
Under review as a conference paper at ICLR 2020

GRADIENT-BASED TRAINING OF GAUSSIAN MIXTURE
MODELS IN HIGH-DIMENSIONAL SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an approach for efficiently training Gaussian Mixture Models (GMMs)
with Stochastic Gradient Descent (SGD) on large amounts of high-dimensional
data (e.g., images). In such a scenario, SGD is strongly superior in terms of exe-
cution time and memory usage, although it is conceptually more complex than the
traditional Expectation-Maximization (EM) algorithm. For enabling SGD train-
ing, we propose three novel ideas: First, we show that minimizing an upper bound
to the GMM log likelihood instead of the full one is feasible and numerically
much more stable way in high-dimensional spaces. Secondly, we propose a new
regularizer that prevents SGD from converging to pathological local minima. And
lastly, we present a simple method for enforcing the constraints inherent to GMM
training when using SGD. We also propose an SGD-compatible simplification to
the full GMM model based on local principal directions, which avoids excessive
memory use in high-dimensional spaces due to quadratic growth of covariance
matrices. Experiments on several standard image datasets show the validity of our
approach, and we provide a publicly available TensorFlow implementation.

1 INTRODUCTION

This contribution is in the context of Gaussian Mixture Models (GMMs), which is a probabilistic
unsupervised method for clustering and data modeling. GMMs have been used in a wide range
of scenarios, e.g., Melnykov et al. (2010). Traditionally, free parameters of a GMM are estimated
using the so-called Expectation-Maximization (EM) algorithm, which has the appealing property of
requiring no learning rates and which automatically enforces all constraints that GMMs impose.

1.1 MOTIVATION

GMMs have several properties that make their application to image data appealing, like the ability to
generate samples from the modeled distribution, or their intrinsic outlier detection ability. However,
for such high-dimensional and data-intensive scenarios which require a high degree of paralleliza-
tion to be efficiently solvable, the traditional way of training GMMs by EM is reaching its limits,
both in terms of memory consumption and execution speed. Memory requirements skyrocket mainly
because GMM is intrinsically a batch-type algorithm that needs to store and process all samples in
memory in order to be parallelizable. In addition, computation time becomes excessive because EM
involves covariance matrix inversions, which become prohibitive for high data dimensionality. Here,
an online or mini-batch type of optimization such as Stochastic Gradient Descent (SGD) has strong
advantages w.r.t. the memory consumption in particular, but also w.r.t. computation time since it re-
quires no matrix inversions. Therefore, we seek to develop a Stochastic Gradient Descent algorithm
for GMMs, making it possible to efficiently train GMMs on large collections of images. Addition-
ally, since the number of free GMM parameters depends quadratically on the data dimensionality
D, we seek to develop simplified GMM models with a less severe impact of D.

1.2 RELATED WORK

There are several proposals for what is termed “incremental” or “online” EM for training GMMs
Vlassis & Likas (2002); Engel & Heinen (2010); Pinto & Engel (2015); Cederborg et al. (2010);
Song & Wang (2005); Kristan et al. (2008), allowing GMMs to be trained by providing one sample

1



Under review as a conference paper at ICLR 2020

at a time. However, none of these models reproduce the original GMM algorithm faithfully, which
is why most of them additionally resort to component pruning or merging heuristics for compo-
nents, leading to learning dynamics that are difficult to understand. This is also the case for the
Locally Weighted Projection Regression (LWPR) algorithm Vijayakumar et al. (2005) which can be
interpreted as a GMM model adapted for online learning. To our knowledge, there is only a single
work proposing to train GMMs by SGD Hosseini & Sra (2015). Here, constraint enforcement is
ensured by using manifold optimization techniques and a carefully chosen set of regularizers, lead-
ing to a rather complex model with several additional and hard-to-choose hyper-parameters. The
idea of including regularization into GMMs (in the context of EM) was proposed in Verbeek et al.
(2005), although their regularizes significantly differs from ours. Approximating the full GMM
log-likelihood is used in Verbeek et al. (2003); Pinheiro & Bates (1995); Dognin et al. (2009), al-
though together with EM training. There has been significant work on simplifying GMM models
(e.g., Jakovljević (2014)), leading to what is called parsimonious GMM models, which is reviewed
in Bouveyron & Brunet-Saumard (2014).

