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ABSTRACT

In many applications, it is desirable to extract only the relevant information from
complex input data, which involves making a decision about which input features
are relevant. The information bottleneck method formalizes this as an information-
theoretic optimization problem by maintaining an optimal tradeoff between com-
pression (throwing away irrelevant input information), and predicting the target. In
many problem settings, including the reinforcement learning problems we consider
in this work, we might prefer to compress only part of the input. This is typically
the case when we have a standard conditioning input, such as a state observation,
and a “privileged” input, which might correspond to the goal of a task, the output of
a costly planning algorithm, or communication with another agent. In such cases,
we might prefer to compress the privileged input, either to achieve better gener-
alization (e.g., with respect to goals) or to minimize access to costly information
(e.g., in the case of communication). Practical implementations of the information
bottleneck based on variational inference require access to the privileged input in
order to compute the bottleneck variable, so although they perform compression,
this compression operation itself needs unrestricted, lossless access. In this work,
we propose the variational bandwidth bottleneck, which decides for each example
on the estimated value of the privileged information before seeing it, i.e., only
based on the standard input, and then accordingly chooses stochastically, whether
to access the privileged input or not. We formulate a tractable approximation to
this framework and demonstrate in a series of reinforcement learning experiments
that it can improve generalization and reduce access to computationally costly
information.

1 INTRODUCTION

A model that generalizes effectively should be able to pick up on relevant cues in the input while
ignoring irrelevant distractors. For example, if one want to cross the street, one should only pay
attention to the positions and velocities of the cars, disregarding their color. The information
bottleneck (Tishby et al., 2000) formalizes this in terms of minimizing the mutual information
between the bottleneck representation layer with the input, while maximizing its mutual information
with the correct output. This type of input compression can improve generalization (Tishby et al.,
2000), and has recently been extended to deep parametric models, such as neural networks where it
has been shown to improve generalization (Achille & Soatto, 2016; Alemi et al., 2016).

The information bottleneck is generally intractable, but can be approximated using variational
inference (Alemi et al., 2016). This variational approach parameterizes the information bottleneck
model using a neural network (i.e., an encoder). While the variational bound makes it feasible to
train (approximate) information bottleneck layers with deep neural networks, the encoder in these
networks – the layer that predicts the bottleneck variable distribution conditioned on the input – must
still process the full input, before it is compressed and irrelevant information is removed. The encoder
itself can therefore fail to generalize, and although the information bottleneck minimizes mutual
information with the input on the training data, it might not compress successfully on new inputs. To
address this issue, we propose to divide our input into two categories: standard input and privileged
input, and then we aim to design a bottleneck that does not need to access the privileged input before
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deciding how much information about the input is necessary. The intuition behind not accessing the
privileged input is twofold: (a) we might want to avoid accessing the privileged input because we
want to generalize with respect to it (and therefore compress it) (b) we actually would prefer not to
access it (as this input could be costly to obtain).

The objective is to minimize the conditional mutual information between the bottleneck layer and the
privileged input, given the standard input. This problem statement is more narrow than the standard
information bottleneck, but encompasses many practical use cases. For example, in reinforcement
learning, which is the primary subject of our experiments, the agent can be augmented with some
“privileged” information in the form of a model based planner, or information which is the result of
communication with another agent. This “additional” information can be seen as a privileged input
because it requires the agent to do something extra to obtain it.

Our work provides the following contributions. First, we propose a variational bandwidth bottleneck
(VBB) that does not look at the privileged input before deciding whether to use it or not. At a high
level, the network is trained first to examine the standard input, and then stochastically decide whether
to access the privileged input or not. Second, we illustrate several applications of this approach to
reinforcement learning, in order to construct agents that can stochastically determine when to evaluate
costly model based computations, when to communicate with another agent, and when to access the
memory. We experimentally show that the proposed model produces better generalization, as it learns
when to use (or not use) the privileged input. For example, in the case of maze navigation, the agent
learns to access information about the goal location only near natural bottlenecks, such as doorways.

2 PROBLEM FORMULATION

We aim to address the generalization issue described in the introduction for an important special
case of the variational information bottleneck, which we refer to as the conditional bottleneck. The
conditional bottleneck has two inputs, a standard input, and a privileged input, that are represented by
random variables S and G, respectively. Hence, S,G,Y are three random variables with unknown
distribution pdist(S,G,Y).

The information bottleneck provides us with a mechanism to determine the correct output while
accessing the minimal possible amount of information about the privileged input G. In particular, we
formulate a conditional variant of the information bottleneck to minimize the mutual information
between the bottleneck layer and the privileged input I(Z,G|S), given the standard input while
avoiding unnecessary access to privileged input G. The proposed model consists of two networks
(see Fig. 1): The encoder network that takes in the privileged input G as well as the standard
input S and outputs a distribution over the latent variable z such that z ∼ p(Z|G,S). The decoder
network pdec(Y|Z,S) takes the standard input S and the compressed representation Z and outputs
the distribution over the target variable Y.

3 VARIATIONAL BOTTLENECK ON STANDARD INPUT AND PRIVILEGED INPUT

The information bottleneck (IB) objective (Tishby et al., 2000) is formulated as the maximization of
I(Z;Y )− βI(Z;X), where X refers to the input signal, Y refers to the target signal, Z refers to the
compressed representation of X , and β controls the trade-off between compression and prediction.
The IB has its roots in channel coding, where a compression metric I(Z;X) represents the capacity
of the communication channel between Z andX . Assuming a prior distribution r(Z) over the random
variable Z, constraining the channel capacity corresponds to limiting the information by which the
posterior p(Z|X) is permitted to differ from the prior r(Z). This difference can be measured using
the Kullback-Leibler (KL) divergence, such that DKL(p(Z|X)‖r(Z)) refers to the channel capacity.

