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ABSTRACT

How can deep learning systems flexibly reuse their knowledge? Toward this
goal, we propose a new class of challenges, and a class of architectures that can
solve them. The challenges are meta-mappings, which involve systematically
transforming task behaviors to adapt to new tasks zero-shot. The key to achieving
these challenges is representing the task being performed in such a way that this
task representation is itself transformable. We therefore draw inspiration from
functional programming and recent work in meta-learning to propose a class of
Homoiconic Meta-Mapping (HoMM) approaches that represent data points and
tasks in a shared latent space, and learn to infer transformations of that space.
HoMM approaches can be applied to any type of machine learning task, including
supervised learning and reinforcement learning. We demonstrate the utility of this
perspective by exhibiting zero-shot remapping of behavior to adapt to new tasks.

1 INTRODUCTION

Humans are able to use and reuse knowledge more flexibly than most deep learning models can
(Lake et al., 2017; Marcus, 2018). The problem of rapid learning has been partially addressed by
meta-learning systems (Santoro et al., 2016; Finn et al., 2017; 2018; Stadie et al., 2018; Botvinick
et al., 2019, see also section 7). However, humans can use our knowledge of a task to flexibly adapt
when the task changes. In particular, we can often perform an altered task zero-shot, that is, without
seeing any data at all. For example, once we learn to play a game, we can immediately switch to
playing in order to lose, and can perform reasonably on our first attempt.

One fundamental reason for this is that humans are aware of what we are trying to compute and
why. This allows us to adapt our task representations to perform a new task zero-shot. By contrast,
most deep learning models do not explicitly represent tasks at all. Those that do (such as some
meta-learning models) generally do not represent relationships between tasks, and so cannot adapt
to a new task without data from the new task. To address this, it is necessary to represent tasks in a
transformable space. This can grant the ability to rapidly adapt behavior to a new task.

In this paper, we propose a new class of tasks based on this idea: meta-mappings, i.e. mappings
between tasks (see below). As noted above, this type of transfer is easily accessible to humans (Lake
et al., 2017), but is generally inaccessible to deep-learning models. To address this challenge, we
propose using architectures which essentially take a functional perspective on meta-learning, and
exploit the idea of homoiconicity. (A homoiconic programming language is one in which programs
in the language can be manipulated by programs in the language, just as data can.) By treating
both data and task behaviors as functions, we can conceptually think of both data and learned task
behaviors as transformable. This yields the ability to not only learn to solve new tasks, but to learn
how to transform these solutions in response to changing task demands. We demonstrate that our
architectures can flexibly remap their behavior to address the meta-mapping challenge. By allowing
the network to recursively treat its task representations as data points, and transform them to produce
new task representations, our approach is able to achieve this flexibility parsimoniously. We suggest
that approaches like ours will be key to building more intelligent and flexible deep learning systems.
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2 META-MAPPING

We propose the meta-mapping challenge. We define a meta-mapping as a task, or mapping, that
takes a task as an input, output, or both. These include mapping from tasks to language (explaining),
mapping from language to tasks (following instructions), and mapping from tasks to tasks (adapting
behavior). While the first two categories have been partially addressed in prior work (e.g. Hermann
et al., 2017; Co-Reyes et al., 2019), the latter is more novel. (We discuss the relationship between our
work and prior work in section 7.) This adaptation can be cued in several ways, including examples
of the mapping (after winning and losing at poker, try to lose at blackjack) or natural-language
instructions (“try to lose at blackjack”).

We argue that task-to-task meta-mappings are a useful way to think about human-like flexibility,
because a great deal of our rapid adaptation is from a task to some variation on that task. For
example, the task of playing go on a large board is closely related to the task of playing go on
a small board. Humans can exploit this to immediately play well on a different board, but deep
learning models generally have no way to achieve this. We can also adapt in much deeper ways,
for example fundamentally altering our value function on a task, such as trying to lose, or trying to
achieve some orthogonal goal. While meta-learning systems can rapidly learn a new task from a
distribution of tasks they have experience with, this does not fully capture human flexibility. Given
appropriate conditioning (see below), our architecture can use meta-mappings to adapt to substantial
task alterations zero-shot, that is, without seeing a single example from the new task (Lake et al.,
2017). Achieving this flexibility to meta-map to new tasks will be an important step toward more
general intelligence – intelligence that is not limited to precisely the training tasks it has seen.

3 HOMOICONIC META-MAPPING (HOMM) ARCHITECTURE

To address these challenges, we propose HoMM architectures, composed of two components:

1. Input/output systems: domain specific encoders and decoders (vision, language, etc.) that
map into a shared embedding space Z.

2. A meta-learning system that a) learns to embed tasks into the shared embedding space Z, b)
learns to use these task embeddings to perform task-appropriate behavior, c) learns to embed
meta-mappings into the same space, and d) learns to use these meta-mapping embeddings to
transform basic task embeddings in a meta-mapping appropriate way.

These architectures are homoiconic because they have a completely shared Z for individual data
points, tasks, and meta-mappings. Why is this useful? The primary advantage is that it parsimoniously
allows for arbitrary mappings between these entities. In addition to basic tasks, the system can learn to
perform meta-mappings to follow instructions or change behavior. That is, it can transform task repre-
sentations using the same components it uses to transform basic data points. (See also appendix E.1.)

Without training on meta-mappings, of course, the system will not be able to execute them well.
However, as we will show, if it is trained on a broad enough set of such mappings, it will be able to
generalize to new instances drawn from the same meta-mapping distribution. For instances that fall
outside its data distribution, or for optimal performance, it may require some retraining, however.
This reflects the structure of human behavior – we are able to adapt rapidly when new knowledge
is relatively consistent with our prior knowledge, but learning an entirely new paradigm (such as
calculus for a new student) can be quite slow (cf. Kumaran et al., 2016; Botvinick et al., 2019).

