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ABSTRACT

This work presents a two-stage neural architecture for learning and refining struc-
tural correspondences between graphs. First, we use localized node embeddings
computed by a graph neural network to obtain an initial ranking of soft corre-
spondences between nodes. Secondly, we employ synchronous message passing
networks to iteratively re-rank the soft correspondences to reach a matching con-
sensus in local neighborhoods between graphs. We show, theoretically and em-
pirically, that our message passing scheme computes a well-founded measure of
consensus for corresponding neighborhoods, which is then used to guide the iter-
ative re-ranking process. Our purely local and sparsity-aware architecture scales
well to large, real-world inputs while still being able to recover global correspon-
dences consistently. We demonstrate the practical effectiveness of our method on
real-world tasks from the fields of computer vision and entity alignment between
knowledge graphs, on which we improve upon the current state-of-the-art.

1 INTRODUCTION

Graph matching refers to the problem of establishing meaningful structural correspondences of
nodes between two or more graphs by taking both node similarities and pairwise edge similarities
into account (Wang et al., 2019b). Since graphs are natural representations for encoding relational
data, the problem of graph matching lies at the heart of many real-world applications. For exam-
ple, comparing molecules in cheminformatics (Kriege et al., 2019b), matching protein networks
in bioinformatics (Sharan & Ideker, 2006; Singh et al., 2008), linking user accounts in social net-
work analysis (Zhang & Philip, 2015), and tracking objects, matching 2D/3D shapes or recognizing
actions in computer vision (Vento & Foggia, 2012) can be formulated as a graph matching problem.

The problem of graph matching has been heavily investigated in theory (Grohe et al., 2018) and
practice (Conte et al., 2004), usually by relating it to domain-agnostic distances such as the graph
edit distance (Stauffer et al., 2017) and the maximum common subgraph problem (Bunke & Shearer,
1998), or by formulating it as a quadratic assignment problem (Yan et al., 2016). Since all three ap-
proaches are NP-hard, solving them to optimality may not be tractable for large-scale, real-world
instances. Moreover, these purely combinatorial approaches do not adapt to the given data distribu-
tion and often do not consider continuous node embeddings which can provide crucial information
about node semantics.

Recently, various neural architectures have been proposed to tackle the task of graph matching
(Zanfir & Sminchisescu, 2018; Wang et al., 2019b; Xu et al., 2019d;b; Derr et al., 2019; Zhang
et al., 2019a; Heimann et al., 2018) or graph similarity (Bai et al., 2018; 2019; Li et al., 2019) in a
data-dependent fashion. These approaches, however, are either only capable of computing similarity
scores between whole graphs (Bai et al., 2018; 2019; Li et al., 2019), rely on an inefficient global
matching procedure (Zanfir & Sminchisescu, 2018; Wang et al., 2019b; Xu et al., 2019d; Li et al.,
2019), or do not generalize to unseen graph instances (Xu et al., 2019b; Derr et al., 2019; Zhang
et al., 2019a). Moreover, they might be prone to match neighborhoods between graphs inconsistently
by only taking localized embeddings into account (Zanfir & Sminchisescu, 2018; Wang et al., 2019b;
Xu et al., 2019d; Derr et al., 2019; Heimann et al., 2018).

Here, we propose a fully-differentiable graph matching procedure which aims to reach a data-driven
neighborhood consensus between matched node pairs without the need to solve any optimization
problem during inference. In addition, our approach is purely local, i.e., it operates on fixed-size
neighborhoods around nodes, and is sparsity-aware, i.e., it takes the sparsity of the underlying struc-
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tures into account. Hence, our approach scales well to large input domains, and can be trained in
an end-to-end fashion to adapt to a given data distribution. Finally, our approach improves upon
the state-of-the-art on several real-world applications from the fields of computer vision and entity
alignment on knowledge graphs.

2 PROBLEM DEFINITION

A graph G = (V,A,X,E) consists of a finite set of nodes V = {1, 2, . . .}, an adjacency matrix
A ∈ {0, 1}|V|×|V|, a node feature matrix X ∈ R|V|×·, and an optional (sparse) edge feature matrix
E ∈ R|V|×|V|×·. For a subset of nodes S ⊆ V , G[S] = (S,AS,S ,XS,:,ES,S,:) denotes the
subgraph of G induced by S. We refer toNT (i) = {j ∈ V : d(i, j) ≤ T} as the T -hop neighborhood
around node i ∈ V , where d : V × V → N denotes the shortest-path distance in G. A node coloring
is a function V → Σ with arbitrary codomain Σ.

The problem of graph matching refers to establishing node correspondences between two graphs.
Formally, we are given two graphs, a source graph Gs = (Vs,As,Xs,Es) and a target graph
Gt = (Vt,At,Xt,Et), w.l.o.g. |Vs| ≤ |Vt|, and are interested in finding a correspondence matrix
S ∈ {0, 1}|Vs|×|Vt| which minimizes an objective subject to the one-to-one mapping constraints∑
j∈Vt Si,j = 1 ∀i ∈ Vs and

∑
i∈Vs Si,j ≤ 1 ∀j ∈ Vt. As a result, S infers an injective mapping

π : Vs → Vt which maps each node in Gs to a node in Gt.
Typically, graph matching is formulated as an edge-preserving, quadratic assignment problem
(Anstreicher, 2003; Gold & Rangarajan, 1996; Caetano et al., 2009; Cho et al., 2013), i.e.,

argmax
S

∑
i,i′∈Vs
j,j′∈Vt

A
(s)
i,i′A

(t)
j,j′Si,jSi′,j′ (1)

subject to the one-to-one mapping constraints mentioned above. This formulation is based on the
intuition of finding correspondences based on neighborhood consensus (Rocco et al., 2018), which
shall prevent adjacent nodes in the source graph from being mapped to different regions in the target
graph. Formally, a neighborhood consensus is reached if for all node pairs (i, j) ∈ Vs × Vt with
Si,j = 1, it holds that for every node i′ ∈ N1(i) there exists a node j′ ∈ N1(j) such that Si′,j′ = 1.

In this work, we consider the problem of supervised and semi-supervised matching of graphs while
employing the intuition of neighborhood consensus as an inductive bias into our model. In the
supervised setting, we are given pair-wise ground-truth correspondences for a set of graphs and
want our model to generalize to unseen graph pairs. In the semi-supervised setting, source and
target graphs are fixed, and ground-truth correspondences are only given for a small subset of nodes.
However, we are allowed to make use of the complete graph structures.

3 METHODOLOGY

In the following, we describe our proposed end-to-end, deep graph matching architecture in de-
tail. See Figure 1 for a high-level illustration. The method consists of two stages: a local feature
matching procedure followed by an iterative refinement strategy using synchronous message passing
networks. The aim of the feature matching step, see Section 3.1, is to compute initial correspondence
scores based on the similarity of local node embeddings. The second step is an iterative refinement
strategy, see Sections 3.2 and 3.3, which aims to reach neighborhood consensus for correspondences
using a differentiable validator for graph isomorphism. Finally, in Section 3.4, we show how to scale
our method to large, real-world inputs.