Now, we write the equations for the variational information bottleneck, where the bottleneck is learnt
on both the standard input S as well as a privileged input G. The Data Processing Inequality (DPI)
(Cover & Thomas, 2006) for a Markov chain x → z → y ensures that I(x; z) ≥ I(x; y). Hence
for a bottleneck where the input is comprised of both the standard input as well as privileged input,
we have I(Z;G|S) ≥ I(Y ;G|S). To obtain an upper bound on I(Z;G|S), we must first obtain an
upper bound on I(Z;G|S = s), and then average over p(s). We get the following result: We ask the
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reader to refer to the section on the conditional bottleneck in the supplementary material for the full
derivation.

I(Z;G|S) ≤
∑
s

p(s)
∑
g

p(g)DKL(p(Z|s, g)‖r(Z)) (1)
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Figure 1: The variational bandwidth bottleneck: Based on the
standard input S, the channel capacity network determines
the capacity of the bottleneck Z. The channel capacity then
determines the probability of accessing the privileged input.
In the event that the privileged input is not accessed, no part
of the model actually reads its value.

We now introduce our proposed
method, the variational bandwidth bot-
tleneck (VBB). The goal of the vari-
ational bandwidth bottleneck is to
avoid accessing the privileged input
G if it is not required to make an in-
formed decision about the output Y.
This means that the decision about
whether or not to access G must be
made only on the basis of the standard
input S. The standard input is used
to determine a channel capacity, dcap,
which controls how much information
about G is available to compute Z.

If dcap denotes the channel capacity,
one way to satisfy this channel capac-
ity is to access the input losslessly
with probability dcap, and otherwise
send no information about the input
at all. In this communication strategy,
we have p(Z|S,G) = δ(fenc(S,G))
if we choose to access the privileged
input (with probability dcap), where
fenc(S,G) is a deterministic encoder, and δ denotes the Dirac delta function. The full posterior
distribution p(Z|S,G) over the compressed representation can be written as a weighted mixture of
(a) (deterministically) accessing the privileged input and standard input and (b) sampling from the
prior (when channel capacity is low), such that z is sampled using

z ∼ dcap ∗ (δ(fenc(S,G))) + (1− dcap) ∗ r(z). (2)

This modified distribution p(Z|S,G) allows us to dynamically adjusts how much information about
G is transmitted through Z. As shown in the Figure 1, if dcap is set to zero, Z is simply sampled from
the prior and contains no information about G. If it is set to one, the privileged information in G is
deterministically transmitted. The amount of information about G that is transmitted is therefore
determined by dcap, which will depend only on the standard input S.

This means that the model must decide how much information about the privileged input is required be-
fore accessing it. Optimizing the information bottleneck objective with this type of bottleneck requires
computing gradients through the term DKL(p(Z|S,G)‖r(Z)) (as in Eq. 1), where z ∼ p(Z|S,G)
is sampled as in Eq. 2. The non-differentiable binary event, whose probability is represented by
dcap, precludes us from differentiating through the channel capacity directly. In the next sections, we
will first show that this mixture can be used within a variational approximation to the information
bottleneck, and then describe a practical approximation that allows us to train the model with standard
backpropagation.

4.1 TRACTABLE EVALUATION OF CHANNEL CAPACITY

In this section, we show how we can evaluate the channel capacity in a tractable way. We learn
a deterministic function B(S) of the standard input S which determines channel capacity. This
function outputs a scalar value for dcap ∈ (0,1), which is treated as the probability of accessing
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the information about the privileged input. This deterministic function B(S) is parameterized as
a neural network. We then access the privileged input with probability dcap = B(S). Hence, the
resulting distribution over Z is a weighted mixture of accessing the privileged input fenc(S,G)
with probability dcap and sampling from the prior with probability 1− dcap. At inference time,
using dcap, we sample from the Bernoulli distribution b ∼ Bernoulli(dprob) to decide whether to
access the privileged input or not.

4.2 OPTIMIZATION OF THE KL OBJECTIVE

Here, we show the KL objective which allows for tractable optimization of DKL(p(Z|S,G)‖r(Z))
(as in Eq. 2, 1).

Proposition 1 Given the standard input s, privileged input g, bottleneck variable z, and a deter-
ministic encoder fenc(s, g), we can express the DKL between the weighed mixture and the prior
as
DKL(p(z|s, g)‖r(z)) = −dcap log dcap+(1−dcap) log p(f(s, g))−log(dcap∗p(f(g, s))+(1−dcap)

(3)

The proof is given in the section “Tractable Optimization of the KL Objective” in the supplementary
appendix. This equation is fully differentiable with respect to the parameters of f(g, s) and B(s) =
dcap, making it feasible to use standard gradient-based optimizers.

Summary: As in Eq. 2, we approximate p(Z|S,G) as a weighted mixture of fenc(S,G)
and the normal prior, such that z ∼ dcap ∗ (fenc(S,G)) + (1− dcap) ∗ N (0,1). Hence, the
DKL(p(Z|S,G)‖r(Z)) can be seen as a bound on the information bottleneck objective. When
we access the privileged input G, we pay a cost equal to I(Z,G|S), which is bounded by
DKL(p(Z|S,G)‖r(Z)) as in Eq. 1. Hence, optimizing this objective causes the model to avoid
accessing the privileged input when it is not necessary.

