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ABSTRACT

Automatic neural architecture search techniques are becoming increasingly im-
portant in machine learning area. Especially, weight sharing methods have shown
remarkable potentials on searching good network architectures with few com-
putational resources. However, existing weight sharing methods mainly suffer
limitations on searching strategies: these methods either uniformly train all net-
work paths to convergence which introduces conflicts between branches and wastes
a large amount of computation on unpromising candidates, or selectively train
branches with different frequency which leads to unfair evaluation and comparison
among paths. To address these issues, we propose a novel neural architecture
search method with balanced training strategy to ensure fair comparisons and a
selective drop mechanism to reduce conflicts among candidate paths. The experi-
mental results show that our proposed method can achieve a leading performance of
79.0% on ImageNet under mobile settings, which outperforms other state-of-the-art
methods in both accuracy and efficiency.

1 INTRODUCTION

The fast developing of artificial intelligence has raised the demand to design powerful neural networks.
Automatic neural architecture search methods (Zoph & Le, 2016; Zhong et al., 2018; Pham et al.,
2018)have shown great effectiveness in recent years. Among them, methods based on weight sharing
(Pham et al., 2018; Liu et al., 2018; Cai et al., 2018; Guo et al., 2019) show great potentials on
searching architectures with limited computational resources. These methods are divided into 2
categories: alternatively training ones (Pham et al., 2018; Liu et al., 2018; Cai et al., 2018) and one-
shot based ones (Brock et al., 2017; Bender et al., 2018). As shown in Fig 2, both categories construct a
super-net to reduce computational complexity. Methods in the first category parameterize the structure
of architectures with trainable parameters and alternatively optimize architecture parameters and
network parameters. In contrast, one-shot based methods train network parameters to convergence
beforehand and then select architectures with fixed parameters. Both categories achieve better
performance with significant efficiency improvement than direct search.

Despite of these remarkable achievements, methods in both categories are limited in their searching
strategies. In alternatively training methods, network parameters in different branches are applied
with different training frequency or updating strength according to searching strategies, which makes
different sub-network convergent to different extent. Therefore the performance of sub-networks
extracted from super-net can not reflect the actual ability of that trained independently without weight
sharing. Moreover, some paths might achieve better performance at early steps while perform not
well when actually trained to convergence. In alternatively training methods, these operators will
get more training opportunity than other candidates at early steps due to their well performance.
Sufficient training in turn makes them perform better and further obtain more training opportunities,
forming the Matthew Effect. In contrast, other candidates will be always trained insufficiently and
can never show their real ability.

Differently, One-shot methods train paths with roughly equal frequency or strength to avoid the
Matthew Effect between parameters training and architectures selection. However, training all paths
to convergence costs multiple time. Besides, the operators are shared by plenty of sub-networks,
making the backward gradients from different training steps heavily conflict. To address this issue,
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Figure 1: Balanced training and selective drop strategy. The evaluation of each candidate only
influence architecture search strategy, and paths with low performance will be gradually dropped
to reduce conflicts among paths. In addition, paths still remaining are all trained with comparable
frequency to insure a fair comparison among candidate operators.
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Figure 2: Weight sharing methods. In alternatively training methods, candidate paths with better
performance get more training opportunities or higher fusion weight. In one-shot methods, sub-
networks are uniformly randomly trained to convergence before architecture selection.

we follows the balanced training strategy to avoid the Matthew Effect, and propose a drop paths
approach to reduce mutual interference among paths, as shown in Fig 1.

Experiments are conducted on ImageNet classification task. The searching process costs less compu-
tational resources than competing methods and our searched architecture achieves an outstanding
accuracy of 79.0%, which outperforms state-of-the-art methods under mobile settings. The proposed
method is compared with other competing algorithms with visualized analysis, which demonstrates
its the effectiveness. Moreover, we also conduct experiments to analysis the mutual interference in
weight sharing and demonstrate the rationality of the gradually drop paths strategy.

