By connecting multiple MACs
as the processing elements in the systolic array, data can be passed and computed through more
processing elements after I/O operation. The weights are pre-loaded to the registers of corresponding
MACs before the matrix multiplication execution. As shown in Fig. 6, the activations of each layer
is propagated from left to right and the partial results of matrix multiplication are accumulated from
top to bottom cycle by cycle.

After all the partial results with common shift distance are accumulated together, these pieces should
be shifted and composed. As illustrated in Fig. 6, we connect the outputs of the systolic array to
MUXs for selection between shifted and non-shifted partial results. Therefore, according to our
decomposition strategy, reordering the addition sequence of partial results in matrix multiplication
with common shift distances not only reduce the number of shift operations and the required MUXs
significantly, but also reduce the connecting signals among multiplication blocks/modules physi-
cally.

4 EXPERIMENTAL RESULTS

In this section, we compare a systolic array of MACs based on our decomposition strategy to systolic
arrays of non-decomposable MACs and straightforward decomposable MACs. In the experiments,
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we implement the systolic arrays of MACs in Verilog and the MACs are synthesized by Synopsys
Design Compiler (DC) with Synopsys SAED EDK 28nm standard cell library. Moreover, the basic
arithmetic components, including adders and multipliers, are provided by DesignWare.

4.1 BASIC COMPARISONS WITH DIFFERENT SYSTOLIC ARRAY LENGTH

Table 2: Latency, area and energy consumption of a systolic array of MACs

Latency(ns) Area(µm2) Energy(pJ)

Non-decomposable 2.00 311679.56 54.144
Straightforward decomposable 2.72 601602.42 110.989

Our decomposable 1.16 516512.40 37.764

To evaluate the latency, area and energy consumption of a non-decomposable MAC, a straight-
forward decomposable MAC and our decomposable MAC, we implement these systolic arrays in
Verilog. Three different size of systolic arrays are implemented, including a 16×16 grid of MACs, a
32×32 grid of MACs and 64×64 grid of MACs. To align the capability of performing matrix mul-
tiplication in each cycle as the systolic array of straightforward decomposable MACs does, the size
of our systolic array is adjusted to be 16×64, 32×128, and 64×256. Within these systolic arrays,
the width of accumulators/adders of MACs have been adjusted by considering the corresponding
maximum length of accumulation in the systolic array. In addition, all of these three systolic arrays
of MACs have ability to compute correct result of multiplication with its input bit-width being 4-bit
× 4-bit, 8-bit × 4-bit, and 8-bit × 8-bit.

Table 2 shows the synthesized results of three systolic arrays with a 16×16 grid of non-
decomposable MACs, a 16×16 grid of straightforward decomposable MACs, and a 16×64 grid of
MACs based on our proposed decomposition strategy. The first column is the type of MACs utilized
within the systolic array. The second column shows the latency of each type of MAC. Columns three
and four show the area and energy consumption of the whole systolic array of MACs. To accelerate
the operations of matrix multiplication, a straightforward decomposable MAC is designed to per-
form as one MAC with an 8-bit×8-bit multiplier, two parallel MACs with 8-bit×4-bit multipliers,
or four parallel MACs with 4-bit×4-bit multipliers. Hence, additional components are necessary
for the construction of a straightforward decomposable MAC (as mentioned in Section 3.2), and
thus the whole area and energy consumption of the systolic array of straightforward decomposable
MACs are larger than those of the systolic array of non-decomposable MACs. To reduce the energy
consumption of matrix multiplication, our decomposition strategy reuses the connections within the
systolic array to compose partial results of multiplication for the final correct results. Therefore, the
input bit-width of our MAC unit just needs to be 4-bit×4-bit, which significantly reduce the area
and energy consumption of decomposable MACs.