5 VARIATIONAL BANDWIDTH BOTTLENECK WITH RL

In order to show how the proposed model can be implemented, we consider a sequential decision
making setting, though our variational bandwidth bottleneck could also be applied to other learning
problems. In reinforcement learning, the problem of sequential decision making is cast within the
framework of MDPs (Sutton et al., 1998). Our proposed method depends on two sources of input,
standard input and “privileged“ input. In reinforcement learning, privileged inputs could be the result
of performing any upstream computation, such as running model based planning. It can also be the
information from the environment, such as the goal or the result of active perception. In all these
settings, the agent must decide whether to access the privileged input or not. If the agent decides
to access the privileged input, then the the agent pays an “information cost.” The objective is to
maximize the expected reward and reduce the cost associated with accessing privileged input, such
that across all states on average, the information cost of using the privileged information is minimal.

We parameterize the agent’s policy πθ(A|S,G) using an encoder penc(Z|S,G) and a decoder
pdec(A|S,Z), parameterized as neural networks. Here, the channel capacity network B(S) would
take in the standard input that would be used to determine channel capacity, depending on which we
decide to access the privileged input as in Section 4.1, such that we would output the distribution
over the actions. That is, Y is A, and πθ(A | S,G) =

∑
z ppriv(z | S,G) pdec(A | S, z). This would

correspond to minimizing I(A;G|S), resulting in the objective
J(θ) ≡ Eπθ

[r]− βI(A;G | S) = Eπθ
[r]− βI(Z;G | S) , (4)

where Eπθ
denotes an expectation over trajectories generated by the agent’s policy. We can mini-

mize this objective with standard optimization methods, such as stochastic gradient descent with
backpropagation.

6 RELATED WORK

A number of prior works have studied information-theoretic regularization in RL. For instance, van
Dijk & Polani (2011) use information theoretic measures to define relevant goal-information, which
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then could be used to find subgoals. Our work is related in that our proposed method could be
used to find relevant goal information, but without accessing the goal first. Information theoretic
measures have also been used for exploration (Still & Precup, 2012; Mohamed & Rezende, 2015;
Houthooft et al., 2016; Gregor et al., 2016). More recently Goyal et al. (2019) proposed InfoBot,
where “decision” states are identified by training a goal conditioned policy with an information
bottleneck. In InfoBot, the goal conditioned policy always accesses the goal information, while the
proposed method conditionally access the goal information. The VBB is also related to work on
conditional computation. Conditional computation aims to reduce computation costs by activating
only a part of the entire network for each example (Bengio et al., 2013). Our work is related in the
sense that we activate the entire network, but only conditionally access the privileged input.

Another point of comparison for our work is the research on attention models ((Bahdanau et al.,
2014; Mnih et al., 2014; Xu et al., 2015)). These models typically learn a policy, that allows them to
selectively attend to parts of their input. However, these models still need to access the entire input
in order to decide where to attend. Our method dynamically decides whether to access privileged
information or not. As shown in our experiments, our method performs better than the attention
method of Mnih et al. (2014).

Recently, many models have been shown to be effective at learning communication in multi-agent
reinforcement learning (Foerster et al., 2016; Sukhbaatar et al., 2016). (Sukhbaatar et al., 2016) learns
a deep neural network that maps inputs of all the agents to their respective actions. In this particular
architecture, each agent sends its state as the communication message to other agents. Thus, when
each agent takes a decision, it takes information from all the other agents. In our proposed method,
each agent communicates with other agents only when its necessary.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed method and study the following questions: (a) Better
generalization? Does the proposed method learn an effective bottleneck that generalizes better
on test distributions, as compared to the standard conditional variational information bottleneck?
(b) Learn when to access privileged input?: Does the proposed method learn when to access the
privileged input dynamically, minimizing unnecessary access? . We compare the proposed method to
the following methods and baselines:

Conditional variational information bottleneck (VIB): The agent always access the privileged
input, with a VIB using both the standard and the privileged input (InfoBot (Goyal et al., 2019)).

Deterministically accessing privileged input: The agent can deterministically access both the
state as well as the privileged input. This has been shown to improve generalization in RL problems
UVFA(Schaul et al., 2015).

Accessing Information at a cost (AIC): We compare the proposed method to simpler
reinforcement-learning baselines, where accessing privileged information can be formalized as
one of the available actions that lead to the same state but with more information, at the cost of a
small negative reward. This baseline evaluates whether the explicit VBB formulation provides a
benefit over a more conventional approach, where the MDP itself is reformulated to account for the
cost of information.

Randomly accessing goal (RAG) - Here, we compared the proposed method to the scenario where
we randomly access the privileged input (e.g., 50% of the time). This baseline evaluates whether the
VBB is selecting when to access the goal in an intentional and intelligent way.

7.1 DECIDING WHEN TO RUN EXPENSIVE INFERENCE ALGORITHM - MODEL BASED
PLANNER

Model-based planning can be computationally expensive, but beneficial in temporally extended
decision making domains. In this setting, we evaluate whether the VBB can dynamically choose to
invoke the planner as infrequently as possible, while still attaining good performance. While it is
easy to plan using a planner (like a model based planner, which learns the dynamics model of the
environment), it is not very cheap, as it involves running a planner at every step (which is expensive).
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(a) Maze World (b) Result of Running Expensive Infer-
ence Algorithm

Figure 2: Figure on the left shows the environment, where the agent needs to go from blue dot to
green dot. Performance of the proposed method on Maze World: On the right, it shows sampled
trajectories, and along the trajectories the probability of accessing privileged input (i.e. running
model based planner). Here, the light color means high channel capacity dcap and darker color (red)
means low channel capacity dcap, i.e. high probability of accessing privileged input (the output of
running model based planner). One can see that it is more likely the agent is going to choose to run
model based planning at branching points.