2 RELATED WORK

Automatic neural architecture search techniques has attracted much attention in recent years. NAS-
Net (Zoph & Le, 2016; Zoph et al., 2018) proposes a framework to search for architectures with
reinforcement learning, and evaluates each of the searched architectures by training it from scratch.
BlockQNN (Zhong et al., 2018; Guo et al., 2018; Zhong et al., 2018) expands the search space to
the entire DAG and selects nets with Q-learning. Network pruning methods (Li et al., 2019; Noy
et al., 2019) prune redundant architectures to reduces search spaces. Considering the searching policy,
most of these methods depend on reinforcement learning, evolutionary algorithms and gradient based
algorithms (Bello et al., 2017; Liu et al., 2018; Cai et al., 2018).

The most related works to our method are the ones based on weight sharing proposed by (Pham
et al., 2018), from which two streams are derived: Alternatively training methods (Cai et al., 2018;
Liu et al., 2018) and one-shot methods (Brock et al., 2017; Bender et al., 2018; Guo et al., 2019).
Methods in the first stream alternatively train architecture parameters and network parameters. During
search process, operators in the super-net are selectively trained and evaluated with a certain policy
and the policy is updated dynamically according to the evaluations. Among them, ENAS (Pham
et al., 2018) introduces RL to select paths. DARTS (Liu et al., 2018) improves the accuracy and
efficiency of paths selection policy by considering the importance of each path as trainable parameters.
ProxyLessNAS (Cai et al., 2018) proposes to directly search on target datasets with single paths
and makes the latency term differentiable. Single-Path NAS (Stamoulis et al., 2019) directly shares
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weights via super-kernel. By contrast, one-shot based methods‘Guo et al. (2019); Brock et al. (2017);
Bender et al. (2018) firstly train each path in the super-net with equal frequency to convergence, then
all the architectures are selected from the super-net and evaluated with fixed parameters. Our work
benefits from the advantages of both categories: On one hand, the importance factors are evaluated
with a gradient based approach but it has no influence on training shared parameters. On the other
hand, the shared parameters are updated uniformly as those in one-shot.

3 APPROACH

ProxyLessNAS(Cai et al., 2018) and Single Path One-shot(Guo et al., 2019) proposed to train the
super-net with only one path on in each step to make the performance trained with weight sharing
more close to that trained alone. Both of them enhance the performance of weight sharing to a
higher level. ProxyLessNAS updates architecture parameters and network parameters alternatively.
Paths are selectively trained according to their performance, and paths with higher performance get
more training opportunities. Single Path One-shot first proposed to balanced train all paths until
convergence and then use evolution algorithms to select network structures. The equivalent functions
of the choice blocks in two methods are described as mPL and mOS in Eq 1:

mPL(x) =


o1(x) with probabilityp1
...

oN (x) with probabilityp2
,mOS(x) =


o1(x) with probability1/N
...

oN (x) with probability1/N
(1)

Our method follows the alternatively training ones, in which architecture parameters and network
parameters are optimized alternatively in each step. To give a better solution to the problems discussed
above, we train each candidate path with equal frequency to avoid the "Matthew effect" and gradually
dropped least promising paths during searching process to reduce conflicts among candidate paths.

3.1 PIPELINE

The pipeline of our method is shown in Algorithm 1. First of all, a super-net is constructed with L
choice blocks O1O2...OL, as shown in Fig 1. Each choice block Ol is composed of M candidate
paths and corresponding operators ol,1ol,2...ol,M . The importance factor of ol,m is denoted as αl,m
and αl,m are converted to probability factor pl,m using softmax normalization.

Secondly, the parameters of ol,m and their importance factors αl,m are trained alternatively in Phase
1 and Phase 2. When training αl,m, latency term is introduced to balance accuracy and complexity.
Paths with αl,m lower than thα will be dropped and no more trained.