3.1 LOCAL FEATURE MATCHING

We model our local feature matching procedure in close analogy to related approaches (Bai et al.,
2018; 2019; Wang et al., 2019b) by computing similarities between nodes in the source graph
Gs and the target graph Gt based on node embeddings. That is, given latent node embeddings
Hs = Ψθ1(Xs,As,Es) ∈ R|Vs|×· and Ht = Ψθ1(Xt,At,Et) ∈ R|Vt|×· computed by a shared
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Figure 1: High-level illustration of our two-stage neighborhood consensus architecture. Node fea-
tures are first locally matched based on a graph neural network Ψθ1 , before their correspondence
scores get iteratively refined based on neighborhood consensus. Here, an injective node coloring of
Gs is transferred to Gt via S, and distributed by Ψθ2 on both graphs. Updates on S are performed
by a neural network Φθ3 based on pair-wise color differences.

neural network Ψθ1 for source graph Gs and target graph Gt respectively, we obtain initial soft
correspondences as

S(0) = sinkhorn(Ŝ(0)) ∈ [0, 1]
|Vs|×|Vt| with Ŝ(0) = HsH

>
t ∈ R|Vs|×|Vt|.

Here, sinkhorn normalization is applied to obtain rectangular doubly-stochastic correspondence
matrices that fulfill the constraints

∑
j∈Vt Si,j = 1 ∀i ∈ Vs and

∑
i∈Vs Si,j ≤ 1 ∀j ∈ Vt (Sinkhorn

& Knopp, 1967; Adams & Zemel, 2011; Cour et al., 2006).

We interpret the i-th row vector S(0)
i,: ∈ [0, 1]

|Vt| as a discrete distribution over potential correspon-
dences in Gt for each node i ∈ Vs. We train Ψθ1 in a dicriminative, supervised fashion against
ground truth correspondences πgt(·) by minimizing the negative log-likelihood of correct correspon-
dence scores L (initial) = −∑i∈Vs log(S

(0)
i,πgt(i)

).

We implement Ψθ1 as a Graph Neural Network (GNN) to obtain localized, permutation equivariant
vectorial node representations (Bronstein et al., 2017; Hamilton et al., 2017; Battaglia et al., 2018;
Goyal & Ferrara, 2018). Formally, a GNN follows a neural message passing scheme (Gilmer et al.,
2017) and updates its node features ~h(t−1)i in layer t by aggregating localized information via

~a
(t)
i = AGGREGATE(t)

({{(
~h
(t−1)
j , ~ej,i

)
: j ∈ N1(i)

}})
, ~h

(t)
i = UPDATE(t)

(
~h
(t−1)
i ,~a

(t)
i

)
(2)

where ~h(0)i = ~xi ∈ X and {{. . .}} denotes a multiset. The recent work in the fields of geometric
deep learning and relational representation learning provides a large number of operators to choose
from (Kipf & Welling, 2017; Gilmer et al., 2017; Veličković et al., 2018; Schlichtkrull et al., 2018;
Xu et al., 2019c), which allows for precise control of the properties of extracted features.

3.2 SYNCHRONOUS MESSAGE PASSING FOR NEIGHBORHOOD CONSENSUS

Due to the purely local nature of the used node embeddings, our feature matching procedure is prone
to finding false correspondences which are locally similar to the correct one. Formally, those cases
pose a violation of the neighborhood consensus criteria employed in Equation (1). Since finding a
global optimum is NP-hard, we aim to detect violations of the criteria in local neighborhoods and
resolve them in an iterative fashion.

We utilize graph neural networks to detect these violations in a neighborhood consensus step and
iteratively refine correspondences S(l), l ∈ {0, . . . , L}, starting from S(0). Key to the proposed
algorithm is the following observation: The soft correspondence matrix S ∈ [0, 1]

|Vs|×|Vt| is a map
from the node function space L(Gs) = L(R|Vs|) to the node function space L(Gt) = L(R|Vt|).
Therefore, we can use S to pass node functions ~xs ∈ L(Gs), ~xt ∈ L(Gt) along the soft correspon-
dences by

~x ′t = S>~xs and ~x ′s = S~xt (3)
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to obtain functions ~x ′t ∈ L(Gt), ~x ′s ∈ L(Gs) in the other domain respectively.

Then, our consensus method works as follows: Using S(l), we first map node indicator functions,
given as an injective node coloring Vs → {0, 1}|Vs| in the form of an identity matrix I|Vs|, from Gs
to Gt. Then, we distribute this coloring in corresponding neighborhoods by performing synchronous
message passing on both graphs via a shared graph neural network Ψθ2 , i.e.,

Os = Ψθ2(I|Vs|,As,Es) and Ot = Ψθ2(S>(l)I|Vs|,At,Et). (4)

We can compare the results of both GNNs to recover a vector ~di,j = ~o
(s)
i −~o

(t)
j which measures the

neighborhood consensus between node pairs (i, j) ∈ Vs ×Vt. This measure can be used to perform
trainable updates of the correspondence scores

S
(l+1)
i,j = sinkhorn(Ŝ(l+1))i,j with Ŝ

(l+1)
i,j = Ŝ

(l)
i,j + Φθ3(~dj,i) (5)

based on an MLP Φθ3 . The process can be applied L times to iteratively improve the consensus in
neighborhoods. The final objective L = L (initial) + L (refined) with L (refined) = −∑i∈Vs log(S

(L)
i,πgt(i)

)

combines both the feature matching error and neighborhood consensus error. This objective is fully-
differentiable and can hence be optimized in an end-to-end fashion using stochastic gradient descent.

The following two theorems show that ~di,j is a good measure of how well local neighborhoods
around i and j are matched by the soft correspondence between Gs and Gt. The proofs can be found
in Appendix A and B respectively.

Theorem 1. Let Gs and Gt be two isomorphic graphs and let Ψθ2 be a permutation equivariant
GNN, i.e., P>Ψθ2(X,A) = Ψθ2(P>X,P>AP ) for any permutation matrix P ∈ {0, 1}|V|×|V|.
If S ∈ {0, 1}|Vs|×|Vt| encodes an isomorphism between Gs and Gt, then ~di,π(i) = ~0 for all i ∈ Vs.
Theorem 2. Let Gs and Gt be two graphs and let Ψθ2 be a permutation equivariant and T -layered
GNN for which both AGGREGATE(t) and UPDATE(t) are injective for all t ∈ {1, . . . , T}. If ~di,j = ~0,
then the resulting submatrix SNT (i),NT (j) ∈ [0, 1]

|NT (i)|×|NT (j)| is a permutation matrix describing
an isomorphism between the T -hop subgraph Gs[NT (i)] around i ∈ Vs and the T -hop subgraph
Gt[NT (j)] around j ∈ Vt. Moreover, if ~di,argmaxSi,: = ~0 for all i ∈ Vs, then S denotes a full
isomorphism between Gs and Gt.

Hence, a GNN Ψθ2 that satisfies both criteria in Theorem 1 and 2 provides equal node embeddings
~o

(s)
i and ~o (t)

j if and only if nodes in a local neighborhood are correctly matched to each other. A
value ~di,j 6= ~0 indicates the existence of inconsistent matchings in the local neighborhoods around i
and j, and can hence be used to refine the correspondence score Ŝi,j .

Note that both requirements, permutation equivariance and injectivity, are easily fulfilled: (1) All
common graph neural network architectures following the message passing scheme of Equation (2)
are equivariant due to the use of permutation invariant neighborhood aggregators. (2) Injectivity of
graph neural networks is a heavily discussed topic in recent literature. It can be fulfilled by using a
GNN that is as powerful as the Weisfeiler & Lehman (1968) (WL) heuristic in distinguishing graph
structures, e.g., by using sum aggregation in combination with MLPs on the multiset of neighboring
node features, cf. (Xu et al., 2019c; Morris et al., 2019).