So, here we try to answer whether the agent can decide based on the standard input when to access
privileged input (the output of model based planner by running the planner).

Experimental Setup: We consider a maze world as shown in Figure 2(a). The agent is represented
by a blue dot, and the agent has to reach the goal (represented by a green dot). The agent has access
to a dynamics model of the environment (which is pretrained and represented using a parameterized
neural network). In this task, the agent only gets a partial view of the surrounding i.e. the agent
observes a small number of squares in front of it. The agent has to reach the goal position from
the start position, and agent can use the pretrained dynamics model to sample multiple plausible
trajectories, and the output of the dynamics model is fed as a conditional input to the agent’s policy
(similar to (Racanière et al., 2017)), thus the agent can use this dynamics model to predict possible
futures, and then make an informed decision based on its current state as well as the result of the
prediction from the dynamic model.

Expensive Inference algorithm % of times

Near the junction 72% ± 5%
In the Hallway 28% ± 4%

Table 1: Running Expensive Upstream
Algorithm- Here, we analyze when the
agent access the output of the planner. We
find that most of the times agent access the
privileged information near the junctions
(output of model based planner).

In this setup, the current state of the agent (i.e. the
egocentric visual observation) acts as the standard input
S, and the result of running the planner acts as the
privileged input G. In order to avoid running the model
based planner, the agent needs to decide when to access
the more costly planner.

Qualitative Results: Figure 2(b) shows that the agent
trained with the proposed algorithm learns when to
access the privileged input. As evident by the figure,
the agent learns to access the output of the planner at
the doorways and the junctions, which are the natural
decisions points in the environment. Further analysis
on where the agent accesses the planner is shown in
Table 1.

7.2 GOAL DRIVEN NAVIGATION — BETTER GENERALIZATION

The goal of this experiment is to show that, by selectively choosing when to access the privileged
input, the agent can generalize better with respect to this input. We consider an agent navigating
through a maze comprising sequences of rooms separated by doors, as shown in Figure 7. We use a
partially observed formulation of the task, where the agent only observes a small number of squares
ahead of it. These tasks are difficult to solve with standard RL algorithms, not only due to the partial
observability of the environment but also the sparsity of the reward, since the agent receives a reward
only upon reaching the goal (Chevalier-Boisvert et al., 2018). The low probability of reaching the
goal randomly further exacerbates these issues. The privileged input in this case corresponds to the
agent’s relative distance to the goal G. At junctions, the agent needs to know where the goal is so that
it can make the right turn. While in a particular room, the agent doesn’t need much information about
the goal. Hence, the agent needs to learn to access goal information when it is near a door, where it is
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most valuable. The current visual inputs act as a standard input S, which is used to compute channel
capacity dcap.

RoomNXSY
Train RoomN6S6 RoomN12S10
RoomN2S4 (UVFA)) 66% ± 3% 49% ± 3%
RoomN2S4 (InfoBot) 72% ± 2% 55% ± 3%
RoomN2S4 (RAG) 60% ± 5% 41% ± 3%
RoomN2S4 (AIC) 57% ± 10% 43% ± 5%
RoomN2S4 (VBB) 82% ± 4% 60% ± 2%

(a)

FindObjSY
Train FindObjS7 FindObjS10
FindObjS5 (UVFA)) 40% ± 2% 24% ± 3%
FindObjS5 (InfoBot) 46% ± 4% 22% ± 3%
FindObjS5 (RAG) 38% ± 3% 12% ± 4%
FindObjS5 (AIC) 39% ± 2% 16% ± 4%
FindObjS5 (VBB) 64% ± 3% 52% ± 2%

(b)

Table 2: Generalization of the agent to larger grids in RoomNXSY envs and FindObj envs. Success
of an agent is measured by the fraction of episodes where the agent was able to navigate to the goal
in 500 steps. Results are averaged over 500 examples, and 5 different random seeds.

(a) FindObjS7 (b) FindObjS10

Figure 3: Partially Observable FindObjSX environments —
The agent is placed in the central room. An object is placed
in one of the rooms and the agent must navigate to the object
in a randomly chosen outer room to complete the mission.
The agent again receives an egocentric observation (7 x 7
pixels), and the difficulty of the task increases with X . For
more details refer to supplementary material.

Experimental setup: To investi-
gate if agents can generalize by se-
lectively deciding when to access the
goal information, we compare our
method to InfoBot ((Goyal et al.,
2019)) (a conditional variant of VIB).
We use different mazes for training,
validation, and testing. We evaluate
generalization to an unseen distribu-
tion of tasks (i.e., more rooms than
were seen during training). We exper-
iment on both RoomNXSY (X num-
ber of rooms with atmost size Y , for
more details, refer to the Appendix
G) as well as the FindObjSY environ-
ment. For RoomNXSY, we trained on
RoomN2S4 (2 rooms of at most size
6), and evaluate on RoomN6S6 (6 rooms of at most size 6) and RoomN12S10 (12 rooms, of at most
size 10). We also evaluate on the FindObjSY environment, which consists of 9 connected rooms of
size Y − 2 × Y − 2 arranged in a grid. For FindObjSY, we train on FindObjS5, and evaluate on
FindObjS7 and FindObjS10.

Method Percentage of times

VBB 76% ± 6%
InfoBot (Goyal et al., 2019) 60% ± 3%
AIC 62% ± 6%

Table 3: Goal Driven Navigation - Percentage of
time steps on which each method acsess the goal in-
formation when the agent is near the junction point
(or branching points in the maze. We show that the
proposed method learns to access the privileged
input (in this case, the goal) only when necessary.