More formally, we treat functions and data as entities of the same type. From this perspective, the
data points that one function receives can themselves be functions1. The key insight is that then our
architecture can transform data points2 to perform basic tasks (as is standard in machine learning),
but it can also transform these task functions to adapt to new tasks. This is related to the concepts
of homoiconicity, defined above, and higher-order functions. Under this perspective, basic tasks

1Indeed, any data point can be represented as a constant function that outputs the data point.
2Where “data” is a quite flexible term. The approach is agnostic to whether the learning is supervised or

reinforcement learning, whether inputs are images or natural language, etc.

2



Under review as a conference paper at ICLR 2020

(a) Basic meta-learning

Examples

{
(zexin,0, z

ex
targ,0)

...

}
Probes

{
zprbin,0

...

}M

zfunc
H Fzfunc

{
zpredout,0,

...

}PredictionsProbe targets{
zprbtarg,0

...

} Loss

(b) Meta-mapping

Examples

{
(zfuncin,0 , zfunctarg,0)

...

}
Probes

{
zfunc,prbin,0

...

}M

zmeta

H Fzmeta

{
zfunc,predout,0 ,

...

}PredictionsProbe targets{
zfunc,prbtarg,0

...

}Loss (train)

(c) Meta-mapping evaluation

Probes

{
zprbin,0

...

}
zfunc,pred

H Fzfunc,pred

{
zpredout,0,

...

}PredictionsProbe targets{
zprbtarg,0

...

}Loss (eval)

Figure 1: The HoMM architecture allows for transformations at different levels of abstraction. (a) For
basic meta-learning a dataset consisting of (input embedding, output embedding) tuples is processed
by the meta-networkM to produce a function embedding zfunc, which is processed by the hyper
networkH to parameterize a function Fzfunc , which attempts to compute the transformation on held-
out probe inputs. However, our approach goes beyond basic meta-learning. The function embedding
zfunc can then be seen as a single input or output at the next level of abstraction, when the same
networksM andH are used to transform function embeddings based on examples of a meta-mapping
(b). To evaluate meta-mapping performance, a probe embedding of a held-out function is transformed
by the architecture to yield a predicted embedding for the transformed task. The performance of this
predicted embedding is evaluated by moving back down a level of abstraction and evaluating on the
actual target task (c). Because the function embedding is predicted by a transformation rather than
from examples, new tasks can be performed zero-shot. (M and H are learnable deep networks, and
Fz is a deep network parameterized byH conditioned on function embedding z. Input and output
encoders/decoders are omitted for simplicity. See the text and appendix F.2 for details.)

and meta-mappings from task to task are really the same type of problem. The functions at one level
of abstraction (the basic tasks) become inputs and outputs for higher-level functions at the next level
of abstraction (meta-mapping between tasks).

Specifically, we embed each input, target, or mapping into a shared representational space Z. This
means that single data points are embedded in the same space as the representation of a function or
an entire dataset. Inputs are embedded by a deep network I : input→ Z. Model outputs are decoded
from Z by O : Z → output. Target outputs are encoded by T : targets→ Z.

Given this, the task of mapping inputs to outputs can be framed as trying to find a transformation
of the representational space that takes the (embedded) inputs from the training set to embeddings
that will decode to the target outputs. These transformations are performed by a system with the
following components (see fig. 1): M : {(Z,Z), ...} → Z – the meta network, which collapses
a dataset of (input embedding, target embedding) pairs to produce a single function embedding.
H : Z → parameters – the hyper network, which maps a function embedding to parameters.
F : Z → Z – the transformation, implemented by a deep network parameterized byH.

Basic meta-learning: To perform a basic task, input and target encoders (I and T ) are used to
embed individual pairs from an example dataset D1, to form a dataset of example (input, output)
tuples (fig. 1a). These examples are fed toM, which produces a function embedding (via a deep
neural network, with several layers of parallel processing across examples, followed by an element-
wise max across examples, and several more layers). This function embedding is mapped through
the hyper networkH to parameterize F , and then F is used to process a dataset of embedded probe
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inputs, and O to map the resultant embeddings to outputs. This system can be trained end-to-end on
target outputs for the probes. Having two distinct datasets forces generalization at the meta-learning
level, see appendix A.1. See appendix F.2 for detailed architecture, and hyper-parameters.

More explicitly, suppose we have a dataset of example input, target pairs (D1 = {(x0, y0), ...}), and
some input x from a probe dataset D2. The system would predict a corresponding output ŷ as:

ŷ = O (Fzfunc (I (x)))

where Fzfunc is the meta-learner’s representation for the function underlying the examples in D1:

Fzfunc is parameterized byH
(
zfunc

)
, where zfunc =M ({(I (x0) , T (y0)) , ...})

Then, given some loss function L(y, ŷ) defined on a single target output y and an actual model output
ŷ, we define our total loss computed on the probe dataset D2 as:

E(x,y)∈D2
[L (y,O (FD1 (I (x))))]

The system can then be trained end-to-end on this loss to adjust the weights of T ,H,M,O, and I.

Meta-mapping: The fundamental insight of our paper is to show how basic tasks and meta-
mappings can be treated homogenously, by allowing the network to transform its task representations
like data (see fig. 1b,c). From the perspective of our architecture, learning a meta-mapping between
tasks is exactly analogous to learning a basic task. Anything that is embedded in Z can be transformed
using the same system. Because tasks are embedded in Z for basic meta-learning, this allows for
meta-mappings using exactly the same M and H that we use for basic tasks. Just as we would
take a set of paired embeddings of data points for a basic task, and use them to compute a function
embedding for that task, we can take a set of paired function embeddings, and use them to create
an embedding for the meta-mapping. We can then use this meta-mapping embedding to transform
another task. We can thus behave zero-shot on a novel task based on its relationship to a prior task.