1.3 CONTRIBUTIONS

The main novel contributions of this article are:

• a generic and novel method for training GMMs using standard SGD that enforces all constraints
and is numerically stable for high dimensional data (e.g., D> 500)
• a regularization technique that ensures convergence from a wide range of initial conditions
• a simplification of the basic GMM model that is particularly suited for applying GMMs to

high-dimensional data
• an analysis of the link between SGD-trained GMM models and self-organizing maps

Apart from these novel contributions, we provide a publicly available TensorFlow implementation.1

2 DATASETS

We use two datasets for all experiments. MNIST (LeCun et al., 1998) consists of gray scale images
of handwritten digits (0-9) and is a common benchmark for computer vision systems and classifica-
tion problems. SVHN (Netzer et al., 2011) is a 10-class benchmark based on color images of house
numbers (0-9). We use the cropped and centered digit format. For both benchmarks, we use either
the full images (32×32×3 for SVHN, 28×28×1 for MNIST), or a crop of the central 6×6 patch
of each image. The class information is not used since GMM is a purely unsupervised method.

3 METHODS: STOCHASTIC GRADIENT DESCENT FOR GMMS

Gaussian Mixture Models (GMMs) are normally formulated in terms ofK component probabilities,
modeled by multi-variate Gaussians. It is assumed that each data sample x, represented as a single
row of the data matrix X , has been sampled from a single Gaussian component k, selected with
a priori probability πk. Sampling is performed from the Gaussian conditional probability p(~x|k),
whose parameters are the centroids µk and covariance matrices Σk: p(x|k) ∼ N (x;µ,Σ). A
GMM aims to explain the data by minimizing the log-likelihood function

L = − 1

N

N∑
n=1

log
∑
k

πkp(xn|k). (1)

Free parameters to be adapted are the component probabilities πk, the component centroids µk and
the component covariance matrices Σk.

3.1 MAX-COMPONENT APPROXIMATION

As a first step to implement Stochastic Gradient Descent (SGD) for optimizing the log-likelihood
(see Eq. 1), we observe that the component weights πk and the conditional probabilities p(x|k) are

1https://github.com/anonymous-iclr20/GMM.git

2

https://github.com/anonymous-iclr20/GMM.git


Under review as a conference paper at ICLR 2020

positive by definition. It is therefore evident that any single component of the inner sum over the
components k is a lower bound for the whole inner sum. The largest of these K lower bounds is
given by the maximum over the components, thus giving

L = − 1

N

N∑
n=1

log
∑
k

πkp(xn|k) ≤ LMC = − 1

N

∑
n

log maxk
(
πkp(xn|k)

)
= − 1

N

∑
n

maxk log
(
πkp(xn|k)

)
.

(2)

This is what we term the max-component approximation of Eq. 2. Since LMC ≥ L, we can decrease
L by minimizing LMC. The advantage of LMC is that it is not affected by numerical instabilities
as L is. An easy way to see this is by considering the case of a single Gaussian component with
weight πk = 1, centroid µk = 0 and whose covariance matrix Σk has only diagonal entries which
are all equal to 0.1. In this case, an 1 000-dimensional input vector x, xi = 1 ∀i would give a
conditional probability of p(x|k) = (2π0.1)−500e−5000 which will, depending on floating point in-
accuracy, produce NaN or infinity for the first factor due to overflow, and zero for the second factor
due to underflow, resulting in an undefined behavior.

3.2 CONSTRAINT ENFORCEMENT

GMMs require the component weights to be normalized:
∑
k πk = 1 and the variances to be non-

negative: Σij ≥ 0 ∀i, j. In traditional GMM training via Expectation-Maximization, these con-
straints are taken care of by the method of Lagrangian multipliers. In SGD, they must be enforced
in different manner. For the component weights πk, we adopt the approach proposed in Hosseini &
Sra (2015), which replaces these by other free parameters ξk from which the πk are computed such
that normalization is ensured by construction. One such computational scheme is

πk =
exp(ξk)∑
j exp(ξj)

. (3)

For ensuring non-negativeness of the covariances, we identify all covariances inferior to a certain
minimal value Σmin after each gradient descent step, and subsequently clip them to Σmin.