Results: Tables 3a, 3b compares an agent
trained with the proposed method to a goal
conditioned baseline (UVFA) (Schaul et al.,
2015), a conditional variant of the VIB (Goyal
et al., 2019), as well as to the baseline where
accessing goal information is formulated as
one of the actions (AIC). We also investigate
how many times the agent accesses the goal
information. We first train the agent on Mul-
tiRoomN2S4, and then evaluate this policy on
MultiRoomN12S10. We sample 500 trajecto-
ries in MultiRoomN12S10env. Ideally, if the
agent has learned when to access goal informa-
tion (i.e., near the doorways), the agent should
only access the goal information when it is near a door. We take sample rollouts from the pretrained
policy in this new environment and check if the agent is near the junction point (or doorway) when
the agent access the goal information. Table 3 quantitatively compares the proposed method with
different baselines, showing that the proposed method indeed learns to generalize with respect to the
privileged input (i.e., the goal).
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7.3 MULTIAGENT COMMUNICATION — LEARNING WHEN TO ACCESS THE PRIVILEGED
INPUT

Next, we investigate the case where the privileged input is expensive to obtain, and we therefore
would like to minimize how often the agent must access it. We specifically consider multiagent
communication, where in order to solve a task, agents must communicate with other agents. Here we
show that selectively deciding when to communicate with another agent can result in better learning.

Experimental setup: We use the setup proposed by Mordatch & Abbeel (2017). The environment
consists of N agents and M landmarks. Both the agents and landmarks exhibit different characteristics
such as different color and shape type. Different agents can act to move in the environment. They can
also be affected by the interactions with other agents. Asides from taking physical actions, agents
communicate with other agents using verbal communication symbols. Each agent has a private goal
that is not observed by another agent, and the goal of the agent is grounded in the real physical
environment, which might include moving to a particular location. It could also involve other agents
(like requiring a particular agent to move somewhere) and hence communication between agents is
required. We consider the cooperative setting, in which the problem is to find a policy that maximizes
expected return for all the agents. In this scenario, the current state of the agent is the standard input
S, and the information which might be obtained as a result of communication with other agents is the
privileged input G. For more details refer to the Appendix (D).

Model 6 Agents 10 agents

Emergent Communication (Mordatch & Abbeel, 2017) 4.85 (100%) ± 0.1% 5.44 (100%) ± 0.2%
Randomly Accessing (RAG) 4.95 (50%) ± 0.2% 5.65 (50%) ± 0.1%
InfoBot (Goyal et al., 2019) 4.81 (100%) ± 0.2% 5.32 (100%) ± 0.1%
VBB (ours) 4.72 (23%) ± 0.1% 5.22 (34%) ± 0.05%

Table 4: Multiagent communication: The VBB performs better, as compared to the baselines. In
the baseline scenario, all of the agents communicate with all the other agents all the time. Averaged
over 5 random seeds.

Tasks: Here we consider two tasks: (a) 6 agents and 6 landmarks, (b) 10 agents and 10 landmarks.
The goal is for the agents to coordinate with each other and reach their respective landmarks. We
measure two metrics: (a) the distance of the agent from its destination landmark, and (b) the
percentage of times the agent accesses the privileged input (i.e., information from the other agents).
Table 4 shows the relative distance as well as the percentage of times agents access information from
other agents (in brackets).

Results: Table 4 compares an agent trained with proposed method to (Mordatch & Abbeel, 2017)
and Infobot (Goyal et al., 2019). We also study how many times an agent access the privileged
input. As shown in Table 4 (within brackets) the VBB can achieve better results, as compared to
other methods, even when accessing the privileged input only less than 40% of the times.

7.4 INFORMATION CONTENT FOR VBB AND VIB

Task Infobot Bernoulli- Reinforce VBB

Navigation Env 4.45 (100%) 5.34 (74%) 3.92 (20%)
Sequential MNIST 3.56 (100%) 3.63 (65%) 3.22 (46%)
Model Based RL 7.12 (100%) 7.63 (65%) 6.94 (15%)

Table 5: The VBB performs better, as compared to the baselines.
The VBB transmits a similar number of bits, while accessing
privileged information a fraction of the time (in brackets % of
times access to privileged information). Using REINFORCE to
learn the parameter of the Bernoulli, does not perform as well as
the proposed method.

Channel Capacity: We can
quantify the average information
transmission through both the
VBB and the VIB in bits. The
average information is similar to
the conventional VIB, while the
input is accessed only a fraction
of the time (the VIB accesses it
100% of the time). In order to
show empirically that the VBB is
minimizing information transmis-
sion (Eq. 1 in main paper), we
measure average channel capacity DKL(p(z|s, g)‖r(z)) numerically and compare the proposed
method with the VIB, which must access the privileged input every time (See Table 5).
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8 DISCUSSION

We demonstrated how the proposed variational bandwidth bottleneck (VBB) helps in generalization
over the standard variational information bottleneck, in the case where the input is divided into a
standard and privileged component. Unlike the VIB, the VBB does not actually access the privileged
input before deciding how much information about it is needed. Our experiments show that the
VBB improves generalization and can achieve similar or better performance while accessing the
privileged input less often. Hence, the VBB provides a framework for adaptive computation in deep
network models, and further study applying it to domains where reasoning about access to data and
computation is an exciting direction for future work. Current limitation of the proposed method is that
it assumes independence between standard input and the privileged input but we observe in practice
assuming independence does not seem to hurt the results. Future work would be to investigate how
we can remove this assumption.
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A CONDITIONAL BOTTLENECK

