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ABSTRACT

Bayesian inference is used extensively to quantify the uncertainty in an inferred
field given the measurement of a related field when the two are linked by a mathe-
matical model. Despite its many applications, Bayesian inference faces challenges
when inferring fields that have discrete representations of large dimension, and/or
have prior distributions that are difficult to characterize mathematically. In this
work we demonstrate how the approximate distribution learned by a generative
adversarial network (GAN) may be used as a prior in a Bayesian update to address
both these challenges. We demonstrate the efficacy of this approach by inferring
and quantifying uncertainty in inference problems arising in computer vision and
physics-based applications. In both instances we highlight the role of computing
uncertainty in providing a measure of confidence in the solution, and in designing
successive measurements to improve this confidence.

1 INTRODUCTION

Quantifying uncertainty in an inference problem amounts to making a prediction and quantifying the
confidence in that prediction. In the context of an image recovery problem, this may be understood as
follows. A typical computer vision algorithm uses a noisy version of an image and prior knowledge
to produce the recovered image which can be interpreted as the “best guess” of the original image.
Quantifying uncertainty in this context involves generating an estimate of the level of confidence in
the best guess, in addition to the guess itself.

Bayesian inference provides a principled approach for quantifying uncertainty. As shown in the
following section, it treats the inferred vector as a multivariate stochastic vector and leads to an
expression for its distribution. This expression can be used to estimate the most likely solution
(the maximum a-posteriori estimate, or the MAP), the mean, the variance, or any other population
parameter of interest. Thus Bayesian inference provides a recipe for thoroughly quantifying the
uncertainty in an inference problem. For the image recovery problems considered in this paper,
Bayesian inference not only provides the best guess of the true image, but also a means to estimate
measures of uncertainty such as the pixel-wise variance.

The knowledge of uncertainty in a prediction can directly influence the downstream action that
depends on the inference. Consider an image recovery problem where two distinct inputs lead to
similar recovered images: those of a traffic sign with a high speed limit. However, for the first input
the predicted variance is small, while for the second input it is large. Further, the set of likely images
in the second set also includes images of a Stop Sign. Then the appropriate action for the two inputs,
determined after solving the inference problem and quantifying uncertainty, is very different. For
the first input, the appropriate action is one of continued motion, whereas for the second input it is to
slow down. Similar examples can be drawn from other areas where AI is applied, including medical
diagnostics and prediction, and autonomous and critical systems (Gal (2016); Begoli et al. (2019)).

The knowledge of uncertainty can also be used to determine the placement of the subsequent mea-
surement/sensor in an iterative scheme. Consider an image recovery example, where initially only a
small window within the original image is revealed, and the user is allowed to select the location of
the subsequent window. Then, given the spatial distribution of the variance in the recovered image,
the user may select the next window to coincide with the location of maximum variance. This ap-
plication falls within the fields of active learning and design of experiment (DeGroot et al. (1962);
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Houlsby et al. (2011)) and is particularly useful in applications like satellite imaging, where each
measurement requires significant time and/or resources.

In Figure 1, we demonstrate how the proposed GAN-based Bayesian inference algorithm can be used
in both scenarios described above. We return to these applications with greater detail in Section 4.

Figure 1: Estimate of the MAP (2nd row) and pixel-wise variance (3rd row) from the limited view of
a noisy image (1st row) using the proposed method. The first five columns correspond to a strategy
where the next window is randomly selected, while the other columns correspond to a strategy where
the next window is selected in the region with the maximum estimated variance. For equivalent
accuracy, the variance-driven selection strategy uses fewer sampling windows (4 versus 9). In both
cases variance reduces with increasing measurement.

1.1 BAYESIAN INFERENCE

Bayesian inference is a well-established technique for quantifying uncertainties in inference prob-
lems (Kaipio & Somersalo (2006); Dashti & Stuart (2016); Polpo et al. (2018)). It has found appli-
cations in diverse fields such as geophysics (Gouveia & Scales (1997); Malinverno (2002)), climate
modeling (Jackson et al. (2004)), chemical kinetics (Najm et al. (2009)), heat conduction (Wang &
Zabaras (2004)), astrophysics (Loredo (1990); Asensio Ramos et al. (2007)), materials modeling
(Sabin et al. (2000)) and the detection and diagnosis of disease (Siltanen et al. (2003); Kolehmainen
et al. (2006)). The two critical ingredients of a Bayesian inference problem are - an informative
prior representing the prior belief about the parameters to be inferred and an efficient method for
sampling from the posterior distribution. In this manuscript we describe how certain deep genera-
tive techniques can be effectively used in these roles.