For example, suppose we have an embedding zgame1 ∈ Z for the task of playing some game, and we
want to switch to trying to lose this game. We can generate a meta-mapping embedding zmeta ∈ Z
from examples of embeddings generated by the system when it is trying to win and lose various games:
zmeta =M ({((zgame2, zgame2,lose) , ...}). We can generate a new task embedding ẑgame1,lose ∈ Z:

ẑgame1,lose = Fzmeta(zgame1) where Fzmeta is parameterized byH (zmeta)

This ẑgames1,lose can be interpreted as the system’s guess at a losing strategy for game 1. To train
a meta-mapping, we minimize the `2 loss in the latent space betwen this guessed embedding and the
embedding of the target task3. Whether or not we have such a target embedding, we can evaluate how
well the system loses with this ẑgame1,lose strategy, by stepping back down a level of abstraction and
actually having it play the game via this embedding (fig. 1c). This is how we evaluate meta-mapping
performance – evaluating the loss of transformed task embeddings on the respective target tasks.

Alternatively, we could map from language to a meta-mapping embedding, rather than inducing it
from examples of the meta-mapping. This corresponds to the human ability to change behavior in
response to instructions. The key feature of our architecture – the fact that tasks, data, and language
are all embedded in a shared space – allows for substantial flexibility within a unified framework.
Furthermore, our approach is parsimonious. Because it uses the same meta-learner for both basic
tasks and meta-mappings, this increased flexibility does not require any added parameters.4

4 LEARNING MULTIVARIATE POLYNOMIALS

As a proof of concept, we first evaluated the system on the task of learning polynomials of degree
≤ 2 in 4 variables (i.e. the task was to regress functions of the form p : R4 → R where p ∈ P2 (R),

3The gradients do not update the example function embeddings, only the weights of M and H, due to
memory contraints. Allowing this might be useful in more complex applications.

4At least in principle, in practice of course increasing network size might be more beneficial for HoMM
architectures performing meta-mappings as well as basic tasks, compared to those performing only basic tasks.
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(a) The polynomials domain, section 4. (b) The cards domain, section 5.

Figure 2: The HoMM system succeeds at basic meta-learning, which is a necessary prerequisite
for meta-mappings. (a) The polynomials domain, section 4. The system successfully generalizes
to held out polynomials. The solid line indicates optimal performance; the dashed line indicates
untrained model performance. (b) The card games domain, section 5. The system successfully
generalizes to held out games, both when trained on a random sample of half the tasks, or when a
targeted subset is held out. The gray dashed line indicates chance performance, while the solid lines
are optimal performance. The orange dashed lines shows performance on held-out tasks of playing
the strategy from the most correlated trained task. The fact that the system generally exceeds this
difficult baseline shows a deeper form of generalization than just memorizing strategies and picking
the closest. Error-bars throughout are bootstrap 95%-confidence intervals, numerical values for plots
can be found in appendix G.

though the model was given no prior inductive bias toward polynomial forms). For example, if
p(w, x, y, z) = x, the model might see examples like (−1, 1, 1, 1; 1) and (0.7, 2.1, 1.3,−4; 2.1), and
be evaluated on its output for points like (−1,−1.3, 0.5, 0.3). This yields an infinite family of base-
level tasks (the vector space of all such polynomials), as well as many families of meta-mappings over
tasks (for example, multiplying polynomials by a constant, squaring them, or permuting their input
variables). This allows us to not only examine the ability of the system to learn to learn polynomials
from data, but also to adapt its learned representations in accordance with these meta-tasks. Details
of the architecture and training can be found in appendix F.

Basic meta-learning: First, we show that the system is able to achieve the basic goal of learning a
held-out polynomial from a few data points in fig. 2a (with good sample-efficiency, see supp. fig. 7).

Meta-mapping (task→ task): Furthermore, the system is able to perform meta-mappings over
polynomials in order to flexibly reconfigure its behavior (fig. 3a). We train the system to perform
a variety of mappings, for example switch the first two inputs of the polynomial, add 3 to the
polynomial, or square the polynomial. We then test its ability to generalize to held-out mappings from
examples, for example a held-out input permutation, or an unseen additive shift. The system is both
able to apply learned meta-mappings to held-out polynomials, and to apply held-out meta-mappings
it has not been trained on, simply by seeing examples of the mapping.

5 A STOCHASTIC LEARNING SETTING: SIMPLE CARD GAMES

We next explored the setting of simple card games, where the agent is dealt a hand and must bet.
There are three possible bets (including “don’t bet”), and depending on the opponent’s hand the agent
either wins or loses the amount bet. This task doesn’t require long term planning, but does incorporate
some aspects of reinforcement learning, namely stochastic feedback on only the action chosen. We
considered five games that are simplified analogs of various real card games (see Appendix F.1.2).
We also considered several binary options that could be applied to the games, including trying to
lose instead of trying to win, or switching which suit was more valuable. These are challenging
manipulations, for instance trying to lose requires completely inverting a learned Q-function.
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(a) The polynomials domain, section 4. (b) The cards domain, section 5.

Figure 3: The HoMM architecture performs well at meta-mappings. (a) The system generalizes to
apply learned meta-mappings to new polynomials, and even to apply unseen meta-mappings. The
plots show the loss produced when evaluating the mapped embedding on the target task. For example,
if the initial polynomial is p(x) = x+ 1, and the meta-task is “square,” the loss would be evaluated
by transforming the embedding of p(x) and evaluating how well the mapped embedding regresses on
to p(x)2 = x2 + 2x+ 1. The results show that the system succeeds at applying meta-mappings it
is trained on to held-out polynomials, as well as applying held-out meta-mappings to either trained
or held-out polynomials. The solid line indicates optimal performance; the dashed line is untrained
model performance. (b) The system generalizes to meta-mapping new tasks in the cards domain. The
system is trained to do the meta-mappings shown here on a subset of its basic tasks, and is able to
generalize these mappings to perform novel tasks zero-shot. For example, for the “losers” mapping,
the sytem is trained to map games to their losers variants. When given a held-out game, it is able to
apply the mapping to guess how to play the losing variation. This plot shows the reward produced
by taking the mapped embedding and playing the targeted game. The gray dashed line indicates
random performance, while the colored dashed lines indicate performance if the system did not alter
its behavior in response to the meta-mapping. The system generally exceeds these baselines, although
the switch-suits baseline is more difficult with the targeted holdout. Error-bars are bootstrap 95%-CIs.