3.3 RELATION TO THE GRADUATED ASSIGNMENT ALGORITHM

Theoretically, we can relate our proposed approach to classical graph matching techniques that con-
sider a doubly-stochastic relaxation of the problem defined in Equation (1), cf. (Lyzinski et al.,
2016) and Appendix D for more details. A seminal work following this method is the graduated as-
signment algorithm (Gold & Rangarajan, 1996). By starting from an initial feasible solution S(0), a
new solution S(l+1) is iteratively computed from S(l) by approximately solving a linear assignment
problem according to

S(l+1) ← softassign
S

∑
i∈Vs

∑
j∈Vt

Qi,jSi,j with Qi,j = 2
∑
i′∈Vs

∑
j′∈Vt

A
(s)
i,i′A

(t)
j,j′S

(l)
i′,j′ (6)
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where Q denotes the gradient of Equation (1) at S(l).1 The softassign operator is implemented by
applying sinkhorn normalization on rescaled inputs, where the scaling factor grows in every itera-
tion to increasingly encourage integer solutions. Our approach also resembles the approximation of
the linear assignment problem via sinkhorn normalization.

Moreover, the gradient Q is closely related to our neighborhood consensus scheme for the particular
simple, non-trainable GNN instantiation Ψ(X,A,E) = AX . Given Os = AsI|Vs| = As and
Ot = AtS

>I|Vs| = AtS
>, we obtain Q = 2OsO

>
t by substitution. Instead of updating S(l)

based on the similarity between Os and Ot obtained from a fixed-function GNN Ψ, we choose to
update correspondence scores via trainable neural networks Ψθ2 and Φθ3 based on the difference
between Os and Ot. This allows us to interpret our model as a deep parameterized generalization
of the graduated assignment algorithm. In addition, specifying node and edge attribute similarities
in graph matching is often difficult and complicates its computation (Zhou & De la Torre, 2016;
Zhang et al., 2019c), whereas our approach naturally supports continuous node and edge features
via established GNN models.

3.4 SCALING TO LARGE INPUT

We apply a number of optimizations to our proposed algorithm to make it scale to large input do-
mains. See Algorithm 1 in Appendix C for the final optimized algorithm.

Sparse correspondences. We propose to sparsify initial correspondences S(0) by filtering out
low score correspondences before neighborhood consensus takes place. That is, we sparsify S(0) by
computing top k correspondences with the help of the KEOPS library (Charlier et al., 2019) without
ever storing its dense version, reducing its required memory footprint fromO(|Vs||Vt|) toO(k|Vs|).
In addition, the time complexity of the refinement phase is reduced from O(|Vs||Vt| + |Es| + |Et|)
to O(k|Vs|+ |Es|+ |Et|), where |Es| and |Et| denote the number of edges in Gs and Gt respectively.
Note that sparsifying initial correspondences assumes that the feature matching procedure ranks the
correct correspondence within the top k elements for each node i ∈ Vs. Hence, also optimizing
the initial feature matching loss L (initial) is crucial, and can be further accelerated by training only
against sparsified correspondences with ground-truth entries topk(S

(0)
i,: ) ∪ {S(0)

i,πgt(i)
}.

Replacing node indicators functions. Although applying Ψθ2 on node indicator functions I|Vs|
is computationally efficient, it requires a parameter complexity of O(|Vs|). Hence, we propose
to replace node indicator functions I|Vs| with randomly drawn node functions R

(l)
s ∼ N (0, 1),

where R
(l)
s ∈ R|Vs|×r with r � |Vs|, in iteration l. By sampling from a continuous distribution,

node indicator functions are still guaranteed to be injective (DeGroot & Schervish, 2012). Note
that Theorem 1 still holds because it does not impose any restrictions on the function space L(Gs).
Theorem 2 does not necessarily hold anymore, but we expect our refinement strategy to resolve any
ambiguities by re-sampling R

(l)
s in every iteration l. We verify this empirically in Section 4.1.

Softmax normalization. The sinkhorn normalization fulfills the requirements of rectangular
doubly-stochastic solutions. However, it may eventually push correspondences to inconsistent in-
teger solutions very early on from which the neighborhood consensus method cannot effectively
recover. Furthermore, it is inherently inefficient to compute and runs the risk of vanishing gradi-
ents ∂S(l)/∂Ŝ(l) (Zhang et al., 2019b). Here, we propose to relax this constraint by only applying
row-wise softmax normalization on Ŝ(l), and expect our supervised refinement procedure to nat-
urally resolve violations of

∑
i∈Vs Si,j ≤ 1 on its own by re-ranking false correspondences via

neighborhood consensus. Experimentally, we show that row-wise normalization is sufficient for our
algorithm to converge to the correct solution, cf. Section 4.1.

Number of refinement iterations. Instead of holding L fixed, we propose to differ the number of
refinement iterations L(train) and L(test), L(train) � L(test), for training and testing respectively. This
does not only speed up training runtime, but it also encourages the refinement procedure to reach

1For clarity of presentation, we closely follow the original formulation of the method for simple graphs but
ignore the edge similarities and adapt the constant factor of the gradient according to our objective function.
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Figure 2: The performance of our method on synthetic data.

convergence with as few steps as necessary while we can run the refinement procedure until conver-
gence during testing. We show empirically that decreasing L(train) does not affect the convergence
abilities of our neighborhood consensus procedure during testing, cf. Section 4.1.

4 EXPERIMENTS

We verify our method on three different tasks. We first show the benefits of our approach in an
ablation study on synthetic graphs (Section 4.1), and apply it to the real-world tasks of supervised
keypoint matching in natural images (Section 4.2) and semi-supervised cross-lingual knowledge
graph alignment (Section 4.3) afterwards. All dataset statistics can be found in Appendix F.

Our method is implemented in PYTORCH (Paszke et al., 2017) using the PYTORCH GEOMETRIC
(Fey & Lenssen, 2019) and the KEOPS (Charlier et al., 2019) libraries. Our implementation can
process sparse mini-batches with parallel GPU acceleration and minimal memory footprint in all
algorithm steps. We will make our code publicly availabe prior to publication. For all experiments,
optimization is done via ADAM (Kingma & Ba, 2015) with a fixed learning rate of 10−3. We use
similar architectures for Ψθ1 and Ψθ2 except that we omit dropout (Srivastava et al., 2014) in Ψθ2 .
For all experiments, we report Hits@k to evaluate and compare our model to previous lines of work,
where Hits@k measures the proportion of correctly matched entities ranked in the top k.

4.1 ABLATION STUDY ON SYNTHETIC GRAPHS

In our first experiment, we evaluate our method on synthetic graphs where we aim to learn a match-
ing for pairs of graphs in a supervised fashion. Each pair of graphs consists of an undirected Erdős &
Rényi (1959) graph Gs with |V| ∈ {50, 100} nodes and edge probability p ∈ {0.1, 0.2}, and a target
graph Gt which is constructed from Gs by removing edges with probability ps without disconnecting
any nodes (Heimann et al., 2018). Training and evaluation is done on 1 000 graphs each for different
configurations ps ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

Architecture and parameters. We implement the graph neural network operators Ψθ1 and Ψθ2
by stacking three layers (T = 3) of the GIN operator (Xu et al., 2019c)

~h
(t+1)
i = MLP(t+1)

((
1 + ε(t+1)

)
· ~h(t)i +

∑
j→i

~h
(t)
j

)
, (7)

due to its expressiveness in distinguishing raw graph structures. The number of layers and hidden
dimensionality of all MLPs is set to 2 and 32 respectively, and we apply ReLU activation (Glorot
et al., 2011) and Batch normalization (Ioffe & Szegedy, 2015) after each of its layers. Input features
are initialized with one-hot encodings of node degrees. We employ a Jumping Knowledge style
concatenation ~hi = W [~h

(1)
i , . . . ,~h

(T )
i ] (Xu et al., 2018) to compute final node representations ~hi.