Finally, after alternatively training ol,m and αl,m for given steps, paths with the highest importance
factor in each choice block are selected to compose a neural architecture as the searching result.

Algorithm 1 Searching Process
Initialization: Denote Ol as the choice block for layer l with M candidate operators
{ol,1ol,2...ol,M}. αl,1αl,2...αl,M are the corresponding importance factors of candidate operators
and initialized with identical value. Smax is denoted as the max number of optimization steps.

1: while t < Smax do
2: Phase1: Randomly select ol,ml

∈ Ol for block Ol with uniform probability, then fix all αl,m
and train the super-net constructed with the selected o1,m1

o2,m2
...oL,mL

for some steps.
3: Phase2: Fix all the parameters in ol,m and measure their flops/latency. Then evaluate each

operator ol,m with both cross-entropy loss and flops/latency loss. Update αl,m according to the
losses feedback.

4: for ol,m ∈ Ol do
5: if αl,m < thα then Ol = Ol \ {ol,m}

t = t+ 1
6: for ol,m ∈ Ol do ml = argmaxm(αl,m)

7: return o1,m1
o2,m2

...oL,mL
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3.2 BALANCED TRAINING

Alternatively training methods focus computational resources on most promising candidates to reduce
the interference from redundant branches. However, some operators that perform well at early
phases might not perform as well when they are trained to convergence. These operators might
get much more training opportunities than others due to their better performance at the beginning
steps. Higher training frequency in turn maintains their dominant position in the following searching
process regardless their actual ability, forming the Matthew Effect. In contrast, the operators with
high performance when convergent might never get opportunities to trained sufficiently. Therefore,
the accuracy of alternatively training methods might degrade due to inaccurate evaluations and
comparison among candidate operators.

Our method follows the alternatively optimizing strategy. Differently, we only adopt gradient to archi-
tectures optimization while randomly sample paths with uniformly probability when training network
parameters to avoid the Matthew Effect. More specifically, when updating network parameters of
ol,m in Phase 1 and architecture parameters in Phase 2, the equivalent output of choice block Ol is
given as Opathl in Eq 2 and Oarchl in Eq 3:

Opathl (x) = ol,m(x)

{
with probability 1

M ′ , if αl,m > thα
with probability 0 , else.

(2)

Oarchl (x) = ol,m(x)

{
with probability pl,m , if αl,m > thα
with probability 0 , else.

(3)

Where M ′ is the number of remaining operators in Ol currently, and pl,m is the softmax form of
αl,m. The αl,m of dropped paths are not taken into account when calculating pl,m. The parameters
in both phases are optimized with Stochastic Gradient Descent (SGD). In Phase 1, the outputs in
Eq 2 only depends on network parameters, thus gradients can be calculated with the Chain Rule. In
Phase 2, the outputs not only depend on the fixed network parameters but also architecture parameters
αl,m. Note that Oarchl (x) is not differentiable with respect to αl,m, thus we introduce the manually
defined derivatives proposed by Cai et al. (2018) to deal with this issue: Eq 3 can be expressed as
Oarchl (x) =

∑
gl,m · ol,m(x), where gl,0, gl,0, ...gl,M ′ is a one-hot vector with only one element

equals to 1 while others equal to 0. Assuming ∂gl,j/∂pl,j ≈ 1 according to Cai et al. (2018), the
derivatives of Oarchl (x) w.r.t. αl,m are defined as :

∂Oarchl (x)

∂αl,m
=

M ′∑
j=1

∂Oarchl (x)

∂gl,j

∂gl,j
∂pl,j

∂pl,j
∂αl,m

≈
M ′∑
j=1

∂Oarchl (x)

∂gl,j

∂pl,j
∂αl,m

=

M ′∑
j=1

∂Oarchl (x)

∂gl,j
pj(δmj − pm)

(4)

From now on, Opathl (x) and Oarchl (x) are differentiable w.r.t. network parameters and architecture
parameters respectively. Both parameters can be optimized alternatively in Phase 1 and Phase 2.