In order to adapt the HoMM architecture, we made a very simple change. Instead of providing the
system with (input, target) tuples to embed, we provided it with (state, action, reward) tuples, and
trained it to predict rewards for each bet in each state. (A full RL framework is not strictly necessary
here because there is no temporal aspect to the tasks; however, because the outcome is only observed
for the action you take, it is not a standard supervised task.) The hand is explicitly provided to the
network for each example, but which game is being played is implicitly captured in the training
examples, without any explicit cues. That is, the system must learn to play directly from seeing a set
of (state, action, reward) tuples which implicitly capture the structure and stochasticity of the game.
We also trained the system to make meta-mappings, for example switching from trying to win a game
to trying to lose. Details of the architecture and training can be found in appendix F.

Basic meta-learning: First, we show that the system is able to play a held-out game from examples
in fig. 2b. We compare two different hold-out sets: 1) train on half the tasks at random, or 2)
specifically hold out all the “losers” variations of the “straight flush” game. In either of these cases,
the meta-learning system achieves well above chance performance (0) at the held out tasks, although
it is slightly worse at generalizing to the targeted hold out, despite having more training tasks in that
case. Note that the sample complexity in terms of number of trained tasks is not that high, even
training on 20 randomly selected tasks leads to good generalization to the held-out tasks. Furthermore,
the task embeddings generated by the system are semantically organized, see appendix D.

Meta-mapping (task→ task): Furthermore, the system is able to perform meta-mappings (map-
pings over tasks) in order to flexibly reconfigure its behavior. For example, if the system is trained
to map games to their losers variations, it can generalize this mapping to a game it has not been
trained to map, even if the source or target of that mapping is held out from training. In fig. 3b we
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(a) The polynomials domain. (b) The cards domain.

Figure 4: The HoMM system can perform meta-mappings from language cues rather than meta-
mapping examples. Compare to fig. 3, which shows the same results when using examples instead
of language. (a) In the polynomials domain, language cues still lead to good performance, even on
held-out tasks or held-out meta-mappings, although examples perform slightly better (fig. 3a). (b)
Similarly, in the cards domain, language cues perform well. Error-bars are bootstrap 95%-CIs.

demonstrate this by taking the mapped embedding and evaluating the reward received by playing the
targeted game with it. This task is more difficult than simply learning to play a held out game from
examples, because the system will actually receive no examples of the target game (when it is held
out). Furthermore, in the case of the losers mapping, leaving the strategy unchanged would produce a
large negative reward, and chance performance would produce 0 reward, so the results are quite good.

6 AN EXTENSION VIA LANGUAGE

Language is fundamental to human flexibility. Often the examples of the meta-mapping are implicit
in prior knowledge about the world that is cued by language. For example, “try to lose at go” does not
give explicit examples of the “lose” meta-mapping, but rather relies on prior knowledge of what losing
means. This is a much more efficient way to cue a known meta-mapping. In order to replicate this, we
trained the HoMM system with both meta-mappings based on examples, and meta-mappings based
on language. In the language-based meta-mappings, a language input identifying the meta-mapping
(but not the basic task to apply it to) is encoded by a language encoder, and then provided as the input
toH (instead of an output fromM). The meta-mapping then proceeds as normal —H parameterizes
F , which is used to transform the embedding of the input task to produce an embedding for the target.

This language-cued meta-mapping approach also yields good performance (fig. 4). However,
examples of the meta-mapping are slightly better, especially for meta-mappings not seen during
training, presumably because examples provide a richer description. In Appendix A.2 we show that
using language to specify a meta-mapping performs better than using language to directly specify the
target task, presumably by leveraging the richer task representation of the task embedding.

7 DISCUSSION

Related work: Our work is an extrapolation from the rapidly-growing literature on meta-learning
(e.g. Vinyals et al., 2016; Santoro et al., 2016; Finn et al., 2017; 2018; Stadie et al., 2018; Botvinick
et al., 2019). It is also related to the literature on continual learning, or more generally tools for
avoiding catastrophic interference based on changes to the architecture (e.g. Fernando et al., 2017;
Rusu et al., 2016), loss (e.g. Kirkpatrick et al., 2016; Zenke et al., 2017; Aljundi et al., 2019), or
external memory (e.g. Sprechmann et al., 2018). We also connect to a different perspective on
continual learning in appendix B. Recent work has also begun to blur the separation between these
approaches, for example by meta-learning in an online setting (Finn et al., 2019). Our work is
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specifically inspired by the algorithms that attempt to have the system learn to adapt to a new task
via activations rather than weight updates, either from examples (e.g. Wang et al., 2016; Duan et al.,
2016), or a task input (e.g. Borsa et al., 2019).