In this section, we construct our objective function, such that minimizing this objective function
minimizes I(Y,G|S). Recall that the IB objective (Tishby et al., 2000) is formulated as the minimiza-
tion of I(Z,X)− βI(Z, Y ), where X refers to the input, Y refers to the model output , Z refers to
compressed representation or the bottleneck. For the proposed method, we construct our objective as
follows: we minimize the mutual information between privileged input and output given the standard
input, I(Y,G|S), to encode the idea that the we should avoid unnecessary access to privileged input
G, and maximize the I(Z, Y ). Hence, for the VBB, using the data processing inequality (Cover &
Thomas, 2006), this implies that

I(Z;G|S) ≥ I(Y ;G|S). (5)

To obtain an upper bound on I(G;Z|S), we must first obtain an upper bound on I(G;Z|S = s), and
then we average over p(s). We get the following result:

I(G;Z|S = s) =
∑
z,g

p(g|s)p(z|s, g) log p(z|s, g)
p(z|s)

, (6)

We assume that the privileged input G and the standard input S are independent of each other, and
hence p(g|s) = p(g). we get the following upper bound:

I(G;Z|S = s) ≤
∑
g

p(g)
∑
z

p(z|s, g) log p(z|s, g)
pprior(z)

=
∑
g

p(g)DKL(p(z|s, g)‖pprior(Z))
(7)
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where the inequality in the last line is because we replace p(z|s) with pprior(z). We also drop the
dependence of the prior z on the standard input s. While this loses some generality, recall that
the predictive distribution p(y|s, z) is already conditioned on s, so information about s itself does
not need to be transmitted through z . Therefore, we have that DKL[p(Z|S)‖pprior(z)] ≥ 0 ⇒∑
z p(z|s) log p(z|s) ≥

∑
z p(z|s) log pprior(z). Marginalizing over the standard input therefore

gives us
I(Z;G|S) ≤

∑
s

p(s)
∑
g

p(g)DKL[p(z|s, g)‖pprior(z)]

=
∑
s

p(s)
∑
g

p(g)DKL[p(z|s, g)‖pprior(z)]
(8)

We approximate p(z|s, g) as a weighted mixture of penc(zenc|s, g) and the normal prior such that
z ∼ dcap ∗ (penc(zenc|s, g)) + (1− dcap) ∗ N (0, 1). Hence, the weighted mixture p(z|s, g) can be
seen as a bound on the information bottleneck objective. Whenever we access the privileged input
G, we pay an information cost (equal to I(Z,G|S) which is bounded by DKL(p(z|s, g)‖pprior(z)).
Hence, the objective is to avoid accessing the privileged input, such that on average, the information
cost of using the privileged input is minimal.

B EASY OPTIMIZATION OF KL OBJECTIVE

Here, we first show how the weighted mixture can be a bound on the information bottleneck objective.

Recall,

DKL(P‖Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(9)

Hence, DKL(p(z|s, g)‖pprior(z)) where p(z|s, g) is expressed as a mixture of direc delta and prior,
and hence it can be written as

DKL(p(z|s, g)‖r(z)) = DKL(dcap ∗ p(z) + (1− dcap) ∗ δ(f(s, g))||r(z)) (10)

Further expanding the RHS using eq. 9, we get

dcap ∗ Ep(z)
[
log p(z)− log(dcapp(z) + (1− dcap���

��:0
(δ(f(s, g))]

+ (1− dcap) log p(f(s, g))− log(dcapp(f(s, g)) + (1− dcap)

Here, we can assume the δ(f(s, g)) to be zero under the prior (as it is a Direc delta function). This
can further be simplified to:

dcap ∗ Ep(z)
[
log p(z)− log(dcap)− log(p(z))]

+ (1− dcap) log p(f(s, g))− log(dcapp(f(s, g)) + (1− dcap)

And hence, reducing the above term reduces t0 DKL(p(z|s, g)‖pprior(z)), our original objective.

C ANOTHER METHOD OF CALCULATING CHANNEL CAPACITY

In the main paper we show how can we evaluate channel capacity in a tractable way. The way
we do is to learn a function B(S) which determines channel capacity. Here’s another way,
which we (empirically) found that parameterizing the channel capacity network helps. In order
to represent this function B(S) which satisfies these constraints, we use an encoder of the form
(B(S) = p(zcap|S)) such that zcap ∼ N (zcap|fµ(S), fσ(S)), where S refers to the standard input,
and fµ, fσ are learned functions (e.g., as a multi-layer perceptron) that outputs µ and σ respectively
for the distribution over zcap. Here, DKL(B(S)|N (0, 1)) refers to the channel capacity of the bottle-
neck. In order to get a probability prob out of B(S), we convert B(S) into a scalar prob ∈ [0, 1] such
that the prob can be treated as a probability of accessing the privileged input.

prob = Sigmoid(Normalization(B(S))) (11)

11
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Figure 4: Multiagent Communciation: The environment consists of N agents and M landmarks. Both
the agents and landmarks exhibit different characteristics such as different color and shape type.
Different agents can act to move in the environment. They can also act be effected by the interactions
with other agents. Asides from taking physical actions, agents communicate with other agents using
verbal communication symbols c.

We perform this transformation by normalizing B(S) such that B(S) ∈ [−k, k], (in practice we
perform this by clamping B(S) ∈ [−2, 2]) and then we pass the normalized B(S) through a sigmoid
activation function, and treating the output as a probability, prob, we access the privileged input
with probability prob. Hence, the resulting distribution over z is a weighted mixture of accessing
the privileged input fenc(s, g) with probability prob and sampling from the prior with probability
1− prob. Here we assume prior to be N (0, 1), but it can also be learned. At test time, using prob,
we can sample from the Bernouilli distribution b ∼ Bernoulli(prob) to decide whether to access
the privileged input or not.