Consider the setting where we wish to infer a vector of parameters x ∈ RN from the measurement
of a related vector y ∈ RP , where the two are related through a forward model y = f(x). A
noisy measurement of y is denoted by ŷ = f(x) + η, where the vector η ∈ RP represents noise.
While the forward map f is typically well-posed, its inverse is not, and hence to infer x from the
measurement ŷ requires techniques that account for this ill-posedness. Classical techniques based
on regularization tackle this ill-posedness by using additional information about the sought solution
field explicitly or implicitly (Tarantola (2005)). Bayesian inference offers a different approach to this
problem by modeling the unknown solution as well as the measurements as random variables. This
framework addresses the ill-posedness of the inverse problem, and allows for the characterization of
the uncertainty in the inferred solution.

The notion of a prior distribution plays a key role in Bayesian inference. It is usually the case that
through multiple observations of the field x, denoted by the set S = {x(1), · · · ,x(S)}, we have
some prior knowledge of x that can be utilized when inferring x from ŷ. This is used to build,
or intuit, a prior distribution for x, denoted by ppriorX (x). Some typical examples include Gaus-
sian process prior with specified co-variance kernels, Gaussian Markov random fields (Fahrmeir &
Lang (2001)), Gaussian priors defined through differential operators (Stuart (2010)), and hierarchi-
cal Gaussian priors (Marzouk & Najm (2009); Calvetti & Somersalo (2008)). These priors promote
some smoothness or structure in the inferred solution and can be expressed explicitly in an analytical
form.
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Another key component of Bayesian inference is a distribution that represents the likelihood of y
given an instance of x, denoted by pl(y|x). This is often determined by the distribution of the error
in the model, denoted by pη , which captures both model and measurement errors. Given this, and
an additive model for noise, the posterior distribution of x, determined using Bayes’ theorem after
accounting for the observation ŷ is given by,

ppostX (x|y) =
1

Z
pl(y|x)ppriorX (x)

=
1

Z
pη(ŷ − f(x))ppriorX (x). (1)

Here, Z is the prior-predictive distribution of y and ensures that the posterior integrates to one.

The posterior distribution characterizes the uncertainty in x; however for vectors of large dimension
characterizing this distribution explicitly is a challenging task. Consequently the expression above
is used to perform tasks that are more manageable. These include determining estimates such as
the maximum a-posteriori estimate (MAP), expanding the posterior distribution in terms of other
distributions that are simpler to work with (Bui-Thanh et al. (2012)), or using techniques like Markov
Chain Monte-Carlo (MCMC) to generate samples that are “close” to the samples generated by the
true posterior distribution (Han & Carlin (2001); Parno & Marzouk (2018)).

1.2 OUR CONTRIBUTION AND RELATED WORK

Despite its numerous applications in solving inverse problems, Bayesian inference faces significant
challenges. These include

1. defining a reliable and informative prior distribution for x when the set S =
{x(1), · · · ,x(S)} is difficult to characterize mathematically.

2. efficiently sampling from the posterior distribution when the dimension of x is large; a
typical situation in many practical science and engineering applications.

The main idea developed in this paper involves training a generative adversarial network (GAN)
using the sample set S, and then using the distribution learned by the GAN as the prior distribution
in Bayesian inference. This leads to a useful method for representing complex prior distributions
and an efficient approach for sampling from the posterior distribution by re-writing it in terms of the
latent vector z. We apply these ideas to recover an image from its incomplete, and noisy version,
and to recover the initial temperature field in a solid from a measurement of the temperature at later
time. We also compute measures of uncertainty in these predictions, and use these within an active
learning framework to design subsequent measurements.