Our architecture builds directly off of prior work on HyperNetworks (Ha et al., 2016) – networks
which parameterize other networks – and other recent applications thereof, such as guessing pa-
rameters for a model to accelerate model search (e.g. Brock et al., 2018; Zhang et al., 2019), and
meta-learning (Li et al., 2019; Rusu et al., 2019, e.g.). Our work is also related to the longer history
of work on different time-scales of weight adaptation (Hinton and Plaut, 1982; Kumaran et al., 2016)
that has more recently been applied to meta-learning contexts (e.g. Ba et al., 2016; Munkhdalai and
Yu, 2017; Garnelo et al., 2018) and continual learning (Hu et al., 2019, e.g.). It is more abstractly
related to work on learning to propose architectures (e.g. Zoph and Le, 2016; Cao et al., 2019), and to
models that learn to select and compose skills to apply to new tasks (e.g. Andreas et al., 2016b;a;
Tessler et al., 2016; Reed and de Freitas, 2015; Chang et al., 2019). In particular, some of the work
in domains like visual question answering has explicitly explored the idea of building a classifier
conditioned on a question (Andreas et al., 2016b; 2017), which is related to one of the possible
computational paths through our architecture. Work in model-based reinforcement learning has
also partly addressed how to transfer knowledge between different reward functions (e.g. Laroche
and Barlier, 2017); our approach is more general. Indeed, our insights could be combined with
model-based approaches, for example our approach could be used to adapt a task embedding, which
would then be used by a learned planning model.

There has also been other recent interest in task (or function) embeddings. Achille et al. (Achille
et al., 2019) recently proposed computing embeddings for visual tasks from the Fisher information of
the parameters in a model partly tuned on the task. They show that this captures some interesting
properties of the tasks, including some types of semantic relationships, and can help identify models
that can perform well on a task. Rusu and colleagues recently suggested a similar meta-learning
framework where latent codes are computed for a task which can be decoded to a distribution over
parameters (Rusu et al., 2019). Other recent work has tried to learn representations for skills (e.g.
Eysenbach et al., 2019) or tasks (Hsu et al., 2019, e.g.) for exploration and representation learning.
Our perspective can be seen as a generalization of these that allows for remapping of behavior via
meta-tasks. To the best of our knowledge none of the prior work has explored zero-shot performance
of a task via meta-mappings.

Future Directions: We think that the general perspective of considering meta-mappings will yield
many fruitful future directions. We hope that our work will inspire more exploration of behavioral
adaptation, in areas beyond the simple domains we considered here. To this end, we suggest the
creation of meta-learning datasets which include information not only about tasks, but about the
relationships between them. For example, reinforcement learning tasks which involve executing
instructions (e.g. Hermann et al., 2017; Co-Reyes et al., 2019) can be usefully interpreted from this
perspective. Furthermore, we think our work provides a novel perspective on the types of flexibility
that human intelligence exhibits, and thus hope that it may have implications for cognitive science.

We do not necessarily believe that the particular architecture we have suggested is the best architecture
for addressing these problems, although it has a number of desirable characteristics. However, the
modularization of the architecture makes it easy to modify. (We compare some variations in appendix
E.) For example, although we only considered task networks F that are feed-forward and of a fixed
depth, this could be replaced with a recurrent architecture to allow more adaptive computation, or
even a more complex architecture (e.g. Reed and de Freitas, 2015; Graves et al., 2016). Our work also
opens the possibility of doing unsupervised learning over function representations for further learning,
which relates to long-standing ideas in cognitive science about how humans represent knowledge
(Clark and Karmiloff-Smith, 1993).

8 CONCLUSIONS

We’ve highlighted a new type of flexibility in the form of meta-mapping between tasks. Meta-
mapping can produce zero-shot performance on novel tasks, based on their relationship to old tasks.
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This is a key aspect of human flexibility, but is lacking from most contemporary deep-learning
models. Achieving this flexibility requires representing tasks in a transformable way. To address
this, our Homoiconic Meta-Mapping (HoMM) approach explicitly represents tasks by function
embeddings, and derives the computation from these embeddings via a HyperNetwork. This allows
for our key insight: by embedding tasks and individual data points in a shared latent space, the
same meta-learning architecture can be used both to transform data for basic tasks, and to transform
task embeddings to adapt to task variations. This approach is parsiomious, because it uses the same
networks for basic- and meta-mappings. Perhaps because of this, the requisite meta-task sample
complexity is small; we showed generalization to unseen meta-mappings after training on only 20
meta-mappings. That is, we are able to achieve zero-shot performance on a novel task based on
a held-out relationship between tasks. This is a step closer to human-level flexibility.

We see our proposal as a logical progression from the fundamental idea of meta-learning – that
there is a continuum between data and tasks. This naturally leads to the idea of manipulating task
representations just like we manipulate data. We’ve shown that this approach yields considerable
flexibility, most importantly the meta-mapping ability to adapt zero-shot to a new task. We hope that
these results will lead to the development of more powerful and flexible deep-learning models.
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The supplemental material is organized as follows: In section A we clarify some definitional details,
and discuss the value of meta-mappings in detail by comparing to other methods of performing a new
task. In section B we describe a continual-learning like perspective based on our approach. In section
C we provide supplemental figures. In section D we show t-sne results for the cards domain. In
section E we provide some lesion studies. In section F we list details fo the datasets and architectures
we used, as well as providing links to the source code for all models, experiments, and analyses. In
section G we provide means and bootstrap CIs corresponding to the major figures in the paper.

A CLARIFYING META-MAPPING

A.1 CLARIFYING HOLD-OUTS

There are several distinct types of hold-outs in the basic training of our architecture:

1. On each basic task, some of the data (D1) is fed to the meta-networkM while some (D2) is
held out. This encourages the model to actually infer the underlying function, rather than
just memorizing the examples.

2. There are also truly held-out tasks that the system has never seen in training. These are the
held-out tasks that we evaluate on at the end of training and that are plotted in the “Held out”
sections in the main plots.

This applies analogously to the meta-mappings: each time a meta-mapping is trained, some basic
tasks are used as examples while others are held out to encourage generalization. There are also
meta-mappings which have never been encountered during training, which we evaluate on at the end
of training, those are the meta-mappings which are plotted in the “held out” section in the relevant
plots. We also evaluate the old (and new) meta-mappings on the new basic tasks that have never been
trained.