We train and test our procedure with L(train) = 10 and L(test) = 20 refinement iterations respectively.

Results. Figures 2(a) and 2(b) show the matching accuracy Hits@1 for different choices of |Vs|
and p. We observe that the purely local matching approach via softmax(Ŝ(0)) starts decreasing in
performance with the structural noise ps increasing. This also holds when applying global sinkhorn

normalization on Ŝ(0). However, our proposed two-stage architecture can recover all correspon-
dences, independent of the applied structural noise ps. This applies to both variants discussed in the
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previous sections, i.e., our initial formulation sinkhorn(Ŝ(L)), and our optimized architecture using
random node indicator sampling and row-wise normalization softmax(Ŝ(L)). This highlights the
overall benefits of applying matching consensus and justifies the usage of the enhancements made
towards scalability in Section 3.4.

In addition, Figure 2(c) visualizes the test error L (refined) for varying number of iterations L(test).
We observe that even when training to non-convergence, our procedure is still able to converge by
increasing the number of iterations L(test) during testing.

Moreover, Figure 2(d) shows the performance of our refinement strategy when operating on spar-
sified top k correspondences. In contrast to its dense version, it cannot match all nodes correctly
due to the poor initial feature matching quality. However, it consistently converges to the perfect
solution of Hits@1 ≈ Hits@k in case the correct match is included in the initial top k ranking of
correspondences. Hence, with increasing k, we can recover most of the correct correspondences,
making it an excellent option to scale our algorithm to large graphs, cf. Section 4.3.

4.2 SUPERVISED KEYPOINT MATCHING IN NATURAL IMAGES

We perform experiments on the WILLOW-OBJECTCLASS (Cho et al., 2013) and PASCALVOC
(Everingham et al., 2010) with Berkeley annotations (Bourdev & Malik, 2009) datasets which
contain sets of image categories with labeled keypoint locations. The WILLOW-OBJECTCLASS
dataset contains at least 40 images with consistent orientations for each of its five categories. Each
image consists of exactly 10 keypoints. Following the experimental setup of peer methods (Cho
et al., 2013; Wang et al., 2019b), we evaluate our model over 20 random splits with 20 per-class
images used for training. For PASCALVOC, we follow the experimental setups of Zanfir & Smin-
chisescu (2018) and Wang et al. (2019b) and use the training and test splits provided by Choy et al.
(2016). We pre-filter the dataset to exclude difficult, occluded and truncated objects, and examples
with less than 3 keypoints, resulting in 6 830 and 1 650 annotated images for training and testing
respectively. In contrast to WILLOW-OBJECTCLASS, the PASCALVOC dataset contains instances
of varying scale, pose and illumination, and the number of keypoints ranges from 3 to 19.2 We
construct graphs via the Delaunay triangulation of keypoints. For fair comparison with Zanfir &
Sminchisescu (2018) and Wang et al. (2019b), input features of keypoints are given by the concate-
nated output of relu4 2 and relu5 1 of a pre-trained VGG16 (Simonyan & Zisserman, 2014)
on IMAGENET (Deng et al., 2009).

Architecture and parameters. We adopt SPLINECNN (Fey et al., 2018) as our graph neural
network operator

~h
(t+1)
i = σ

(
W (t+1)~h

(t)
i +

∑
j→i

Φ
(t+1)
θ (~ej,i) · ~h(t)j

)
, (8)

whose trainable B-spline based kernel function Φθ(·) is conditioned on edge features ~ej,i between
node-pairs. To align our results with the related work, we evaluate both isotropic and anisotropic
edge features which are given as normalized relative distances and 2D Cartesian coordinates respec-
tively. For SPLINECNN, we use a kernel size of 5 in each dimension, a hidden dimensionality of
64, and apply ReLU as our non-linearity function σ. Our network architecture consists of two con-
volutional layers (T = 2), followed by dropout with probability 0.5, and a final linear layer. During
training, we form pairs between any two training examples of the same category, and evaluate our
model across the product of all testing and training examples belonging to the same category.

Results. We follow the experimental setup of Wang et al. (2019b) and train our models using
negative log-likelihood due to its superior performance in contrast to the displacement loss used
in Zanfir & Sminchisescu (2018). In addition, we include ablation results obtained from the local
node matching procedure (L = 0) using an MLP, and isotropic and anisotropic GNNs. Results of
Hits@1 are shown in Table 1 and 2 for WILLOW-OBJECTCLASS and PASCALVOC respectively.
We visualize qualitative results of our method in Appendix G.

2We noticed that our PASCALVOC dataset statistics slightly differ from those reported by Zanfir & Smin-
chisescu (2018) and Wang et al. (2019b). Since both code bases are not publicly available yet, we can not
investigate those differences any further. We would like to point out that comparisons to these methods should
therefore be made with caution.
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Table 1: Hits@1 (%) with standard deviations on the WILLOW-OBJECTCLASS dataset.
Method Face Motorbike Car Duck Winebottle

GMN (Zanfir & Sminchisescu, 2018) 99.3 71.4 74.3 82.8 76.7
PCA-GM (Wang et al., 2019b) 100.0 76.7 84.0 93.5 96.9

3-layer MLP L = 0 98.20 ± 0.56 56.85 ± 2.65 73.44 ± 2.48 71.93 ± 2.10 86.10 ± 1.25

Ours
isotropic L = 0 99.90 ± 0.10 83.89 ± 2.65 84.97 ± 3.00 86.80 ± 2.41 94.55 ± 1.46
isotropic L = 10 100.00 ± 0.00 92.73 ± 2.60 93.18 ± 3.01 91.80 ± 2.00 97.97 ± 0.78
isotropic L = 20 100.00 ± 0.00 93.10 ± 2.50 93.77 ± 3.18 92.11 ± 2.33 98.16 ± 0.78

Ours
anisotropic L = 0 100.00 ± 0.00 97.48 ± 1.12 97.15 ± 1.59 92.77 ± 2.30 98.94 ± 0.64
anisotropic L = 10 100.00 ± 0.00 99.21 ± 0.81 98.72 ± 0.90 96.31 ± 2.06 99.69 ± 0.34
anisotropic L = 20 100.00 ± 0.00 99.34 ± 0.68 98.98 ± 0.68 96.15 ± 2.04 99.70 ± 0.33

Table 2: Hits@1 (%) on the PASCALVOC dataset with Berkeley keypoint annotations.
Method Mean Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse M-Bike Person Plant Sheep Sofa Train TV

GMN 57.9 31.1 46.2 58.2 45.9 70.6 76.5 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6
PCA-GM 63.8 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9

3-layer MLP L = 0 61.6 40.4 55.3 54.2 47.9 67.9 76.4 56.2 56.7 31.8 43.9 50.6 56.0 45.1 53.5 36.1 71.4 42.1 44.6 84.1 91.4