The solution of an inverse problem using sample-based priors has a rich history (Vauhkonen et al.
(1997); Calvetti & Somersalo (2005)). As does the idea of reducing the dimension of the parame-
ter space by mapping it to a lower-dimensional space (Marzouk & Najm (2009); Lieberman et al.
(2010)). However, the use of GANs in these tasks is novel.

Recently, several authors have considered the use machine learning-based methods for solving in-
verse problems. These include the use of convolutional neural networks (CNNs) to solve physics-
driven inverse problems (Adler & Öktem (2017); Patel et al. (2019)), and GANs to solve problems
in computer vision (Chang et al.; Kupyn et al. (2018); Yang et al. (2018); Ledig et al.; Anirudh et al.
(2018); Isola et al. (2016); Zhu et al. (2017); Kim et al. (2017)). There is also a growing body of
work dedicated to using GANs to learn regularizers in solving inverse problems (Lunz et al. (2018)
and in compressed sensing (Bora et al. (2017; 2018); Kabkab et al. (2018); Wu et al. (2019); Shah &
Hegde (2018)). However, these approaches differs from ours in that they solve the inverse problem
as an optimization problem and do not rely on Bayesian inference; as a result, they add regularization
in an ad-hoc manner and do not attempt to quantify the uncertainty in the inferred field.

More recently, the approach described in Adler & Öktem (2018) utilizes GANs in a Bayesian setting;
however the GAN is trained to approximate the posterior distribution (and not the prior, as in our
case), and training is done in a supervised fashion. That is, paired samples of the measurement ŷ
and the corresponding true solution x are required. In contrast, our approach is unsupervised, where
we require only samples of the true solution x to train the GAN prior. We note that deep learning
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based Bayesian networks, where the network weights are stochastic parameters that are determined
using Bayesian inference, are another avenue of related, though distinct, research. (MacKay (1992);
Kingma & Welling (2013); Gal & Ghahramani (2016)).

The layout of the remainder of this paper is as follows. In Section 2, we develop a formulation
for Bayesian inference when the prior distribution is defined by a GAN and describe techniques for
sampling from this distribution. In Section 3, we utilize these techniques to solve inference problems
and quantify uncertainty in our solution, and use this information in an active learning/design of
experiment scenario. We end with conclusions in Section 4.

2 PROBLEM FORMULATION

The central idea in this paper is to train a GAN using the sample set S and then use the learned distri-
bution as the prior distribution in Bayesian inference. This leads to a useful method for representing
complex prior distributions and an efficient approach for sampling from the posterior.

Let S denote the set of instances of vector x sampled from the true distribution, ptrueX (x). Further,
let z ∼ pZ(z) characterize the latent vector space and g(z) be the generator of a GAN trained
using S. Then according to Goodfellow et al. (2014), with infinite capacity and sufficient data, the
generator learns the true distribution. That is,

pgenX (x) = ptrueX (x). (2)
The distribution pgenX (x) is defined as

x ∼ pgenX (x)⇒ x = g(z), z ∼ pZ(z). (3)
Here pZ is the multivariate distribution of the latent vector whose components are iid and typically
conform to a Gaussian or a uniform distribution. The equation above implies that the GAN generates
samples of x by sampling z from pZ and then passing these through the generator.

Now consider a measurement ŷ from which we would like to infer the posterior distribution of x.
For this we use (1) and set the prior distribution equal to the true distribution, that is ppriorX = ptrueX .
Then from (2) this is the same asppriorX = pgenX . Therefore,

ppostX (x|y) =
1

Z
pη(ŷ − f(x))pgenX (x). (4)

Now for any l(x), we have

E
x∼ppost

X

[l(x)] =
1

Z
E

x∼pgenX

[l(x)pη(ŷ − f(x))], From (4)

=
1

Z
E

z∼pZ
[l(g(z))pη(ŷ − f(g(z)))], From (3)

= E
z∼ppost

Z

[l(g(z))], (5)

where E is the expectation operator, and

ppostZ (z|y) ≡ 1

Z
pη(ŷ − f(g(z)))pZ(z). (6)

The distribution ppostZ is the analog of ppostX in the latent vector space. The measurement ŷ updates
the prior distribution for x to the posterior distribution. Similarly, it updates the prior distribution
for z, pZ , to the posterior distribution, ppostZ , defined above.