3.3 REGULARIZATION

In contrast to training GMMs by EM, a major issue for SGD optimization of GMMs are local minima
that obviously correspond to undesirable solutions. Prominently among these is what we term the
single-component solution: here, a single component k∗ has a weight close to 1, with its centroid
and covariance matrix being given by the mean and covariance of the data:

πk∗ ≈ 1, µk∗ = E[X], Σk∗ = Cov(X). (4)

Another undesirable local minimum is the degenerate solution where all components have the same
weight, centroid and covariance matrix, the latter being identical to the single-component solution.
See Fig. 4 (left) for a visualization of the latter.

Such solutions usually evolve from an incorrect initialization of the GMM model, and it is easy to
show that the gradient w.r.t. all model parameters is zero in both of these scenarios: any change to the
centroids, weights or variances will increase the log-likelihood, which means the GMM is stuck in
a local minimum. Both solutions are characterized by a very specific response pattern for the prob-
abilities p(~x|k) of all K components: either all components report the same probability (degenerate
solution) or all probabilities are nearly zero except a single one (single-component solution).

Our approach for avoiding these undesirable solutions in principle is to punish their characteristic
response patterns by an appropriate modification of the loss function that is minimized, i.e., LMC.
The following guidelines should be adhered to:

• single-component and degenerate solution should be punished strongly by the regularization
• as we mainly wish to ensure a good starting point for optimization, the regularizer should be

active only at the beginning of the training process

3



Under review as a conference paper at ICLR 2020

• as training advances, the regularizer should smoothly transition into the original loss function
• the number of free parameters introduced by the regularization should be low

These requirements are met by what we term the smoothed max-component log-likelihood L̃MC :

L̃MC =
1

N

∑
n

maxk

∑
j

gkj log
(
πjp(xn|j)

) . (5)

Here, we assign a normalized coefficient vector gk to each Gaussian mixture component k. The
entries of gk are computed in the following fashion:

• Assume that the K Gaussian components are arranged on a 1D grid of dimensions (1,K) or
on a 2D grid of dimensions (

√
K ,
√
K ). Each linear component index k has thus an unique

associated 1D or 2D coordinate c(k).
• Assume that the vector gk of length K is actually representing a 1D structure of dimension

(1,K) or a 2D structure of dimension (
√
K ,
√
K ). Each linear vector index j in gk has thus

a unique associated 1D or 2D coordinate c(j).
• The entries of the vector gk are computed as

gkj = exp

(
− (c(j)− c(k))

2

2σ2

)
(6)

and subsequently normalize to have unit sum. Thus, Eq. 5 essentially represents a convolution of
the probabilities p(~x|k), arranged in an 1D or 2D grid, with a Gaussian convolution filter, thus
amounting to a smoothing operation. The 1D or 2D variance σ in Eq. 6 is a parameter that must be
set as a function of the grid size such that Gaussians are neither homogeneous nor delta peaks. Thus,
the loss function in Eq. 5 is maximized if the log probabilities follow an unimodal Gaussian profile
of variance σ, whereas single-component and degenerate solutions are punished.

It is trivial to so see that the regularized loss function in Eq. 5 reduces to the non-regularized form
Eq. 2 in the limit where σ→ 0. This is because the vectors gk approach Kronecker deltas in this
case, with only a single entry of value 1, which essentially removes the inner sum in Eq. 5. By
making σ time-dependent, starting at an intermediate value of σ(t0)≡σ0 and then let it approach a
small final value σ(t∞)≡σ∞, we can smoothly transition the regularized loss function Eq. 5 to the
original max-component log-likelihood Eq. 2. Time dependency of σ(t) can thus be chosen to be:

σ(t) =

{
σ0 t < t0
σ∞ t > t∞

σ0 exp(−τt) t0 < t < t∞
(7)

where the time constant in the exponential is chosen as τ = log σ0−σ∞
t∞−t0 to ensure a smooth transition.