Ours
iso. L = 0 75.6 52.9 71.5 71.6 66.0 89.0 84.2 73.9 64.9 41.4 55.0 70.1 65.0 56.4 73.0 50.7 85.0 50.4 72.2 94.4 93.3
iso. L = 10 78.7 54.1 73.5 74.1 73.0 91.8 86.9 81.6 66.6 42.0 56.6 70.4 69.1 58.2 77.2 56.6 88.9 55.3 78.5 95.1 94.1
iso. L = 20 78.7 54.4 74.6 74.5 73.5 91.1 86.0 79.5 66.9 45.3 59.2 67.3 69.3 62.3 75.7 54.8 90.1 52.3 82.2 93.8 94.3

Ours
ani. L = 0 81.9 56.7 74.6 75.2 78.7 92.3 91.1 84.5 67.5 55.5 62.1 76.5 72.0 65.5 78.3 59.0 98.1 57.2 78.4 96.6 94.0
ani. L = 10 83.3 58.0 75.7 76.5 82.1 92.9 88.1 88.0 71.7 57.0 68.8 84.4 74.6 67.2 80.4 62.5 98.8 59.0 82.4 97.4 95.0
ani. L = 20 83.5 59.4 76.7 78.0 78.7 93.8 91.2 86.0 71.8 53.6 69.3 85.2 76.0 66.4 81.9 63.3 98.3 59.4 78.9 96.9 94.5

We observe that our refinement strategy is able to significantly outperform competing methods as
well as our non-refined baselines. In addition, we see that performance of our model can be further
enhanced by the usage of task-specific anisotropic GNNs which are able to provide better initial fea-
ture matching capabilities. However, there are a few cases where the performance of our refinement
strategy does not exceed the performance of our initial feature matching procedure. We contribute
this to the fact that keypoint graphs are rather small, and can hence be already globally analyzed by
a GNN with a sufficient number of layers.

4.3 SEMI-SUPERVISED CROSS-LINGUAL KNOWLEDGE GRAPH ALIGNMENT

We evaluate our model on the DBP15K datasets (Sun et al., 2017) which link entities of the Chi-
nese, Japanese and French knowledge graphs of DBPEDIA into the English version and vice versa.
Each dataset contains exactly 15 000 links between equivalent entities, and we split those links into
training and testing following upon previous works. For obtaining entity input features, we fol-
low the experimental setup of Xu et al. (2019d): We retrieve monolingual FASTTEXT embeddings
(Bojanowski et al., 2017) for each language separately, and align those into the same vector space
afterwards (Lample et al., 2018). We use the sum of word embeddings as the final entity input
representation (although more sophisticated approaches are just as conceivable).

Architecture and parameters. Our graph neural network operator mostly matches the one pro-
posed in Xu et al. (2019d) where the direction of edges is retained, but not their specific relation
type:

~h
(t+1)
i = σ

(
W

(t+1)
1

~h
(t)
i +

∑
j→i

W
(t+1)
2

~h
(t)
j +

∑
i→j

W
(t+1)
3

~h
(t)
j

)
(9)

We use ReLU followed by Batch normalization and dropout with probability 0.5 as our non-linearity
σ, and obtain final node representations via ~hi = W4[~h

(1)
i , . . . ,~h

(T )
i ]. We use a three-layer GNN

(T = 3) both for obtaining initial similarities and for refining alignments with dimensionality 256
and 32 respectively. Training is performed using negative log likelihood in a semi-supervised fash-
ion: For each training node i in Vs, we train L (initial) sparsely by using the corresponding ground-
truth node in Vt, the top 100 entries in Si,: and 100 randomly sampled entities in Vt. For the
refinement phase, we update the sparse top k = 10 correspondence matrix L = 10 times. For
efficiency reasons, we train L (initial) and L (refined) sequentially for 100 and 40 epochs respectively.

Results. We report Hits@1 and Hits@10 to evaluate and compare our model to previous lines of
work, see Table 3. In addition, we report results of a simple three-layer MLP which matches nodes
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Table 3: Hits@1 (%) and Hits@10 (%) on the DBP15K dataset.

Method ZH→EN EN→ZH JA→EN EN→JA FR→EN EN→FR
@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

GCN (Wang et al., 2018) 41.25 74.38 36.49 69.94 39.91 74.46 38.42 71.81 37.29 74.49 36.77 73.06
BOOTEA (Sun et al., 2018) 62.94 84.75 62.23 85.39 65.30 87.44
MUGNN (Cao et al., 2019) 49.40 84.40 50.10 85.70 49.60 87.00
NAEA (Zhu et al., 2019) 65.01 86.73 64.14 87.27 67.32 89.43
RDGCN (Wu et al., 2019) 70.75 84.55 76.74 89.54 88.64 95.72
GMNN (Xu et al., 2019d) 67.93 78.48 65.28 79.64 73.97 87.15 71.29 84.63 89.38 95.25 88.18 94.75

3-layer MLP L = 0 57.30 77.77 55.48 74.74 58.48 79.26 54.25 75.72 75.77 91.27 74.33 89.91

Ours (sparse) L = 0 72.53 89.67 67.80 86.82 73.70 90.68 70.01 87.78 86.39 96.67 84.23 96.11
L = 10 77.16 89.67 71.77 86.82 77.36 90.68 73.93 87.78 89.12 96.67 87.50 96.11

purely based on initial word embeddings, and a variant of our model without the refinement of initial
correspondences (L = 0). Our approach improves upon the state-of-the-art on almost all categories
with gains of up to 6.41 percentage points. In addition, our refinement strategy consistently improves
upon the Hits@1 of initial correspondences by a significant margin, while results of Hits@10 are
shared due to the refinement operating only on sparsified top 10 initial correspondences. Due to
the scalability of our approach, we can easily apply a multitude of refinement iterations while still
retaining large hidden feature dimensionalities.

5 LIMITATIONS

Our experimental results demonstrate that the proposed approach effectively solves challenging real-
world problems. However, the expressive power of GNNs is closely related to the WL heuristic for
graph isomorphism testing (Xu et al., 2019c; Morris et al., 2019), whose power and limitations are
well understood (Arvind et al., 2015). Our method generally inherits these limitations. Hence, one
possible limitation is that whenever two nodes are assigned the same color by WL, our approach
may fail to converge to one of the possible solutions. For example, there may exist two nodes
i, j ∈ Vt with equal neighborhood setsN1(i) = N1(j). One can easily see that the feature matching
procedure generates equal initial correspondence distributions S

(0)
:,i = S

(0)
:,j , resulting in the same

mapped node indicator functions I>|Vs|S
(0)
:,i = I>|Vs|S

(0)
:,j from Gs to nodes i and j respectively.

Since both nodes share the same neighborhood, Ψθ2 also produces the same distributed functions
~o

(t)
i = ~o

(t)
j . As a result, both column vectors Ŝ

(l)
:,i and Ŝ

(l)
:,j receive the same update, leading to

non-convergence. In theory, one might resolve these ambiguities by adding a small amount of noise
to Ŝ(0). However, the general amount of feature noise present in real-world datasets already ensures
that this scenario is unlikely to occur.