Equation (5) implies that sampling from the posterior distribution of x is equivalent to sampling
from the posterior distribution for z and passing the sample through the generator g. That is,

x ∼ ppostX (x|y)⇒ x = g(z), z ∼ ppostZ (z|y). (7)
Since the dimension of z is typically smaller than that of x, this represents an efficient approach to
sampling from the posterior of x.

The left hand side of (5) is an expression for a population parameter of the posterior, defined by
l(x) ≡ Ex∼ppost

X
[l(x)]. The right hand sides of the last two lines of this equation describe how this

parameter may be evaluated by sampling z (instead of x) from either pZ or ppostZ .
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2.1 SAMPLING FROM THE POSTERIOR DISTRIBUTION

We consider where we wish to infer and characterize the uncertainty in the vector of parameters x
from a noisy measurement of y, denoted by ŷ, where f is a known map that connects x and y.
And we have several prior measurements of plausible x, contained in the set S. For this problem
we propose the following algorithm that accounts for the prior information in S and the “new”
measurement ŷ through a Bayesian update:

1. Train a GAN with a generator g(z) on S .

2. Sample x from ppostX (x|y) given in (7).

With sufficient capacity in the GAN and with sufficient training, the posterior obtained using this
algorithm will converge to the true posterior. Further, since GANs can be used to represent complex
distributions efficiently, this algorithm provides a means of including complex priors that are solely
defined by samples within a Bayesian update.

As mentioned earlier, an efficient approach to sampling from ppostX (x|y) is to recognize that the
dimension of z is typically much smaller (101 - 102) than that of x (104 - 107). We now describe two
approaches for estimating population parameters of the posterior that make use of this observation.

Monte-Carlo (MC) approximation The first approach is based on a Monte-Carlo approximation
of a population parameter of the posterior distribution. This integral, which is defined in the second
line of (5), may be approximated as,

l(x) ≡ E
x∼ppost

X

[l(x)] ≈
∑Nsamp

n=1 l(g(z))pη(ŷ − f(g(z)))∑Nsamp

n=1 pη(ŷ − f(g(z)))
, z ∼ pZ(z). (8)

In the equation above, the numerator is obtained from a MC approximation of the integral in (5),
and the denominator is obtained from a MC approximation of the scaling parameter Z. Sampling
within this approach is rather simple since in a typical GAN the zis belong to a simple distribution
like a Gaussian or a uniform distribution.

Markov-Chain Monte-Carlo (MCMC) approximation In many applications we anticipate that
the likelihood will tend to concentrate the distribution of latent vector z to a small region within
Ωz . Thus the MC sampling described above may be inefficient. A more efficient approach will
be to generate an MCMC approximation pmcmc

Z (z|y) ≈ ppostZ (z|y) using the definition in (6), and
thereafter sample z from this distribution. Then from the third line of (5), any desired population
parameter may be approximated as

l(x) ≡ E
x∼ppost

X

[l(x)] ≈ 1

Nsamp

Nsamp∑
n=1

l(g(z)), z ∼ pmcmc
Z (z|y). (9)

Summary We have described three algorithms for probing the posterior distribution when the
prior is defined by a GAN. These include an MC (8) and an MCMC estimate (9) of a given popu-
lation parameter and a MAP estimate that is applicable to additive Gaussian noise with a Gaussian
prior for the latent vector (see Section A in the Appendix). In the following section we apply these
algorithms to inverse problems drawn from physics-based and computer vision applications.