3.4 FULL GMM MODEL TRAINED BY SGD AND ITS HYPER-PARAMETERS

Putting everything together, training Gaussian Mixture Models with SGD is performed by minimiz-
ing the smoothed max-component log-likelihood of Eq. 5, enforcing the constraints on the com-
ponent weights and covariances as detailed in Sec. 3.2 and transitioning from the smoothed to the
‘’bare” loss function as detailed in Sec. 3.3. In order to avoid convergence to other undesirable local
minima by SGD, we introduce three weighting constants λπ , λµ and λΣ, all in the [0, 1] range, for
controlling the relative adaptation speeds for the three groups of free parameters in the GMM models
(setting, e.g., λπ = 0 would disable the adaptation of weights). We have thus the update rules:

ξk(t+ 1) = ξk(t)− ε · λπ
∂L̃MC

∂ξk
,

µk(t+ 1) = µk(t)− ε · λµ
∂L̃MC

∂µk
and

Σk(t+ 1) = Σk(t)− ε · λΣ
∂L̃MC

∂Σk
.

(8)

4



Under review as a conference paper at ICLR 2020

Centroids are initialized to random values in range [−µi, µi], weights are chosen equiprobable, that
is to say 1/K, for all components, and covariance matrix entries are uniformly initialized to very
small positive values Σi (a good ad-hoc choice is 0.15). Last but not least, a learning rate ε is required
for performing SGD. We find that our algorithm depends very weakly on ε, and that a fixed value of
ε= 0.01 is usually a good choice. We summarize good practices for choosing hyper-parameters of
the proposed SGD approach for GMMs in App. C. Please not that it is not required to initialize the
component centroids by k-means as it is usually recommended when training GMMs by EM.

3.5 SIMPLIFICATIONS AND MEMORY/PERFORMANCE ISSUES

x

y

x

y

Figure 1: Two possibilities for simplifying GMMs, illustrated for a dataset with two clusters and
two Gaussian components. Green dots represent data samples and arrows represent normalized local
principal directions along which variances (represented by ellipses) are computed. Left: diagonal
covariance matrix, where it is assumed that clusters vary only in the coordinate directions (not
the case here). Right: non-diagonal covariance matrix where only a limited number (here one) of
principal directions is considered for variance computation.

For the full GMM model, regardless of whether it is trained by EM or SGD, the memory re-
quirements of a GMM with K components depend strongly on the data dimensionality D. A
good measure for memory requirements is the number of free model parameters M computed as
M =K(D2 + D + 1). To reduce this number, we propose several strategies that are compatible
with training by SGD (see also Fig. 1):

Diagonal Covariance Matrix A well-known simplification of GMMs consists of using a diago-
nal covariance matrix instead of a full one. This reduces the number of trainable parameters to
K(2D + 1), where D is the dimensionality of the data vectors and K the number of components.

Local Principal Directions A potentially very powerful simplification consist of using a diagonal
covariance matrix of S <D diagonal entries, and letting SGD adapt the local principal directions
along which these variances are measured for each component (in addition to the other free param-
eters, of course). The expression of the conditional component probabilities now includes, for each
component k, the S normalized principal direction vectors dks, s= 1, . . . , S and reads:

p(x|k) =
1√

(2π)S
∏S
s=1 Σss

exp

(
−1

2

S∑
s=1

(
xTdks

)2
Σ2
ss

)
. (9)

This leads to a value of M =K((S + 1)D+ 1), and thus achieves satisfactory model simplification
only if S can be chosen very small and D is high. In order for the model to be fully determined,
another constraint needs to be enforced after each SGD step, namely the orthogonality of the local
principal directions for each component k: pTklpkm = δlm ∀ l,m<S. For now, the matrixDk whose
rows are the S vectors dks is subjected to a QR decompositionDk =QkRk and settingDk =Qk.