3.3 SELECTIVELY DROP PATHS

One-shot based methods, such as Single Path One-shot Guo et al. (2019) also uniformly train paths.
These methods train network parameters of each path uniformly to convergence, after that a searching
policy is applied to explore a best structure with fixed network parameters. However, the optimizations
of candidate operators in a same choice block actually conflict. Considering N candidate operators in
a same choice block and their equivalent functions f1, f2...fN , given Fin and Fout as the equivalent
functions of the sub-supernet before and after the current choice block, xi and yi as input data and
labels from the training dataset, and L as the loss metric, the optimization of network parameters can
be described as:

min
wn

L(yi, Fout(fn(Fin(xi), wn))), n = 1, 2...N (5)
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(a) BetaNet-A
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(b) BetaNet-B

Figure 3: The searched architectures with different complexity limitations: BetaNet-A is searched
with flops limitation. BetaNet-B is searched with latency limitaion.

When the super-net is trained to convergence, Fin and Fout is comparatively stable. In this situation,
f1(w1), f2(w2)...fN (wN ) are actually trained to fit a same function. However when operators are
trained independently without weight sharing, different operators are unlikely to output same feature
maps. Take the super-net in Fig 2(b) as an example, the four operators in choice block 1 are likely
to be optimized to fit each other. Intuitively, Conv3 and Identity are unlikely to fit a same function
when trained without weight sharing. On the other hand, the operators in the second choice block are
trained to be compatible with various input features from different operators in the first choice block.
In contrast, each operator process data from only one input when networks are trained independently.
Both problems widen the gap between network trained with and without weight sharing.

Fewer candidate paths help reduce the conflicts among operators, which will explained in the
experiments section. Therefore, a drop paths strategy is applied in our method to reduce mutual
interference among candidate operators during searching process. The paths with performance lower
than a threshold will be permanently dropped to reduce its influence on remaining candidates.

When updating αl,m in phase 2, we follow the strategy in ProxyLessNAS (Cai et al., 2018) to sample
path in each choice block with probability pl,m, and optimize αl,m by minimizing the expectation
joint loss L:

L = LCE + βLLA = LCE + β

L∑
l=1

M∑
m=1

pl,mLLAl,m
(6)

where LCE and LLA are the expectation cross-entropy loss and latency loss, LLAl,m
is the flops

or latency of operator ol,m and β is a hyper-parameter to balance two loss terms. We regard the
importance factor αl,m and its softmax form pl,m as sampling probability and use Eq6 to optimize
αl,m. The derivatives of LCE and LLA w.r.t. αl,m can be get from Eq 4 and 6 respectively. Note
that αl,m is only applied to evaluate the importance of paths and have no influence on the balanced
training strategy in Phase 1. After each step of evaluation, paths with low αl,m are dropped and will
not be trained anymore:

Ol = Ol \ ol,ml
, if αl,ml

< thα,∀ml (7)

The limitations of alternatively training methods and one-shot based ones are relieved by the proposed
balanced training and drop paths strategies respectively. The two phases are trained alternatively until
meeting the stop condition, then paths with highest αl,m from each block are selected to compose an
architecture as the searching result.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets The target architecture is directly searched on ImageNet (Deng et al., 2009) for classification
task. 50000 images are extracted from training set to train architecture parameters αl,m, and the rest
of training dataset is used to train network weights.

Search Space We follow the search space in MNASNet (Tan et al., 2018), where each choice block
includes an identity operator and 6 MobileNetV2 blocks which have kernel size 3,5,7 and expand
ratio 3, 6 respectively. SE-Layer (Hu et al., 2018) is not applied to the search space.