3 APPLICATIONS

3.1 IMAGE RECOVERY USING THE MNIST DATABASE

We consider the MNIST database of hand-written digits and use 55000 images to train a Wasserstein-
GAN-GP (Gulrajani et al. (2017)) with an architecture described in the Appendix C. The dimension
of the latent vector is 100, and all its entries Gaussian iid. In all examples we select images from
the complimentary set (not used for training). In the first example, we add Gaussian noise with zero
mean and specified variance and use this image as input to recover the distribution of likely images
using the MCMC approach described in the previous section. For this problem the forward operator
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is the identity map, and the likelihood distribution is Gaussian. For all the results with MCMC,
we use Hamiltonian Monte Carlo (Brooks et al. (2012)) for its better convergence properties and
implement it using Tensoflow-probability (Dillon et al. (2017)) . In Figure 2, we have plotted the
noisy input image, the most-likely image (MAP estimate), and the pixel-wise mean and variance.
We observe that for low and medium noise levels (variance = 0.1 and 1.0, respectively) we are able
to recover the original image with good accuracy, the pixel-wise variance is small overall, and is
largest around the boundary of the recovered digit; this represents the variability in the different
realizations of the recovered digit within the GAN prior. For the highest noise level (variance =
10), the image recovered by the MAP is incorrect in 2/3 cases, and would be misleading if viewed
by itself. However, when viewed in conjunction with the estimated variance, which is large, it is
clear that the confidence in the prediction is small, and therefore the MAP may be incorrect. The
correlation of average estimated variance in the recovered image with magnitude of noise in shown
in Figure 4.

Figure 2: Estimate of the MAP (2nd row), mean (3rd row) and variance (4th row) from a noisy
image (1st row) using the proposed method. In the first three panels, the variance in noise is 0.1,1,
and 10, when moving from left to right. In the fourth panel the noise variance is fixed at 1, and the
size of the occluded region is increased.

In the right-most panel of Figure 2, we solve an image in-painting problem for the digit 5. Here the
forward map is the indicator function set to zero on the occluded pixels, and the variance in noise
is fixed at 1. We note that for the small and large occluded regions, the MAP solution is close to
the true solution, and when most of the image is occluded, the MAP is incorrect. Once again, the
variance image, which is small for the low and medium regions, and large for the large occlusion, is
a reliable indicator of the confidence in the recovered MAP image. More examples for this task are
provided in Appendix.

Figure 3: Estimate of the MAP (2nd row), mean (3rd row) and variance (4th row) from the limited
view of a noisy image (1st row) using the proposed method for the digits 2 & 8 (left and right panels).
The window to be revealed at a given iteration (shown in red box) is selected using a variance-driven
strategy.

In Figure 3, we demonstrate how uncertainty information may be used in active learning/design of
experiment. We begin with an input where the entire image is occluded and in every subsequent
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step allow for a small 7×7 pixel window to be revealed. We select this window where the pixel-wise
variance estimate is maximum. As the iterations progress, we the MAP estimate converges to the true
digit, and the variance decreases. In about 4 iterations we arrive at a very good guess for the digit.
The performance of this approach is quantified in Figure 4, where we have plotted the reconstruction
error versus the number windows for this strategy, and a strategy where the subsequent window is
selected randomly. The variance-driven strategy consistently performs better.

Figure 4: (a) Average variance in a reconstructed image as a function of variance in noise for 10
digits. (b) Average reconstruction error as a function of number of windows for a variance-driven
(adaptive) and a random sampling strategy.

Results for the variance-based window selection strategy applied to the Celeb-A dataset are shown
in Figure 5. We observe that the algorithm produces realistic images at each iteration; however, the
initial variance is large. As more windows are sampled using uncertainty information, the variance
reduces and by the 7th iteration a good approximation of the true image is obtained, even though
only a small, noisy portion is revealed. This dataset is discussed in detail in the Appendix.

Figure 5: Estimate of the MAP (3rd row), mean (4th row) and variance (5th row) from the limited
view of a noisy image (2nd row) of an image (1st row) using the variance-driven selection strategy.

3.2 A PHYSICS-DRIVEN INFERENCE PROBLEM

We consider an inference problem driven by physics where the measurement is a vector of nodal
values of the temperature in a square domain at time t = 1, and the desired solution is the tempera-
ture at t = 0. The forward map is a finite difference approximation to the heat conduction equation
with uniform conductivity, κ = 0.64. Much like a blurring kernel, this operator smooths the initial
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temperature distribution, and the extent of smoothing increases with the product of conductivity and
time. We consider a family of initial temperatures where the background is zero, and the tempera-
ture is non-zero on a rectangular sub-domain, where it varies linearly from 2 units on the left edge
to 4 units on the right edge. This distribution is parameterized by the lower left and upper right
coordinates of the rectangular region. A sample set S is created by sampling each parameter from
a uniform distribution and is used to train a WGAN (same architecture as in the previous problem).
The distribution learned by this GAN is used as the prior distribution in the Bayesian inference
problem. The posterior distribution is sampled using the MCMC approach described in Section 2.1.