4 EXPERIMENTS

Unless otherwise stated, the experiments in this section will always be conducted with the following
parameters (see App. C for a justification): total iterations T = 5 000, t0 = 0.3T , t∞ = 0.8T , mini-
batch sizeB= 1, µi = 0.01, σ0 = 1.2, σ∞= 0.01, ε= 0.011, Σmin = 0.15 andK = 5 · 5. The relative
adaptation strengths λπ , λµ and λΣ are all set to 1. Except for experiments on GMMs simplified
by principal directions (see Sec. 3.5), we will use a diagonal covariance matrix for each of the K
components. We do not use any optimizers like Adam or RMSProp since we empirically found that

5



Under review as a conference paper at ICLR 2020

their performance is strongly inferior to plain SGD, for as yet unknown reasons. Training/test data
are taken from MNIST or SVHN, either using full images or the central 6× 6 patches. Unless oth-

Figure 2: Exemplary results for learned centroids, using normal experimental conditions, trained on
variants of the two datasets (from left to right): MNIST, MNIST patches, SVHN, SVHN patches.

erwise stated, the experiments in this section will always be conducted with the following parameter
values (see App. C for a justification of these choices): total iterations T = 1 000 ·

√
K , t0 = 0.3T ,

t∞ = 0.8T , mini-batch size B= 1, µi = 0.01, σ0 = 1.2, σ∞= 0.01, ε= 0.011, Σmin = 0.15 and
K = 5 · 5. The adaptation strengths λπ , λµ and λσ are all set to 1.0. Except for Sec. 3.5, we will
use a diagonal covariance matrix for each of the K components. Training/test data are taken from
MNIST or SVHN, either using full images or the central 6× 6 patches.

4.1 VALIDITY OF THE MAX-COMPONENT APPROXIMATION AND COMPARISON TO EM

Since we minimize only an approximation to the GMM log-likelihood, a first important question is
about the quality of this approximation. To this end, we plot both energy functions over time when
training on full MNIST and SVHN images, see Fig. 3. This figure shows that the log-likelihood
obtained by EM-based training (using the implementation of sklearn) with the same configuration
(using 10 iterations and a k-means-based initialization) achieves a very similar log-likelihood, which
confirms that SGD is indeed comparable in performance.

0 2000 4000

SGD iteration

120

180

240

lo
ss

M-C approximation

full log-likelihood

EM

0 2000 4000

SGD iteration

0

10

20

30

40

lo
ss

M-C approximation

full log-likelihood

EM

0 2000 4000

SGD iteration

0

20

40

lo
ss

M-C approximation

full log-likelihood

EM

Figure 3: Comparing the max-component approximation to the full log-likelihood during the SGD
training, shown for MNIST (left), MNIST patches (center) and SVHN patches (right).

4.2 EFFECTS AND BENEFITS OF REGULARIZATION

In order to demonstrate the beneficial effects of regularization, we conduct the basic experiment
on full MNIST with regularization effectively turned off, which is achieved by setting σ0 =σ∞ +
0.001 = 0.011. As a result, in Fig. 4 we observe typical single-component solutions when visualizing
the centroids and weights, along with a markedly inferior (higher) loss value of ≈ 155, in contrast
to ≈ 138 when regularization is turned on. As a side effect, regularization enforces a topological
ordering of centroids in the manner of a SOM (see also App. B for a mathematical analysis), which
is only of aesthetic value for the moment, but might be exploited in the future.

4.3 BASIC FEASIBILITY AND PARAMETER SPACE

In this experiment, we put everything together and train an GMM using SGD on various datasets of
very high and intermediate dimensionality. In particular, we analyze how the choice of the relative
adaptation strengths λπ , λΣ and number of components K affects the final log-likelihood. The
results presented in Tab. 1 suggest that increasing K is always beneficial, and that the covariances

6



Under review as a conference paper at ICLR 2020

Figure 4: Effects of regularization on SGD convergence to centroids on MNIST. Left: single-
component solution (no regularization). Right: regular solution (with regularization).

and weights should be adapted more slowly than the centroids. The batch size B had an effect on
convergence speed but no significant impact on the final loss value (not shown here).

Table 1: Results for various hyper-parameter values, always given as the final max-component log-
likelihood LMC. The full log-likelihood values were always within 0.5 of the given value, and
smaller by construction. Each cell contains a value for the MNIST and one for the SVHN dataset.