A.2 WHY META-MAP FROM TASKS TO TASKS?

Why are meta-mappings between tasks useful? To answer this, we consider various ways of adapting
to a new task in figure 5 (based on results from the cards domain, section 5). The system could adapt
from seeing examples of the new task, but this requires going out and collecting data, which may be
expensive and does not allow zero-shot adaptation. Alternatively, the system could perform the new
task via a meta-mapping from a prior learned task, where the meta-mapping is either induced from
examples of the meta-mapping, or from language. Finally, the system could perform a new task from
language alone, if it is trained to map instructions to tasks.

To address this latter possibility, we trained a version of the model where we included training the
language system to produce embeddings for the basic tasks (while simultaneously training the system
on all the other objectives, such as performing the tasks from examples, in order to provide the
strongest possible structuring of the system’s knowledge for the strongest possible comparison). We
compare this model’s performance at held-out tasks to that of systems learning from examples of the
new task directly, or from meta-mapping, see fig. 5.

These results demonstrate the advantage of meta-mapping. While learning from examples is still
better given enough data, it requires potentially-expensive data collection and does not allow zero-
shot adaptation. Performing the new task from a language description alone uses only the implicit
knowledge in the model’s weights, and likely because of this it does not generalize well to the difficult
held-out tasks. Meta-mapping performs substantially better, while relying only on cached prior
knowledge, viz. prior task-embedding(s) and a description of the meta-mapping (either in the form of
examples or natural language). That is, meta-mapping has the advantage of requiring no new data
collection, like performing from language alone, but results in much better performance by leveraging
a richer description of the new task constructed using the system’s knowledge of a prior task and the
new task’s relationship to it.
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A.3 A DEFINITIONAL NOTE

When we discussed meta-mappings in the main task, we equivocated between tasks and behaviors
for the sake of brevity. For a perfect model, this is somewhat justifiable, because each task will
have a corresponding optimal behavior, and the sytem’s embedding of the task will be precisely
the embedding which produces this optimal behavior. However, behavior-irrelevant details of the
task, like the color of the board, may not be embedded, so this should not really be thought of as a
task-to-task mapping. This problem is exacerbated when the system is imperfect, e.g. during learning.
It is thus more precise to distinguish between a ground-truth meta-mapping, which maps tasks to
tasks, and the computational approach to achieving that meta-mapping, which really maps between
representations which combine both task and behavior.

Figure 5: Comparison of a variety of methods for performing one of the 10% held-out tasks in the
more difficult hold-out set in the cards domain. There are a number of ways the system could adapt to
a new task: from seeing example of the new task, from hearing the new task described from language
alone, or from leveraging its knowledge about prior tasks via meta-mappings (in this case, from
the non-losers variations of the same games). The meta-mappings offer a happy medium between
the other two alternatives – they only require cached knowledge of prior tasks, rather than needing
to collect experience on the task before a policy can be derived, but they outperform a system that
simply tries to construct the task embedding from a description alone. Language alone is not nearly
as rich a cue as knowledge of how a new task relates to prior tasks.
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B CONTINUAL LEARNING

Figure 6: Once the meta-learning system has been trained on a distribution of prior tasks, its
performance on new tasks can be tuned by caching its guessed embeddings for the tasks and then
optimizing those, thus avoiding any possibility of interfering with performance on prior tasks. Starting
from random embeddings in the trained model results in slower convergence, while in an untrained
model the embeddings cannot be optimized well. Error-bars are bootstrap 95%-CIs.

Continual learning: Although the meta-learning approach is effective for rapidly adapting to a
new task, it is unreasonable to think that our system must consider every example it has seen at each
inference step. We would like to be able to store our knowledge more efficiently, and allow for further
refinement. Furthermore, we would like the system to be able to adapt to new tasks (for which its
guessed solution isn’t perfect) without catastrophically interfering with prior tasks (McCloskey and
Cohen, 1989).

A very simple solution to these problems is naturally suggested by our architecture. Specifically, task
embeddings can be cached so that they don’t have to be regenerated at each inference step. This also
allows optimization of these embeddings without altering the other parameters in the architecture,
thus allowing fine-tuning on a task without seeing more examples, and without interfering with
performance on any other task (cf. Rumelhart and Todd, 1993; Lampinen and McClelland, 2018).
This is like the procedure of Rusu et al. (2019), except considered across episodes. That is, we can
see the meta-learning step as a “warm start” for an optimization procedure over embeddings that
are cached in memory (cf. Kumaran et al., 2016). While this is not a traditional continual learning
perspective, we think it provides an interesting perspective on the issue. It might in fact be much
more memory-efficient to store an embedding per task, compared to storing an extra “importance”
parameter for every parameter in our model, as in e.g. elastic weight consolidation (Kirkpatrick et al.,
2016). It also provides a stronger guarantee of non-interference.

To test this idea, we pre-trained the system on 100 polynomial tasks, and then introduced 100 new
tasks. We trained on these new tasks by starting from the meta-network’s “guess” at the correct task
embedding, and then optimizing this embedding without altering the other parameters. The results are
shown in fig. 6. The meta-network embeddings offer good immediate performance, and substantially
accelerate the optimization process, compared to a randomly-initialized embedding (see supp. fig. 10
for a more direct comparison). Furthermore, this ability to learn is due to training, not simply the
expressiveness of the architecture, as is shown by attempting the same with an untrained network.
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C SUPPLEMENTAL FIGURES

Figure 7: The system is able to infer polynomials from only seeing a few data points (i.e. evaluations
of the polynomial), despite the fact that during training it always saw 50. A minimum of 15 random
points is needed to correctly infer polynomials without prior knowledge of the polynomial distribution,
but the system is performing well below this value, and quite well above it, although it continues to
refine its estimates slightly when given more data.