In the top two rows of Figure 6, we have plotted the true initial condition, the noise-free temperature
at t = 1, and the noisy temperature measurement (Gaussian noise with variance = 1) used as input in
the GAN-based prior approach. The corresponding MAP, mean and pixel-wise variance estimated
by the MCMC approximation is shown next. We observe that the MAP is very close to the true initial
temperature distribution and the variance is concentrated along the edges of the rectangle where the
uncertainty is the largest. In the following columns we have plotted the MAP estimate obtained
assuming L2 and H1 Gaussian priors, which are much less accurate. For this problem the “true”
posterior can be reduced to the 4-dimensional space of parameters, and sampled by generating initial
conditions corresponding to the values of these parameters. A simple MC approximation can be
performed to compute statistics - the mean and the variance for the true posterior (last two columns
of Figure 6). By comparing these with the mean and the point-wise variance (columns 5 & 6) for
the GAN-based prior, we note that the latter is quite accurate.

Figure 6: From left to right: (1) true initial temperature, (2) temperature at t = 1, (3) noisy version
temperature used as measurement, (4), (5), (6) MAP, mean and pixel-wise variance estimates using
GAN priors, (7) and (8) MAP estimates using L2 and H1 Gaussian priors, (9) & (10) true MAP and
variance obtained by sampling over the true parameter space.

In the bottom rows of Figure 6, we plot similar results for initial conditions and GAN-based priors
generated from the MNIST database with t = 0.2. Since the ”true” distribution for this set is not
known the true mean and variance are not plotted.

4 CONCLUSIONS

The ability to quantify the uncertainty in the prediction to an inference problem is useful in develop-
ing confidence in that prediction, and in designing strategies to improve the confidence. In this paper
we have described how this may be accomplished when solving a Bayesian inference problem by
using GANs as priors. Since GANs can be used to learn complex distributions of a wide variety of
fields from their samples, this approach can be applied to a range of problems in computer vision and
physics-driven inference. It derives its efficiency by mapping the posterior distribution to the latent
space, whose dimension is often much smaller than that of the inferred field. In this paper we have
applied this approach to image recovery tasks and demonstrated how the knowledge of uncertainty
in the prediction can be used to assess confidence in a prediction, and via active learning to design a
strategy to improve the confidence. We have also applied this approach to a synthetic physics-based
problem where we have verified some components of its accuracy and robustness.
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A EXPRESSION FOR THE MAXIMUM A-POSTERIORI ESTIMATE

The techniques described in Section 2.1 focus on sampling from the posterior distribution and com-
puting approximations to population parameters. These techniques can be applied in conjunction
with any distribution used to model noise and the latent space vector; that is, any choice of pη (like-
lihood) and pZ (prior). In this section we consider the special case when Gaussian models are used
for noise and the latent vector. In this case, we can derive a simple optimization algorithm to de-
termine the maximum a-posteriori estimate (MAP) for ppostZ (z|y). This point is denoted by zmap

in the latent vector space and represents the most likely value of the latent vector in the posterior
distribution. It is likely that the operation of the generator on zmap, that is g(zmap), will yield a
value that is close to xmap, and may be considered as a likely solution to the inference problem.

We consider the case when the components of the latent vector are iid with a normal distribution
with zero mean and unit variance. This is often the case in many typical applications of GANs.
Further, we assume that the components of noise vector are defined by a normal distribution with
zero mean and a covariance matrix Σ. Using these assumptions in (6), we have

ppostZ (z|y) ∝ exp
(
− 1

2

≡r(z)︷ ︸︸ ︷(
|Σ−1/2(ŷ − f(g(z)))|2 + |z|2

) )
. (10)

The MAP estimate for this distribution is obtained by minimizing the negative of the argument of
the exponential. That is

zmap = arg min
z

r(z). (11)

This minimization problem may be solved using any gradient-based optimization algorithm. The
input to this algorithm is the gradient of the functional r with respect to z, which is given by