Parameter K = 25 K = 36 K = 49 K = 64
λπ, λΣ = 1.0, B = 1 138.1, 735.2 136.3, 704.7 133.3, 693.5 134.1, 682.9
λπ, λΣ = 0.1, B = 1 138.3, 715.6 134.6, 706.5 133.5, 691.3 130.1, 691.4
λπ, λΣ = 0.0, B = 1 138.1, 722.5 135.5, 714.3 133.2, 689.1 130.8, 688.4

4.4 ROBUSTNESS TO INITIAL CONDITIONS

0 2000 4000

SGD iteration

100

200

300

400

lo
ss

M-C approximation

full log-likelihood

EM

0 2000 4000

SGD iteration

0

140

280

420

560

lo
ss

M-C approximation

full log-likelihood

EM

0 2000 4000

SGD iteration

0

210

420

630

840

lo
ss

M-C approximation

full log-likelihood

EM

Figure 5: Comparing different initialization ranges for centroids: [−0.5, 0.5] (left), [−0.7, 0.7]
(center) and [−1, 1] (right). The orange line represents the same value in all diagrams, the seeming
difference is due to scaling as initial loss values in some experiments are much higher (i.e., worse).

To test whether SGD converges as a function of the initial conditions, we train three GMMs on
MNIST using three different initializations: µi ∈ {1.0, 0.7, 0.5}. All of these choices led to non-
convergence of the EM-based GMM implementation of sklearn. Differently from the other exper-
iments, we choose a learning rate of ε = 0.02 since the original value does not lead to convergent
learning. The alternative is to double the training time which works as well. Fig. 5 shows the de-
velopment of the loss function in each of the three cases, and we observe that all three cases indeed
converge by comparing the final loss values to Fig. 3 (middle) and to the EM baseline. This behavior
persists across all datasets, but only MNIST is shown due to space limitations.

4.5 SGD TRAINING OF SIMPLIFIED GMMS WITH PRINCIPAL LOCAL DIRECTIONS

We train a GMM with S ∈ {26, 50, 100} local principal directions on MNIST and SVHN patches
and log the final loss function values in order to assess model quality. We find that learned centroids
and final loss values approach those of the diagonal model for S ≥ 20 for both datasets. Please see
App. A for a visualization of the final centroids as a function of S. For the full datasets, we find that
MNIST and SVHN require values of S ≥ 100 and S ≥ 300, respectively for achieving similar loss
values as the diagonal model.

7



Under review as a conference paper at ICLR 2020

5 DISCUSSION

We showed that GMMs can be trained on high-dimensional image data by SGD, at very small batch
sizes, in a purely online fashion. Memory and execution time requirements are very modest, and can
be reduced even more by using intelligent simplifications of the GMM model. Here, we would like
to discuss a few noteworthy points and suggest some avenues for improving the model:

Robust Convergence Unlike EM approaches which require a careful selection of starting point,
the presented SGD scheme is very robust to initial conditions due to the proposed regularization
scheme. In all experiments with high-dimensional image data, we found no initializations that did
not, given reasonable time, converge to a regular solution.

Numerical Stability While we are not optimizing the full log-likelihood here, the max-component
approximation is actually a good one, and has the advantage of absolute numerical stability. Clearly,
clever ways might be found to avoid instabilities in the log-likelihood function computation, but
when it comes to automatically computed gradients this is no longer possible, and indeed we found
that it was mainly the (inaccessible) gradient computations where NaN values happened mostly.

Complex Regularizer The complex way of regularizing the model, which is similar in spirit to sim-
ulated annealing approaches, may seem daunting, although the time constants can be determined by
simple heuristics, see App. C. A next step will be to replace this procedure by an automated scheme
based on an evaluation of the loss function: when it is stationary, σ can be decreased slightly. Repeat-
ing this strategy until a small minimal value is reached should remove the need to fix regularization
parameters except for time constants which can be chosen as a function of dataset size.

Free Parameters Apart from the regularization mechanism, the model contains the same parame-
ters any SGD approach would, the learning rate ε and the weighting constants for the model param-
eters: λπ , λµ and λΣ. We found no experimental evidence suggesting that the latter require values
different from 1, although from general principles it might be sensible to adapt the variances and
weights slower than the centroids. Further, it is required to understand how these constants can be
used to obtain better solutions. Interesting is that standard DNN optimizers like Adam Kingma &
Ba (2014) did not seem to produce satisfactory solutions which also requires looking into.