Figure 8: Learning curves for basic regression in the polynomials domain.
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Figure 9: Learning curves for meta-mappings in the polynomials domain. Although the results
seem to be leveling off at the end, we found that generalization performance was slightly increasing
or stable in this region, which may have interesting implications about the structure of these tasks
(Lampinen and Ganguli, 2019).

Figure 10: Continual learning in the polynomials domain: a more direct comparison. Once the
meta-learning system has been trained on a distribution of prior tasks, its performance on new tasks
can be tuned by caching its guessed embeddings for the tasks and then optimizing those, thus avoiding
any possibility of interfering with performance on prior tasks. Starting with the guessed embedding
substantially speeds-up the process compared to a randomly-initialized embedding. Furthermore, this
ability to learn is due to training, not simply the expressiveness of the architecture, as is shown by
attempting the same with an untrained network.
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(a) The polynomials domain, section 4. (b) The cards domain, section 5.

Figure 11: Integrating new tasks into the system by training all parameters results in some initial
interference with prior tasks (even with replay), suggesting that an approach like the continual
learning-approach may be useful.

D CARD GAME t-SNE

We performed t-SNE (Laurens van der Maaten and Hinton, 2008) on the task embeddings of the
system at the end of learning the card game tasks, to evaluate the organization of knowledge in
the network. In fig. 12 we show these embeddings for just the basic tasks. The embeddings show
systematic grouping by game attributes. In fig. 13 we show the embeddings of the meta and basic
tasks, showing the organization of the meta-tasks by type.

Figure 12: t-SNE embedding of the function embeddings the system learned for the basic card game
tasks. (Note that the pairs of nearby embeddings differ in the “suits rule“ attribute, discussed in
appendix F.1.2.)
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Figure 13: t-SNE embedding of the function embeddings the system learned for the meta tasks (basic
tasks are included in the background).

E ARCHITECTURE EXPERIMENTS

In this section we consider a few variations of the architecture, to justify the choices made in the
paper.

E.1 SHARED Z VS. SEPARATE TASK-EMBEDDING AND DATA-EMBEDDING SPACE

Instead of having a shared Z where data and tasks are embedded, why not have a separate embedding
space for data, tasks, and so on? There are a few conceptual reason why we chose to have a shared
Z, including its greater parameter efficiency, the fact that humans seem to represent our conscious
knowledge of different kinds in a shared space (Baars, 2005), and the fact that this representation could
allow for zero-shot adaptation to new computational pathways through the latent space, analogously
to the zero-shot language translation results reported by Johnson and colleagues (Johnson et al.,
2016). In this section, we further show that training with a separate task encoding space worsens
performance, see fig. 14. This seems to primarily be due to the fact that learning in the shared Z
accelerates and de-noises the learning process, see fig. 15. (It’s therefore worth noting that running
this model for longer could result in convergence to the same asymptotic generalization performance.)

E.2 HYPER NETWORK VS. CONDITIONED TASK NETWORK

Instead of having the task network F parameterized by the hyper networkH, we could simply have a
task network with learned weights which takes a task embedding as another input. Here, we show
that this architecture fails to learn the meta-mapping tasks, although it can successfully perform the
basic tasks. We suggest that this is because it is harder for this architecture to prevent interference
between the comparatively larger number of basic tasks and the smaller number of meta-tasks. While
it might be possible to succeed with this architecture, it was more difficult in the hyper-parameter
space we searched.
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Figure 14: Having a separate embedding space for tasks results in worse performance on meta-
mappings. (Results are from only 1 run.)

Figure 15: Having a separate embedding space for tasks results in noisier, slower learning of
meta-mappings. (Results are from only 1 run.)
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Figure 16: Conditioning the task network on the task embedding, rather than parameterizing it via a
hyper network causes it to fail at the meta-mapping tasks. Results are from only 2 runs.

F DETAILED METHODS

F.1 DATASETS

F.1.1 POLYNOMIALS

We randomly sampled the train and test polynomials as follows:

1. Sample the number of relevant variables (k) uniformly at random from 0 (i.e. a constant) to
the total number of variables.

2. Sample the subset of k variables that are relevant from all the variables.
3. For each term combining the relevant variables (including the intercept), include the term

with probability 0.5. If so give it a random coefficient drawn from N (0, 2.5).

The data points on which these polynomials were evaluated were sampled uniformly from [−1, 1]
independently for each variable, and for each polynomial. The datasets were resampled every 50
epochs of training.

Meta-tasks: For meta-tasks, we trained the network on 6 task-embedding classification tasks:

• Classifying polynomials as constant/non-constant.
• Classifying polynomials as zero/non-zero intercept.
• For each variable, identifying whether that variable was relevant to the polynomial.

We trained on 20 meta-mapping tasks, and held out 16 related meta-mappings.

• Squaring polynomials (where applicable).
• Adding a constant (trained: -3, -1, 1, 3, held-out: 2, -2).
• Multiplying by a constant (trained: -3, -1, 3, held-out: 2, -2).
• Permuting inputs (trained: 1320, 1302, 3201, 2103, 3102, 0132, 2031, 3210, 2301, 1203,

1023, 2310, held-out: 0312, 0213, 0321, 3012, 1230, 1032, 3021, 0231, 0123, 3120, 2130,
2013).
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Language: We encoded the meta-tasks in language by sequences as follows:

• Classifying polynomials as constant/non-constant: [‘‘is’’, ‘‘constant’’]

• Classifying polynomials as zero/non-zero intercept:
[‘‘is’’, ‘‘intercept_nonzero’’]

• For each variable, identifying whether that variable was relevant to the polynomial:
[‘‘is’’, <variable-name>, ‘‘relevant’’]

• Squaring polynomials: [‘‘square’’]

• Adding a constant: [‘‘add’’, <value>]

• Multiplying by a constant: [‘‘multiply’’, <value>]

• Permuting inputs:

[‘‘permute’’, <variable-name>, <variable-name>, <variable-name>,
<variable-name>]

All sequences were front-padded with “<PAD>” to the length of the longest sequence.