D MULTIAGENT COMMUNICATION

Experimental Setup: We use the setup proposed by Mordatch & Abbeel (2017). The environment
consists of N agents and M landmarks. Both the agents and landmarks exhibit different characteristics
such as different color and shape type. Different agents can act to move in the environment. They can
also be affected by the interactions with other agents. Asides from taking physical actions, agents
communicate with other agents using verbal communication symbols. Each agent has a private goal
which is not observed by another agent, and the goal of the agent is grounded in the real physical
environment, which might include moving to a particular location, and could also involve other agents
(like requiring a particular agent to move somewhere) and hence communication between agents is
required.

Each agent performs actions and communicates utterances according to a policy, which is identically
instantiated for all of the agents in the environment, and also receive the same reward signal. This
policy determines both the actions and communication protocols. We assume all agents have identical
action and observation spaces and receive the same reward signal. We consider the cooperative
setting, in which the problem is to find a policy that maximizes expected return for all the agents.

E SPATIAL REASONING

In order to study generalization across a wide variety of environmental conditions and linguistic inputs,
(Janner et al., 2018) develop an extension of the puddle world reinforcement learning benchmark.
States in a 10 X 10 grid are first filled with either grass or water cells, such that the grass forms one
connected component. We then populate the grass region with six unique objects which appear only
once per map (triangle, star, diamond, circle, heart, and spade) and four non-unique objects (rock,
tree, horse, and house) which can appear any number of times on a given map. We followed the same
experimental setup and hyperparameters as in (Janner et al., 2018).

Here, an agent is rewarded for reaching the location specified by the language instruction. Agent
is allowed to take actions in the world. Here the goal is to be able to generalize the learned
representation for a given instruction such that even if the environment observations are rearranged,

12
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Figure 6: Puddle world navigation

this representation is still useful. Hence, we want to learn such representations that ties observations
from the environment and the language expressions. Here we consider the Puddle World Navigation
map as introduced in (Janner et al., 2018). We followed the same experiment setup as (Janner et al.,
2018). Here, the current state of the agent acts as a standard input. Based on this, agent decides to
access the privileged input.

We start by converting the instruction text into a real valued vector using an LSTM. It first convolves
the map layout to a low-dimensional repesentation (as opposed to the MLP of the UVFA) and
concatenates this to the LSTM’s instruction embedding (as opposed to a dot product). These concate-
nated representations are then input to a two layered MLP. Generalization over both environment
configurations and text instructions requires a model that meets two desiderata. First, it must have
a flexible representation of goals, one which can encode both the local structure and global spatial
attributes inherent to natural language instructions. Second, it must be compositional, in order to
learn a generalizable representation of the language even though each unique instruction will only be
observed with a single map during training. Namely, the learned representation for a given instruction
should still be useful even if the objects on a map are rearranged or the layout is changed entirely.

F RECURRENT VISUAL ATTENTION - LEARNING BETTER FEATURES

The goal of this experiment is to study if using the proposed method enables learning a dynamic
representation of an image which can be then used to accurately classify an image. In order to show
this, we follow the setup of the Recurrent Attention Model (RAM) (Mnih et al., 2014). Here, the
attention process is modeled as a sequential decision process of a goal-directed agent interacting with
the visual image. A recurrent neural network is trained to process the input sequentially, attending
to different parts within the image one at a time and hence combining information from these
different parts to build up a dynamic representation of the image. The agent incrementally combines
information because of attending to different parts and then chooses this integrated information to
choose where next to attend to. In this case, the information due to attending at a particular part of
the image acts as a standard input, and the information which is being integrated over time acts as a
privileged input, which is then used to select where the model should attend next. The entire process
repeats for N steps (for our experiment N = 6). FC denotes a fully connected network with two layers
of rectifier units, each containing 256 hidden units.

13
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Model MNIST 60 * 60 Cluttered MNIST

FC (2 layers) 1.69% 11.63%
RAM Model (6 locs) 1.55% 4.3%
VIB (6 locs) 1.58% 4.2%
VBB (6 locs) (Ours) 1.42% 3.8%

Table 6: Classification error results (Mnih et al., 2014). Averaged over 3 random seeds.

Quantitative Results: Table 6 shows the classification error for the proposed model, as well as the
baseline model, which is the standard RAM model. For both the proposed model, as well as the RAM
model, we fix the number of locations to attend to equal to 6. The proposed method outperforms the
standard RAM model.

G ALGORITHM IMPLEMENTATION DETAILS

We evaluate the proposed framework using Advantage Actor-Critic (A2C) to learn a policy πθ(a|s, g)
conditioned on the goal. To evaluate the performance of proposed method, we use a range of maze
multi-room tasks from the gym-minigrid framework (Chevalier-Boisvert & Willems, 2018) and the
A2C implementation from (Chevalier-Boisvert & Willems, 2018). For the maze tasks, we used
agent’s relative distance to the absolute goal position as "goal".

For the maze environments, we use A2C with 48 parallel workers. Our actor network and critic
networks consist of two and three fully connected layers respectively, each of which have 128 hidden
units. The encoder network is also parameterized as a neural network, which consists of 1 fully
connected layer. We use RMSProp with an initial learning rate of 0.0007 to train the models, for
both InfoBot and the baseline for a fair comparison. Due to the partially observable nature of the
environment, we further use a LSTM to encode the state and summarize the past observations.

H MINIGRID ENVIRONMENTS FOR OPENAI GYM

(a) Multi-
RoomN5S4

(b) Multi-
RoomN6S8

Figure 7: Partially Observable MultiRoomsNXSY environments

The MultiRoom environments used for this research are part of MiniGrid, which is an open source
gridworld package1. This package includes a family of reinforcement learning environments compat-
ible with the OpenAI Gym framework. Many of these environments are parameterizable so that the
difficulty of tasks can be adjusted (e.g., the size of rooms is often adjustable).