Approximate Gradient Descent The procedure described in Sec. 3.4 performs gradient descent on
an approximation to the full log-likelihood Eq. 1. This might seem unsatisfactory, so we would like
to point out that the original EM procedure does nothing else: it optimizes a lower bound of the
log-likelihood. In particular, the M-step is not guaranteed to improve the log-likelihood at all: all
we know is that it will never make it worse. In our SGD approach, there is a simple way to fix this
shortcoming, which we will tackle as an next step: we can replace the max-operation in Eq. 2 by a
softmax function with an initially large steepness parameter ω which will make it indistinguishable
from a discrete max operation. After convergence, ω can be relaxed, which will result in a smooth
transition to optimizing the full log-likelihood, but from an already well-converged state.

6 CONCLUSION AND OUTLOOK

On a more abstract level, we developed the presented method because of our interest in continual or
incremental learning, which is essentially about eliminating the well-known catastrophic forgetting
effect. We believe GMMs are an essential building block for continual learning models since their
parameter updates are purely local in the sense that only components that are close to the currently
best-matching component are updated. Next steps will consist of constructing deep network classi-
fiers from convolutional GMM layers, with a readout layer on top (all layers being trained by SGD).
Further, we will investigate how to sample efficiently from such hierarchical convolutional GMMs,
allow generating large batches of samples in a replay-based architecture for continual learning.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Charles Bouveyron and Camille Brunet-Saumard. Model-based clustering of high-dimensional data:
A review. Computational Statistics & Data Analysis, 71:52–78, 2014.

Thomas Cederborg, Ming Li, Adrien Baranes, and Pierre-Yves Oudeyer. Incremental local online
gaussian mixture regression for imitation learning of multiple tasks. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 267–274. IEEE, 2010.

Pierre L Dognin, Vaibhava Goel, John R Hershey, and Peder A Olsen. A fast, accurate approxi-
mation to log likelihood of gaussian mixture models. In 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 3817–3820. IEEE, 2009.

Paulo Martins Engel and Milton Roberto Heinen. Incremental learning of multivariate gaussian
mixture models. In Antônio Carlos da Rocha Costa, Rosa Maria Vicari, and Flavio Tonidandel
(eds.), Advances in Artificial Intelligence – SBIA 2010, pp. 82–91, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-16138-4.

Tom Heskes. Energy functions for self-organizing maps. In Kohonen maps, pp. 303–315. Elsevier,
1999.

Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for gaussian mixtures. In Advances
in Neural Information Processing Systems, pp. 910–918, 2015.

Nikša M Jakovljević. Gaussian mixture model with precision matrices approximated by sparsely
represented eigenvectors. In 2014 22nd Telecommunications Forum Telfor (TELFOR), pp. 435–
440. IEEE, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

Matej Kristan, Danijel Skocaj, and Aleš Leonardis. Incremental learning with gaussian mixture
models. In Computer Vision Winter Workshop, pp. 25–32, 2008.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Volodymyr Melnykov, Ranjan Maitra, et al. Finite mixture models and model-based clustering.
Statistics Surveys, 4:80–116, 2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

José C Pinheiro and Douglas M Bates. Approximations to the log-likelihood function in the nonlin-
ear mixed-effects model. Journal of computational and Graphical Statistics, 4(1):12–35, 1995.

Rafael Coimbra Pinto and Paulo Martins Engel. A fast incremental gaussian mixture model. PloS
one, 10(10):e0139931, 2015.

Mingzhou Song and Hongbin Wang. Highly efficient incremental estimation of gaussian mixture
models for online data stream clustering. In Intelligent Computing: Theory and Applications III,
volume 5803, pp. 174–183. International Society for Optics and Photonics, 2005.

Jakob J Verbeek, Nikos Vlassis, and Ben Kröse. Efficient greedy learning of gaussian mixture
models. Neural computation, 15(2):469–485, 2003.

Jakob J Verbeek, Nikos Vlassis, and Ben JA Kröse. Self-organizing mixture models. Neurocomput-
ing, 63:99–123, 2005.

Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental online learning in high dimen-
sions. Neural computation, 17(12):2602–2634, 2005.

9

http://arxiv.org/abs/1412.6980


Under review as a conference paper at ICLR 2020

Nikos Vlassis and Aristidis Likas. A greedy em algorithm for gaussian mixture learning. Neural
Processing Letters, 15(1):77–87, Feb 2002. ISSN 1573-773X. doi: 10.1023/A:1013844811137.
URL https://doi.org/10.1023/A:1013844811137.

10

https://doi.org/10.1023/A:1013844811137


Under review as a conference paper at ICLR 2020

A LOCAL PRINCIPAL DIRECTIONS

Here, we give a visualization of the resulting centroids for various choices of S when training on
MNIST patches.

Figure 6: Comparing different values of S when training GMMs with the local principal directions
simplification. Shown are centroids for S = 25 (left), S = 50 (middle) and S = 100 (right).

B RIGOROUS LINK TO SELF-ORGANIZING MAPS

It is known that the self-organizing map (SOM, Kohonen (1990)) rule has no energy function it is
minimizing. However, some modifications (see Heskes (1999)) have been proposed that ensure the
existence of a C∞ energy function. These energy-based SOM models reproduce all features of the
original model and use a learning rule that the original SOM algorithm is actually approximating
very closely. In the notation of this article, SOMs model the data through K prototypes µk and K
neighborhood functions gk defined on a periodic 2D grid, and their energy function is written as

LSOM =
1

N

∑
n

maxk
∑
j

gkj‖xn − µk‖2. (10)

Discarding constant terms, we find that this is actually identical to the max-component log-
likelihood approximation given in Eq. 2 with constant equiprobable weights πk and a constant
diagonal Σ with equal diagonal entries. To our knowledge, this is the first time that a rigorous
link between SOMs and GMMs has been established based on a comparison of energy functions,
showing that SOMs are actually implementing a regularized approximation to the full GMM model,
with component weights and variances chosen in a special way.

C RULES-OF-THUMB FOR SGD-TRAINING OF GMMS ON IMAGES

When training DNNs by SGD, several parameters need to be set according to heuristics. Here, we
present some rules-of-thumb for performing this selection with GMMs. Generally, we can always
set the batch size to 1, Σmin = 0.15 and ε = 0.01. In all of our experiments, it was always feasible
to set t0 to half an epoch, and t∞ − t0 to half an epoch, too. However, tuning these parameters
can speed up training significantly. The number of prototypes is a critical choice, but follows a
simple “the more the better” rule. From the mathematical foundations of GMMs, it is evident that
more components must always be able to reach a lower loss (except for possible local minima). The
relative adaptation strengths λπ , λΣ and λµ can always be set to 1 (at least we did not find any
examples where that did not work).

1. Choose the number of iterations a an increasing function ofK: the more components, the more
free parameters, the more time to train is needed

2. Flatten images, and put them as rows with random indices (as usual for SGD) into a tensorX
3. Choose a quadratic number of components as n2

4. Initialize σ0 to n/3.
5. Preliminary train the GMM with constant σ0. Select t0 as the first time step where loss does no

longer decrease. It never hurts if t0 is chosen too large, it just takes longer.

11



Under review as a conference paper at ICLR 2020

6. Select t∞ by trial and error on the train set: start with very large values and use the smallest
value that gives the same final loss value. Larger values for t∞ never hurt but take longer.

7. Train with the chosen parameters!

12


	Introduction
	Motivation
	Related Work
	Contributions

	Datasets
	Methods: Stochastic Gradient Descent for GMMs
	Max-component Approximation
	Constraint Enforcement
	Regularization
	Full GMM Model Trained by SGD and its Hyper-Parameters
	Simplifications and Memory/Performance Issues

	Experiments
	Validity of the Max-Component Approximation and Comparison to EM
	Effects and Benefits of Regularization
	Basic Feasibility and Parameter Space
	Robustness to initial conditions
	SGD Training of Simplified GMMs with Principal Local Directions

	Discussion
	Conclusion and Outlook
	Local principal directions
	Rigorous Link to Self-Organizing Maps
	Rules-Of-Thumb for SGD-Training of GMMs on images