Training Detail We search on V100 GPUs for 160 GPU hours. The shared parameters are trained
with 1024 batch size and 0.1 learning rate. αl,m is trained with Adam optimizer and 1e-3 initial
learning rate. Finally, the searched architecture is trained from scratch according to the setting of
MobileNetV2 (Sandler et al., 2018). The searched networks are trained from scratch on training
dataset with hyper-parameters as follows: batch size 2048, learning rate 1.4, weight decay 2e-5,
cosine learing rate for 350 epochs, dropout 0.2, label smoothing rate 0.1.

4.2 EXPERIMENTAL RESULTS

Table 1: BetaNet-A compared with the state-of-the-art methods under comparable flops.

Method Top1 Top5 Flops params cost
(%) (%) (M) (M) (GPU*h)

MobileNet V2 (Sandler et al., 2018) 72.0 91.0 300 3.4 -
DARTS (Liu et al., 2018) 73.1 91.0 595 4.9 96
FBNet-C (Wu et al., 2018) 74.9 - 375 - -

ProxyLessNAS (Cai et al., 2018) 74.6 92.2 320 - 200
MNASNet+SE (Tan et al., 2018) 75.4 92.5 317 4.2 40,000

MobileV3+SE+swish (Howard et al., 2019) 75.2 - 219 5.4 -
BetaNet-A 75.1 92.3 315 3.6 160

BetaNet-A + SE 75.9 92.8 333 4.1 160

MobileNet V2 (Sandler et al., 2018) × 1.4 74.7 92.5 585 6.9 -
EffNetB0+SE+swish+autoaug Tan & Le (2019) 76.3 93.2 390 5.3 -
EffNetB1+SE+swish+autoaug Tan & Le (2019) 78.8 94.4 700 7.8 -

BetaNet-A × 1.4 77.1 93.5 596 6.2 160
MNASNet× 1.4 + SE (Tan et al., 2018) 77.2 93.2 600 - 40000

BetaNet-A× 1.4 + SE 77.7 93.7 631 7.2 160
BetaNet-A× 1.4 + SE + auto-aug + swish 79.0 94.2 631 7.2 160

Table 2: BetaNet-B compared with the state-of-the-art methods under comparable GPU latency.

Method Top1 Top5 GPU Latency search cost
(%) (%) (ms) (GPU hours)

MobileNet V2 (Sandler et al., 2018) 72.0 91.0 6.1 -
ShuffleNetV2 (1.5) (Ma et al., 2018) 72.6 - 7.3 -
ProxyLessNAS-gpu (Cai et al., 2018) 75.1 92.5 5.1 200

MNASNet (Tan et al., 2018) 74.0 91.8 6.1 40,000
BetaNet-B 75.8 92.8 6.2 160

Searched Archtectures As shown in Fig 3, BetaNet-A and BetaNet-B are searched with flops and
GPU latency limitation respectively. BetaNet-A tends to select operators with lower flops at front
layers where feature maps are large and operators with higher flops elsewhere to enhance the ability.
BetaNet-B tends to select large kernels and fewer layers, since GPU performs better with parallelism.

Performance on ImageNet Experiments results compared with state-of-the-art methods under
comparable flops and gpu latency are shown in Table 1 and 2 respectivly and our architectures
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Figure 4: BetaNet-A is compared with MobileNetV2 (Sandler et al., 2018) ProxyLessNAS Cai et al.
(2018) and MNASNet (Tan et al., 2018) with various depth multiplier (0.75, 1.0, 1.4).
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Figure 5: The variation of α and training frequency of 2 choice blocks from each method are shown
in (a) and (b). From left to right in each line: α in block 1, paths training frequency in block 1, α in
block 2, paths training frequency in block 2.

achieve the best performance. SENet (Hu et al., 2018) with ratio 0.0625 is applied in table 1 as
BetaNet-A + SE. BetaNet-A performs better than MobileNetV2 with comparable flops by 3.1%.
BetaNet-B performs better with comparable latency by 3.8%.Auto-augment (Cubuk et al., 2018) and
SWISH activation (Ramachandran et al., 2017) are also applied to the searched BetaNet-A and the
performance is further enhanced to 79.0%. As shown in Fig 4, BetaNet-A outperforms MobileNetV2,
ProxyLessNAS (Cai et al., 2018) and MNASNet (Tan et al., 2018) with various depth multiplier.