H.1 THE WORLD

In MiniGrid, the world is a grid of size NxN. Each tile in the grid contains exactly zero or one object.
The possible object types are wall, door, key, ball, box and goal. Each object has an associated
discrete color, which can be one of red, green, blue, purple, yellow and grey. By default, walls are
always grey and goal squares are always green.

1https://github.com/maximecb/gym-minigrid
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H.2 REWARD FUNCTION

Rewards are sparse for all MiniGrid environments. In the MultiRoom environment, episodes are
terminated with a positive reward when the agent reaches the green goal square. Otherwise, episodes
are terminated with zero reward when a time step limit is reached. In the FindObj environment, the
agent receives a positive reward if it reaches the object to be found, otherwise zero reward if the time
step limit is reached.

The formula for calculating positive sparse rewards is 1 − 0.9 ∗ (step_count/max_steps). That
is, rewards are always between zero and one, and the quicker the agent can successfully complete
an episode, the closer to 1 the reward will be. The max_steps parameter is different for each
environment, and varies depending on the size of each environment, with larger environments having
a higher time step limit.

H.3 ACTION SPACE

There are seven actions in MiniGrid: turn left, turn right, move forward, pick up an object, drop
an object, toggle and done. For the purpose of this paper, the pick up, drop and done actions are
irrelevant. The agent can use the turn left and turn right action to rotate and face one of 4 possible
directions (north, south, east, west). The move forward action makes the agent move from its current
tile onto the tile in the direction it is currently facing, provided there is nothing on that tile, or that the
tile contains an open door. The agent can open doors if they are right in front of it by using the toggle
action.

H.4 OBSERVATION SPACE

Observations in MiniGrid are partial and egocentric. By default, the agent sees a square of 7x7 tiles
in the direction it is facing. These include the tile the agent is standing on. The agent cannot see
through walls or closed doors. The observations are provided as a tensor of shape 7x7x3. However,
note that these are not RGB images. Each tile is encoded using 3 integer values: one describing the
type of object contained in the cell, one describing its color, and a flag indicating whether doors are
open or closed. This compact encoding was chosen for space efficiency and to enable faster training.
The fully observable RGB image view of the environments shown in this paper is provided for human
viewing.

H.5 LEVEL GENERATION

The level generation in this task works as follows: (1) Generate the layout of the map (X number of
rooms with different sizes (at most size Y) and green goal) (2) Add the agent to the map at a random
location in the first room. (3) Add the goal at a random location in the last room. MultiRoomNXSY
- In this task, the agent gets an egocentric view of its surroundings, consisting of 3×3 pixels. A neural
network parameterized as MLP is used to process the visual observation.

I MEMORY ACCESS - DECIDING WHEN TO ACCESS MEMORY

Here, the privileged input involves accessing information from the external memory like neural turing
machines (NTM) (Sukhbaatar et al., 2015; Graves et al., 2014). Reading from external memory is
usually an expensive operation, and hence we would like to minimize access to the external memory.
For our experiments, we consider external memory in the form of neural turning machines. NTM
processes inputs in sequences, much like a normal LSTM but NTM can allow the network to learn by
accessing information from the external memory. In this context, the state of controller (the NTM’s
controller which processes the input) becomes the standard input, and based on this (the standard
input), we decide the channel capacity, and based on channel capacity we decide whether to read
from external memory or not. In order to test this, we evaluate our approach on copying task. This
task tests whether NTMs can store and recall information from the past. We use the same problem
setup as (Graves et al., 2014). As shown in fig 8, we found that we can perform slightly better as
compared to NTMs while accessing external memory only 32% of the times.
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Figure 8: Copying Task

J HYPERPARAMETERS

The only hyperparameter we introduce with the variational information bottleneck is β. For both the
VIB baseline and the proposed method, we evaluated with 5 values of β: 0.01, 0.09, 0.001, 0.005,
0.009.

J.1 COMMON PARAMETERS

We use the following parameters for lower level policies throughout the experiments. Each training
iteration consists of 5 environments time steps, and all the networks (value functions, policy , and
observation embedding network) are trained at every time step. Every training batch has a size of 64.
The value function networks and the embedding network are all neural networks comprised of two
hidden layers, with 128 ReLU units at each hidden layer.

All the network parameters are updated using Adam optimizer with learning rate 3 · 10−4.

Table 7 lists the common parameters used.

Parameter Value

learning rate 3 · 10−4
batch size 64
discount 0.99
entropy coefficient 10−2

hidden layers (Q, V, embedding) 2
hidden units per layer (Q, V, embedding) 128
Bottleneck Size 64
RNN Hidden Size 128
β 0.001/0.009/0.01/0.09

Table 7: Shared parameters for benchmark tasks

K ARCHITECTURAL DETAILS

For our work, we made sure to keep the architecture detail as similar to the baseline as possible.

• Goal Driven Navigation: Our code is based on open source gridworld package https:
//github.com/maximecb/gym-minigrid.

• Multiagent Communication: Our code is based on the following open source implementa-
tion. https://github.com/bkgoksel/emergent-language.

• Access to External Memory: Our code is based on the following open source imple-
mentation of Neural Turing Machines. https://github.com/loudinthecloud/
pytorch-ntm

• Spatial Navigation: Our code is based on the following open source implementation of
https://github.com/JannerM/spatial-reasoning.
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The only extra parameters which our model is introduce is related to the channel capacity network,
which is parameterized as a neural network consisting of 2 layers of 128 dimensions each (with ReLU
non-linearity).
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