6 RELATED WORK

Identifying correspondences between the nodes of two graphs has been studied in various domains
and an extensive body of literature exists. Closely related problems are summarized under the terms
maximum common subgraph (Kriege et al., 2019b), network alignment (Zhang, 2016), graph edit
distance (Chen et al., 2019) and graph matching (Yan et al., 2016). We refer the reader to the Ap-
pendix D for a detailed discussion of the related work on these problems. Recently, graph neural
networks have become a focus of research leading to various proposed deep graph matching tech-
niques (Wang et al., 2019b; Xu et al., 2019d; Derr et al., 2019). In Appendix E, we present a detailed
overview of the related work in this field while highlighting individual differences and similarities
to our proposed graph matching consensus procedure.

7 CONCLUSION

We presented a two-stage neural architecture for learning node correspondences between graphs in
a supervised or semi-supervised fashion. Our approach is aimed towards reaching a neighborhood
consensus between matchings, and can resolve violations of this criteria in an iterative fashion. In
addition, we proposed enhancements to let our algorithm scale to large input domains. We evaluated
our architecture on real-world datasets on which it consistently improved upon the state-of-the-art.
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O. Litany, T. Remez, E. Rodolà, A. M. Bronstein, and M. M. Bronstein. Deep functional maps:
Structured prediction for dense shape correspondence. In ICCV, 2017.

V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G. Sapiro. Graph matching:
Relax at your own risk. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1),
2016.

D. W. Matula. Subtree isomorphism in O(n5/2). In Algorithmic Aspects of Combinatorics, vol-
ume 2. Elsevier, 1978.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and Leman go neural: Higher-order graph neural networks. In AAAI, 2019.

R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Relational pooling for graph representations.
In ICML, 2019.

M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. J. Guibas. Functional maps: A
flexible representation of maps between shapes. ACM Transactions on Graphics, 31(4), 2012.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to
the web. Technical report, Stanford InfoLab, 1999.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017.

G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein averaging of kernel and distance matri-
ces. In ICML, 2016.

12



Under review as a conference paper at ICLR 2020

K. Riesen and H. Bunke. Approximate graph edit distance computation by means of bipartite graph
matching. Image and Vision Computing, 27(7), 2009.

K. Riesen, M. Ferrer, R. Dornberger, and H. Bunke. Greedy graph edit distance. In Machine
Learning and Data Mining in Pattern Recognition, 2015a.

K. Riesen, M. Ferrer, A. Fischer, and H. Bunke. Approximation of graph edit distance in quadratic
time. In Graph-Based Representations in Pattern Recognition, 2015b.
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A PROOF FOR THEOREM 1

Proof. Since Ψθ2 is permutation equivariant, it holds for any node feature matrix Xs ∈ R|Vs|×· that
Ψθ2(S>Xs,S

>AsS) = S>Ψθ2(Xs,As). With Xt = S>Xs and At = S>AsS, it follows that

Ot = Ψθ2(Xt,At) = Ψθ2(S>Xs,S
>AsS) = S>Ψθ2(Xs,As) = S>Os.

Hence, it shows that ~o (s)
i = (S>Os)π(i) = ~o

(t)
π(i) for any node i ∈ Vs, resulting in ~di,π(i) = ~0.

B PROOF FOR THEOREM 2

Proof. Let be ~di,j = ~o
(s)
i − ~o (t)

j = ~0. Then, the T -layered GNN Ψθ2 maps both T -hop neighbor-
hoods around nodes i ∈ Vs and j ∈ Vt to the same vectorial representation:

~o
(s)
i = Ψθ2(I

|Vs|
NT (i),:,A

(s)
NT (i),NT (i))i

= Ψθ2((S>I|Vs|)NT (j),:
,A

(t)
NT (j),NT (j))j

= ~o
(t)
j (10)

Because Ψθ2 is as powerful as the WL heuristic in distinguishing graph structures (Xu et al., 2019c;
Morris et al., 2019) and is operating on injective node colorings I|V|s , it has the power to distinguish
any graph structure from Gs[NT (i)] = (NT (i), I

|Vs|
NT (i),:,A

(s)
NT (i),NT (i)), cf. (Murphy et al., 2019).

Since ~o (s)
i holds information about every node in Gs[NT (i)], it necessarily holds that Gs[NT (i)] '

Gt[NT (j)] in case ~o (s)
i = ~o

(t)
j , where ' denotes the labeled graph isomorphism relation. Hence,

there exists an isomorphism P ∈ {0, 1}|NT (i)|×|NT (j)| between Gs[NT (j)] and Gt[NT (j)] such that

I
|Vs|
NT (i),: = P (S>I|Vs|)NT (j),:

and A
(s)
NT (i),NT (i) = PA

(t)
NT (j),NT (j)P

> (11)

With I|Vs| being the identity matrix, it follows that I |Vs|NT (i),: = PS>NT (j),:. Furthermore, it holds

that I |Vs|NT (i),NT (i) = PS>NT (j),NT (i) when reducing I
|Vs|
NT (i),: to its column-wise non-zero entries. It

follows that SNT (i),NT (j) = P is a permutation matrix describing an isomorphism.

Moreover, if ~di,argmaxSi,:
= ~0 for all i ∈ Vs, it directly follows that S is holding submatrices de-

scribing isomorphisms between any T -hop subgraphs around i ∈ Vs and argmaxSi,: ∈ Vt. Assume
there exists nodes i, i′ ∈ Vs that map to the same node j = argmaxSi,: = argmaxSi′,: ∈ Vt. It
follows that ~o (s)

i = ~o
(t)
j = ~o

(s)
i′ which contradicts the injectivity requirements of AGGREGATE(t)

and UPDATE(t) for all t ∈ {1, . . . , T}. Hence, S must be itself a permutation matrix describing an
isomorphism between Gs and Gt.

C OPTIMIZED GRAPH MATCHING CONSENSUS ALGORITHM

Our final optimized algorithm is given in Algorithm 1.

D RELATED WORK I

Identifying correspondences between the nodes of two graphs is a problem arising in various do-
mains and has been studied under different terms. In graph theory, the combinatorial maximum
common subgraph isomorphism problem is studied, which asks for the largest graph that is con-
tained as subgraph in two given graphs. The problem is NP-hard in general and remains so even in
trees (Garey & Johnson, 1979) unless the common subgraph is required to be connected (Matula,
1978). Moreover, most variants of the problem are difficult to approximate with theoretical guaran-
tees (Kann, 1992). We refer the reader to the survey by Kriege et al. (2019b) for a overview of the
complexity results noting that exact polynomial-time algorithms are available for specific problem
variants only that are most relevant in cheminformatics.