4.3 ABLATION STUDIES

4.3.1 COMPARED WITH GRADIENT BASED METHODS

Experiments are conducted in this sub-section to analyze the contribution of the proposed searching
approach: balanced training and selective drop. The searching process of BetaNet-A is compared
with that of ProxyLessNAS (Cai et al., 2018). Fig 5(a) and (b) show the variation of architecture
parameters α and updating frequency of 2 choice blocks for each method respectively. In the result of
ProxyLessNAS shown in Fig 5(a) (top left), the conv3_exp6 operator performs better at early phases
and get much more training opportunity than other operators and thus trained more sufficiently, which
might lead to degraded performance due to the above mentioned "Matthew Effect". Differently, our
strategy ensures that all remaining paths are trained with roughly equal frequency. In addition, our
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Figure 6: 4 Networks are trained in 3 groups with different training policies. 00, 01, 10, 11 represent
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methods train remaining with much more frequency than ProxyLessNAS, while ProxyLessNAS
spend much steps on redundant paths with little promising.

4.3.2 ANALYSIS OF DROP PATH

Besides the policy of selecting architecture parameters, the optimization of network parameters of our
method is different from that of one-shot methods mainly in the drop paths strategy. To give a better
understanding of its effectiveness, we conduct experiments on 4 network architectures with 3 different
training policies to explore the influence of the number of candidate branches on weight sharing. As
shown in Figure6, networks in 3 groups are trained with none weight sharing(NS), 2-branch weight
sharing branches(B2) and 4-branch weight sharing branches(B4), respectively. Networks in NS, B2,
B4 are trained on cifar10 for 30, 60, 120 epochs respectively to insure network parameters are trained
with comparable steps in each group.

The accuracy of the 4 networks trained with NS, B2 and B4 are shown in Fig6 respectively. The
experiments indicate 2 phenomenons: 1. The accuracy trained via B2 with 60 epochs is much
higher than B4 with 120 epochs, which indicates that less branches in weight sharing helps network
parameters converge better. 2. The relative rank of the 4 networks trained with B2 is more similar to
those with NS than those with B4, which indicates that less branch can give a better instruction in
network selection and demonstrate the rationality of our drop paths strategy.

4.4 DISCUSSION ON TWO STREAMS OF WEIGHT SHARING METHODS

There is always a compromise between accuracy and efficiency. Weight sharing shows remarkable
improvements in reducing searching cost though introduce inevitable bias on accuracy. Alternatively
training approaches are actually greedy methods, since they are talented at searching for next optimal
solution. Meanwhile, architectures with less competition at early phases are abandoned. In contrast,
one-shot methods attempt offer equal opportunities to all candidates which leads to a more global
solution. However operators via weight sharing should deal with outputs from multiple former paths,
which is challenging for operators with less flops. Therefore these operators suffer more from the
mutual interference than those with larger flops.

Our approach tries to balance the advantages and disadvantages of both streams. On one hand,
we tries to insure the accuracy of most promising operators which is similar to the strategies in
alternatively training ones. Differently, only the operators with performance much lower than the
average of others will be dropped. On the other hand, we train paths balanced follows the strategies
one-shot based ones. Unlikely, paths are gradually dropped to a lower amount in our method to
reduce conflicts.

5 CONCLUSION

This work proposes a novel neural architecture search method via balanced training and selective
drop strategies. The proposed methods benefits from both streams of weight sharing approaches and
relieve their limitations in optimizing the parameters in super-net. Moreover, our method achieves a
new state-of-the-art result of 79.0% on ImageNet under mobile settings with even less searching cost,
which demonstrates its effectiveness.
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