In Fig. 7, to compare the synthesized results more clearly, we record their energy consumption
and performance in three different operation conditions, including multiplication with all the bit-
width of activations and weights being 4×4, 8×4, and 8×8, respectively. As shown in Fig. 7a, the
energy consumption of the systolic array with our proposed decomposition strategy is much less
than that applied a straightforward decomposition method. In Fig. 7b, the performance of both

(a) Normalized average energy consumption (b) Normalized performance

Figure 7: Normalized average energy consumption and performance of the systolic arrays of de-
composable MACs (normalized to those of the systolic array of non-decomposable MACs)

7



Under review as a conference paper at ICLR 2020

systolic arrays of decomposable MACs are higher than that of non-decomposable MACs when op-
erating multiplication with all the bit-width being 4×4 and 8×4. This is because both arrays of
decomposable MACs can generate four times 4-bit×4-bit multiplication results and double 8×4
multiplication results compared with an array of non-decomposable MACs. However, when oper-
ating 8-bit×8-bit multiplication, the performance of the systolic array of straightforward decom-
posable MACs is lower than the non-decomposable one. Due to the connecting signals among the
multiplication units of a straightforward decomposable multiplier, its latency will be longer than
a non-decomposable multiplier and cause lower throughput when operating as one MAC with an
8-bit×8-bit multiplier. The latency of the MAC based on our proposed decomposition strategy is
shorter than the non-decomposable one, and thus the performance of our systolic array can still be
higher than the non-decomposable one when operating 8-bit×8-bit multiplication.

4.2 ENERGY EFFICIENCY WHEN OPERATING MATRIX MULTIPLICATION OF DEEP NEURAL
NETWORKS

Figure 8: Energy reduction of the systolic array of MACs applied our decomposition strategy (nor-
malized to the energy consumption of the systolic array of non-decomposable MACs)

To evaluate the energy efficiency of the systolic array of MACs applying our decomposition strategy,
we perform matrix multiplication in deep learning applications according to the bit-width require-
ment mentioned in Section 1 with the synthesized systolic arrays shown in Table 2.

Fig. 8 shows the energy consumption of the systolic array of MACs based on our decomposition
strategy compared with a systolic array of non-decomposable MACs. When a DNN has its acti-
vations and weights being quantized into shorter bit-width, the systolic array of non-decomposable
MACs still operate 8-bit×8-bit multiplication within its multiplication units, and thus it cannot ef-
ficiently obtain the benefit energy saving from the quantization. However, due to applying shorter
bit-width MACs for the decomposition and MUXs for the selection between shifted and non-shifted
accumulation results for the composition, our decomposable MAC has significant energy reduction
when the required bit-width of multiplication is shorter.

5 CONCLUSION

In this paper, we propose a decomposition strategy for the energy efficiency of quantized DNN
computation. According to our proposed strategy, longer bit-width multiplication can be departed
and composed with partial results of shorter bit-width MACs. Therefore, compared with a non-
decomposable MAC, our decomposable MAC can generate matrix multiplication results with less
energy consumption, when a DNN has its activations and weights being quantized into variable bit-
widths among different layers. In addition, we efficiently utilize the MACs within a systolic array
for the composition of partial results. Hence, a systolic array of MACs based on our decomposition
strategy has less power overhead than a systolic array of straightforward decomposable MACs.
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A APPENDIX

A.1 EXTENSION TO SIGNED MULTIPLICATION

Our proposed decomposition strategy can be applied on signed multiplication by replacing the m-
bit×m-bit unsigned multiplier into a multiplier which can perform combined unsigned/signed mul-
tiplication. For example, according to the two’s complement multiplication developed by Baugh &
Wooley (1973), a 4-bit×4-bit signed multiplication can be illustrated as Fig. 9a. The correct result
of signed multiplication can be obtained by inverting some of the product terms and inserting a one
to the left of the first partial product term. To support decomposable signed multiplication, flag
signals Sa for the determination of the most significant bit (MSB) of signed integer a, Sb for the

(a) A 4-bit×4-bit signed multiplication

(b) A 2-bit×2-bit multiplier for combined un-
signed/signed multiplication

Figure 9: A signed multiplication with decomposable multipliers
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determination of the MSB of signed integer b, and Lb for the determination of the least significant
bit of b should be provided in each 2-bit×2-bit multiplier. When the partial product terms of a 2-
bit×2-bit multiplier which replaces the unsigned multiplier is the same as those shown in Fig. 9b,
the decomposable multiplier can support signed multiplication.
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