Fundamentally different techniques have been developed in bioinformatics and computer vision,
where the problem is commonly referred to as network alignment or graph matching. In these areas
large networks without any specific structural properties are common and the studied techniques
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Algorithm 1 Optimized graph matching consensus algorithm
Input: Gs = (Vs,As,Xs,Es), Gt = (Vt,At,Xt,Et), hidden node dimensionality d, sparsity
parameter k, number of consensus iterations L, number of random functions r
Output: Sparse soft correspondence matrix S(L) ∈ [0, 1]

|Vs|×|Vt| with k · |Vs| non-zero entries
——————————————————————————————————————–
Hs ← Ψθ1(Xs,As,Es) . Compute node embeddings Hs ∈ R|Vs|×·
Ht ← Ψθ1(Xs,At,Et) . Compute node embeddings Ht ∈ R|Vt|×·
Ŝ(0) ←HsH

>
t . Local feature matching

Ŝ
(0)
i,: ← topk(Ŝ

(0)
i,: ) . Sparsify to top k candidates ∀i ∈ {1, . . . , |Vs|}

for l in {1, . . . , L} do . L ∈ {L(train), L(test)}
S

(l−1)
i,: ← softmax(Ŝ

(l−1)
i,: ) . Normalize scores ∀i ∈ {1, . . . , |Vs|}

R
(l)
s ∼ N (0, 1) . Sample random node function R

(l)
s ∈ R|Vs|×r

R
(l)
t ← S>(l−1)R

(l)
s . Map random node functions R(l)

s from Gs to Gt
Os ← Ψθ2(R

(l)
s ,As,Es) . Distribute function R

(l)
s on Gs

Ot ← Ψθ2(R
(l)
t ,At,Et) . Distribute function R

(l)
t on Gt

~di,j ← ~o
(s)
i − ~o (t)

j . Compute neighborhood consensus measure

Ŝ
(l)
i,j ← Ŝ

(l−1)
i,j + Φθ3(~di,j) . Perform trainable correspondence update

end for
S

(L)
i,: ← softmax(Ŝ

(L)
i,: ) . Normalize scores ∀i ∈ {1, . . . , |Vs|}

return S(L)

are non-exact. In graph matching, for two graphs of order n with adjacency matrix As and At

respectively, typically the function

‖As − S>AtS‖
2

F = ‖As‖2F + ‖At‖2F − 2
∑
i,i′∈Vs
j,j′∈Vt

A
(s)
i,i′A

(t)
j,j′Si,jSi′,j′ (12)

is to be minimized, where S ∈ P with P the set of n × n permutation matrices and ‖A‖2F =∑
i,i′∈V A

2
i,i′ denotes the squared Frobenius norm. Since the first two terms of the right-hand side do

not depend on S, minimizing Equation (12) is equivalent in terms of optimal solutions to the problem
of Equation (1). We briefly summarize important related work in graph matching and refer the
reader to the recent survey by Yan et al. (2016) for a more detailed discussion. There is a long line of
research trying to minimize Equation (12) for S ∈ [0, 1]

n×n by a Frank-Wolfe type algorithm (Jaggi,
2013) and finally projecting the fractional solution to P (Gold & Rangarajan, 1996; Zaslavskiy
et al., 2009; Leordeanu et al., 2009; Egozi et al., 2013; Zhou & De la Torre, 2016). However, the
applicability of relaxation and projection is still poorly understood and only few theoretical results
exist (Aflalo et al., 2015; Lyzinski et al., 2016). A classical result by Tinhofer (1991) states that
the WL heuristic distinguishes two graphs Gs and Gt if and only if there is no fractional S such
that the objective function in Equation (12) takes 0. Kersting et al. (2014) showed how the Frank-
Wolfe algorithm can be modified to obtain the WL partition. Aflalo et al. (2015) proved that the
standard relaxation yields a correct solution for a particular class of asymmetric graphs, which can
be characterized by the spectral properties of their adjacency matrix. Finally, Bento & Ioannidis
(2018) studied various relaxations, their complexity and properties. Other approaches to graph
matching exist, e.g., based on spectral relaxations (Umeyama, 1988; Leordeanu & Hebert, 2005) or
random walks (Gori et al., 2005). The problem of graph matching is closely related to the notoriously
hard quadratic assignment problem (QAP) (Zhou & De la Torre, 2016), which has been studied in
operation research for decades. Equation (1) can be directly interpreted as Koopmans-Beckmann’s
QAP. The more recent literature on graph matching typically considers a weighted version, where
node and edge similarities are taken into account. This leads to the formulation as Lawler’s QAP,
which involves an affinity matrix of size n2×n2 and is computational demanding. Therefore, Zhou
& De la Torre (2016) proposed to factorize the affinity matrix into smaller matrices and incorporated
global geometric constraints. Zhang et al. (2019c) studied kernelized graph matching, where the
node and edge similarities are kernels, which allows to express the graph matching problem again
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as Koopmans-Beckmann’s QAP in the associated Hilbert space. Recently, functional representation
for graph matching has been proposed as a generalizing concept with the additional goal to avoid
the construction of the affinity matrix (Wang et al., 2019a).

Graph edit distance. A related concept studied in computer vision is the graph edit distance,
which measures the minimum cost required to transform a graph into another graph by adding,
deleting and substituting vertices and edges. The idea has been proposed for pattern recognition
tasks more than 30 years ago (Sanfeliu & Fu, 1983). However, its computation is NP-hard, since it
generalizes the maximum common subgraph problem (Bunke, 1997). Moreover, it is also closely
related to the quadratic assignment problem (Bougleux et al., 2017). Recently several elaborated
exact algorithms for computing the graph edit distance have been proposed (Gouda & Hassaan,
2016; Lerouge et al., 2017; Chen et al., 2019), but are still limited to small graphs. Therefore,
heuristics based on the assignment problem have been proposed (Riesen & Bunke, 2009) and are
widely used in practice (Stauffer et al., 2017). The original approach requires cubic running time,
which can be reduced to quadratic time using greedy strategies (Riesen et al., 2015a;b), and even
linear time for restricted cost functions (Kriege et al., 2019a).

Network alignment. The problem of network alignment typically is defined analogously to Equa-
tion (1), where in addition a similarity function between pairs of nodes is given. Most algorithms
follow a two step approach: First, an n×n node-to-node similarity matrix M is computed from the
given similarity function and the topology of the two graphs. Then, in the second step, an alignment
is computed by solving the assignment problem for M . Singh et al. (2008) proposed ISORANK,
which is based on the adjacency matrix of the product graph K = As ⊗At of Gs and Gt, where
⊗ denotes the Kronecker product. The matrix M is obtained by applying PAGERANK (Page et al.,
1999) using a normalized version of K as the GOOGLE matrix and the node similarities as the
personalization vector. Kollias et al. (2012) proposed an efficient approximation of ISORANK by
decomposition techniques to avoid generating the product graph of quadratic size. Zhang (2016)
present an extension supporting vertex and edge similarities and propose its computation using non-
exact techniques. Klau (2009) proposed to solve network alignment by linearizing the quadratic
optimization problem to obtain an integer linear program, which is then approached via Lagrangian
relaxation. Bayati et al. (2013) developed a message passing algorithm for sparse network align-
ment, where only a small number of matches between the vertices of the two graphs are allowed.

The techniques briefly summarized above aim to find an optimal correspondence according to a
clearly defined objective function. In practical applications, it is often difficult to specify node and
edge similarity functions. Recently, it has been proposed to learn such functions for a specific task,
e.g., in form of a cost model for the graph edit distance (Cortés et al., 2019). A more principled
approach has been proposed by Caetano et al. (2009) where the goal is to learn correspondences.

E RELATED WORK II

The method presented in this work is related to different lines of research. Deep graph matching
procedures have been investigated from multiple perspectives, e.g., by utilizing local node feature
matchings and cross-graph embeddings (Li et al., 2019). The idea of refining local feature matchings
by enforcing neighborhood consistency has been relevant for several years for matching in images
(Sattler et al., 2009). Furthermore, the functional maps framework aims to solve a similar problem
for manifolds (Halimi et al., 2019).