∂r

∂z
= HT (z)Σ−1(f(g(z))− ŷ) + z, (12)

where the matrixH is defined as

H ≡ ∂f(g(z))

∂z
=
∂f

∂x

∂g

∂z
. (13)

Here ∂f
∂x is the derivative of the forward map f with respect to its input x, and ∂g

∂z is the derivative
of the generator output with respect to the latent vector. In evaluating the gradient above we need to
evaluate the operation of the matrices ∂f

∂x and ∂g
∂z on a vector, and not the matrices themselves. The

operation of ∂g
∂z on a vector can be determined using a back-propagation algorithm with the GAN;

while the operation of ∂f∂x can be determined by making use of the adjoint of the linearization of the
forward operator.

Once zmap is determined, one may evaluate g(zmap) by using the GAN generator. This represents
the value of the field we wish to infer at the most likely value value of latent vector. Note that this is
not the same as the MAP estimate of ppostX (x|y).

B MORE RESULTS

In this section we provide additional results for both MNIST and Celeb-A dataset for different tasks
discussed in the main paper.

B.1 MNIST

First we provide additional examples in figure 7 for variance-based adaptive measurement window
selection procedure described in section 3.1,

Figure 8 shows additional results for the in-painting task, where different MNIST digits are occluded
with mask of different size and at different location.

Note that the variance is high where the occlusion mask is located indicating lower confidence in
reconstructed image in that location. This could be very useful in applications like self-driving cars
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(a) Digit 0 (b) Digit 1

(c) Digit 3 (d) Digit 4

(e) Digit 5 (f) Digit 7

(g) Digit 9

Figure 7: Estimate of the MAP (3rd row), mean (4th row) and variance (5th row) from the limited
view of a noisy image (2nd row) using the proposed method. The window to be revealed at a given
iteration (shown in red box) is selected using a variance-driven strategy. Top row indicates ground
truth. For all the digits noise variance of 1 is used.
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Figure 8: Estimate of the MAP (3rd row), mean (4th row) and variance (5th row) from a noisy
image (2nd row) using the proposed method. Top row shows ground truth. For all the examples
noise variance of 1 is used.

or medical imaging, where often times the goal is to recover original image from occluded (and
possibly noisy) measurements and this quantified uncertainty information can help in high-impact
down stream decision making process.

B.2 CELEB A

For Celeb A dataset, we first trained a GAN model (WGAN-GP) using more than 200,000 celebrity
facial images. The input images were cropped to a 64x64 RGB image and were normalized between
[-1, 1]. We use latent space dimension of 100. The architecture for this dataset was slightly different
than that for MNIST and heat conduction problem and is explained in Appendix C.

Once the GAN was trained, we use the algorithms proposed in section 2.1 for posterior sampling and
inference on complimentary set of images (the one that were not used for training). In figure 9 we
show some additional results for variance-based adaptive measurement window selection procedure
for Celeb A dataset.

Next, in figure 10 we show some additional results for image recovery task for Celeb A dataset.

C ARCHITECTURE DETAILS

We used the same generator and discriminator architecture for MNIST and synthetic dataset used
in physics-based inference problem, whereas for the Celeb A dataset we used slightly different
architecture.. The layout of both these architecture is shown in figure 11. Some notes regarding
nomenclature used in the figure 11.

• Conv (HxWxC s=n) indicates convolutional layer with filer size of HxW and number of
filters=C with stride=n.

• BN = Batch norm, LN = Layer norm.
• TrConv = Transposed Convolution
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Estimate of the MAP (3rd row), mean (4th row) and variance (5th row) from the limited
view of a noisy image (2nd row) using the proposed adaptive method. The window to be revealed at
a given iteration (shown in red box) is selected using a variance-driven strategy. Top row indicates
ground truth. For all the images fixed noise variance of 0.1 is used.
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Figure 10: Estimate of the MAP (3rd row), mean (4th row) and variance (5th row) from a noisy
image (2nd row) using the proposed method. Top row shows ground truth. For all the examples
noise variance of 1 is used.
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(a) Architecture for MNIST and synthetic dataset
(used in physics-based inference problem)

(b) Architecture for Celeb A dataset

Figure 11: Generator and discriminator architectures,
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