Deep graph matching. Recently, the problem of graph matching has been heavily investigated
in a deep fashion. For example, Zanfir & Sminchisescu (2018) and Wang et al. (2019b) develop
supervised deep graph matching networks based on displacement and combinatorial objectives re-
spectively. Zanfir & Sminchisescu (2018) model the graph matching affinity via a differentiable, but
unlearnable spectral graph matching solver (Leordeanu & Hebert, 2005). Wang et al. (2019b) use
node-wise features in combination with dense node-to-node cross-graph affinities, distribute them
in a local fashion, and adopt sinkhorn normalization for the final task of linear assignment. In con-
trast, our matching procedure is fully-learnable, and can naturally resolve violations of inconsistent
neighborhood assignments.
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Xu et al. (2019b) tackles the problem of graph matching by relating it to the Gromov-Wasserstein
discrepancy (Peyré et al., 2016). In addition, the optimal transport objective is enhanched by simul-
taneously learning node embeddings which shall account for the noise in both graphs. In a follow-up
work, Xu et al. (2019a) extend this concept to the tasks of multi-graph partioning and matching by
learning a Gromov-Wasserstein barycenter. Our approach also resembles the optimal transport be-
tween nodes, but works in a supervised fashion for sets of graphs and is therefore able to generalize
to unseen graph instances.

In addition, the task of network alignment has been recently investigated from multiple perspec-
tives. Derr et al. (2019) leverage CYCLEGANs (Zhu et al., 2017) to align NODE2VEC embeddings
(Grover & Leskovec, 2016) and find matchings based on the nearest neighbor in the embedding
space. Zhang et al. (2019a) design a deep graph model based on global and local network topology
preservation as auxiliary tasks. Heimann et al. (2018) utilize a fast, but purely local and greedy
matching procedure based on local node embedding similarity.

Furthermore, Bai et al. (2019) use shared graph neural networks to approximate the graph edit
distance between two graphs. Here, a (non-differentiable) histogram of correspondence scores is
used to fine-tune the output of the network. In a follow-up work, Bai et al. (2018) proposed to order
the correspondence matrix in a breadth-first-search fashion and to process it further with the help of
traditional CNNs. Both approaches only operate on local node embeddings, and are hence prone to
match correspondences inconsistently.

Intra- and inter-graph message passing. The concept of enhanching intra-graph node embed-
dings by inter-graph node embeddings has been already heavily investigated in practice (Li et al.,
2019; Wang et al., 2019b; Xu et al., 2019d). Li et al. (2019) and Wang et al. (2019b) enhance
the GNN operator by not only aggregating information from local neighbors, but also from similar
embeddings in the other graph by utilizing a cross-graph matching procedure. Xu et al. (2019d)
leverage alternating GNNs to propagate local features of one graph throughout the second graph.
However, neither of these approaches is designed to achieve a consistent matching, due to only op-
erating on localized node embeddings which are alone not sufficient to resolve ambiguities in the
matchings. Nonetheless, we argue that these methods can be used to strengthen the initial feature
matching procedure, making our approach orthogonal to improvements in this field.

Neighborhood consensus for image matching. Methods to obtain consistency of correspon-
dences in local neighborhoods have a rich history in computer vision, dating back several years
(Sattler et al., 2009; Sivic & Zisserman, 2003; Schmid & Mohr, 1997). They are known for heavily
improving results of local feature matching procedures while being computational efficient. Re-
cently, a deep neural network for neighborhood consensus using 4D convolution was proposed
(Rocco et al., 2018). While it is related to our method, the 4D convolution can not be efficiently
transferred to the graph domain directly, since it would lead to applying a GNN on the product
graph with O(n2) nodes and O(n4) edges. Our algorithm also infers errors for the (sparse) product
graph but performs the necessary computations on the original graphs.

Functional maps. The functional maps framework was proposed to provide a way to define con-
tinuous maps between function spaces on manifolds and is commonly applied to solve the task of
3D shape correspondence (Ovsjanikov et al., 2012; Litany et al., 2017; Rodolà et al., 2017; Hal-
imi et al., 2019). Recently, a similar approach was presented to find functional correspondences
between graph function spaces (Wang et al., 2019a). The functional map is established by using
a low-dimensional basis representation, e.g., the eigenbasis of the graph Laplacian as generalized
Fourier transform. Since the basis is usually truncated to the k vectors with the largest eigenvalues,
these approaches focus on establishing global correspondences. However, such global methods have
the inherent disadvantage that they often fail to find partial matchings due to the domain-dependent
eigenbasis. Furthermore, the basis computation has to be approximated in order to scale to large
inputs.

F DATASET STATISTICS

We give detailed descriptions of all datasets used in our experiments, cf. Tables 4, 5 and 6.
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Table 4: Statistics of the WILLOW-
OBJECTCLASS dataset.

Category Graphs Keypoints Edges

Face 108 10 21− 22
Motorbike 40 10 21− 22
Car 40 10 18− 21
Duck 50 10 19− 21
Winebottle 66 10 19− 22

Table 5: Statistics of the DBP15K dataset.
Datasets Entities Relation types Relations

ZH↔EN Chinese 19 388 1 701 70 414
English 19 572 3 024 95 142

JA↔EN Japanese 19 814 1 299 77 214
English 19 780 2 452 93 484

FR↔EN French 19 661 903 105 998
English 19 993 2 111 115 722

Table 6: Statistics of the PASCALVOC dataset with Berkeley annotations.
Category Train graphs Test graphs Keypoints Edges Category Train graphs Test graphs Keypoints Edges

Aeroplane 466 135 3− 16 3− 41 Diningtable 25 8 3− 8 3− 16
Bicycle 209 53 3− 11 3− 26 Dog 605 146 3− 16 3− 41
Bird 595 115 3− 12 3− 30 Horse 215 44 4− 16 5− 38
Boat 402 88 3− 11 3− 25 Motorbike 229 60 3− 10 3− 23
Bottle 462 119 3− 8 3− 17 Person 539 156 4− 19 5− 49
Bus 285 52 3− 8 3− 17 Pottedplant 418 99 3− 6 3− 11
Car 514 153 3− 13 3− 27 Sheep 311 72 3− 16 3− 39
Cat 415 101 3− 16 3− 40 Sofa 72 8 3− 12 3− 27
Chair 291 61 3− 10 3− 23 Train 155 41 3− 6 3− 10
Cow 254 54 4− 16 5− 40 TV Monitor 368 88 3− 8 3− 17

S(0)

S(L)

(a) Motorbike

S(0)

S(L)

(b) Car

S(0)

S(L)

(c) Duck

S(0)

S(L)

(d) A rare failure case

Figure 3: Qualitative examples from the WILLOW-OBJECTCLASS dataset. Images on the left
represent the source, whereas images on the right represent the target. For each example, we visual-
ize both the result of the initial feature matching procedure S(0) (top) and the result obtained after
refinement S(L) (bottom).

G QUALITATIVE KEYPOINT MATCHING RESULTS

Figure 3 visualizes qualitative examples from the task of keypoint matching on the
WILLOW-OBJECTCLASS dataset. Examples were selected as follows: Figure 3(a), (b) and (c)
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show examples where the initial feature matching procedure fails, but where our refinement proce-
dure is able to recover all correspondences succesfully. Figure 3(d) visualizes a rare failure case.
However, while the initial feature matching procedure maps most of the keypoints to the same tar-
get keypoint, our refinement strategy is still able to succesfully resolve this violation. In addition,
note that the target image contains wrong labels, e.g., the eye of the duck, so that some keypoint
mappings are mistakenly considered to be wrong.
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