F.1.2 CARD GAMES

Our card games were played with two suits, and 4 values per suit. In our setup, each hand in a game
has a win probability (proportional to how it ranks against all other possible hands). The agent is
dealt a hand, and then has to choose to bet 0, 1, or 2 (the three actions it has available). We considered
a variety of games which depend on different features of the hand:

• High card: Highest card wins.

• Pairs Same as high card, except pairs are more valuable, and same suit pairs are even more
valuable.

• Straight flush: Most valuable is adjacent numbers in same suit, i.e. 4 and 3 in most valuable
suit wins every time (royal flush).

• Match: the hand with cards that differ least in value (suit counts as 0.5 pt difference) wins.

• Blackjack: The hand’s value increases with the sum of the cards until it crosses 5, at which
point the player “goes bust,” and the value becomes negative.

We also considered three binary attributes that could be altered to produce variants of these games:

• Losers: Try to lose instead of winning! Reverses the ranking of hands.

• Suits rule: Instead of suits being less important than values, they are more important
(essentially flipping the role of suit and value in most games).

• Switch suit: Switches which of the suits is more valuable.

Any combination of these options can be applied to any of the 5 games, yielding 40 possible games.
The systems were trained with the full 40 possible games, but after training we discovered that the
“suits rule” option does not substantially alter the games we chose (in the sense that the probability of
a hand winning in the two variants of a game is very highly correlated), so we have omitted it from
our analyses.

Meta-tasks: For meta-tasks, we gave the network 8 task-embedding classification tasks (one-vs-all
classification of each of the 5 game types, and of each of the 3 attributes), and 3 meta-mapping tasks
(each of the 3 attributes).

Language: We encoded the meta-tasks in language by sequences of the form
[‘‘toggle’’, <attribute-name>] for the meta-mapping tasks, and
[‘‘is’’, <attribute-or-game-name>].
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F.2 MODEL & TRAINING

Basic task operation:

1. A training dataset D1 of (input, target) pairs is embedded by I and T to produce a set
of paired embeddings. Another set of (possibly unlabeled) inputs D2 is provided and
embedded.

2. The meta networkMmaps the set of embedded (input, target) pairs to a function embedding.

3. The hyper networkH maps the function embedding to parameters for F , which is used to
transform the second set of inputs to a set of output embeddings.

4. The output embeddings are decoded by O to produce a set of outputs.

5. The system is trained end-to-end to minimize the loss on these outputs.

The model is trained to minimize

E(x,y)∈D2
[L (y,O (FD1 (I (x))))]

where FD1
is the transformation the meta-learner guesses for the training dataset D1:

FD1 is parameterized byH (M ({(I (xi) , T (yi)) for (xi, yi) ∈ D1}))

Meta-task operation:

1. A meta-dataset of (source-task-embedding, target-task-embedding) pairs, D1, is collected.
Another dataset D2 (possibly only source tasks) is provided. (All embeddings included
in D1 during training are for basic tasks that have themselves been trained, to ensure that
there is useful signal. During evaluation, the embeddings in D1 are for tasks that have been
trained on, but those in D2 may be new.

2. The meta networkM maps this set of (source, target) task-embedding pairs to a function
embedding.

3. The hyper networkH maps the function embedding to parameters for F , which is used to
transform the second set of inputs to a set of output embeddings.

4. The system is trained to minimize `2 loss between these mapped embeddings and the target
embeddings.

The model is trained to minimize

E(zsource,ztarget)∈D2
[L (ztarget, FD1

(I (zsource)))]

where L is `2 loss, and FD1
is the transformation the meta-learner guesses for the training dataset

D1:
FD1

is parameterized byH (M ({((zsource, ztarget) ∈ D1}))
Note that there are three kinds of hold-out in the training of this system, see section A.1.

Language-cued meta-tasks: The procedure is analogous to the meta-tasks from examples, except
that the input toH is the embedding of the language input, rather than the output ofM. The systems
that were trained from language were also trained with the example-based meta-tasks.

F.2.1 DETAILED HYPER-PARAMETERS

See table 1 for detailed architectural description and hyperparameters for each experiment. Hyper-
parameters were generally found by a heuristic search, where mostly only the optimizer, learning
rate annealing schedule, and number of training epochs were varied, not the architectural parameters.
Some of the parameters take the values they do for fairly arbitrary reasons, e.g. the continual learning
experiments were run with the current polynomial hyperparameters before the hyperparameter search
for the polynomial data was complete, so some parameters are altered between these.
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Polynomials Continual learning Cards
Z-dimension 512 512 512
I num. layers 3

I num. hidden units 64
L architecture 2-layer LSTM + 2

fully-connected
- 1-layer LSTM + 2

fully-connected
L num. hidden units 512 - 512
O num. layers 1 1 3

O num. hidden units - - 512
T num. layers 1
M architecture 2 layers per-datum, max pool across, 2 layers
H architecture 4 layers

M,H num. hidden units 512
F architecture 4 layers

F num. hidden units 64
Nonlinearities Leaky ReLU in most places, except no non-linearity at final

layer of T , M, L, F , and sigmoid for meta-classification
outputs.

Main loss `2 for main task & meta-mapping, cross-entropy for meta-
classification.

Optimizer Adam RMSProp RMSProp
Learning rate (base) 3 · 10−5 1 · 10−4 1 · 10−4
Learning rate (meta) 1 · 10−5 - 1 · 10−4

L.R. decay rate (base) ∗0.85 ∗0.85 ∗0.85
L.R. decay rate (meta) ∗0.85 - ∗0.9

L.R. min (base) 3 · 10−8
L.R. min (meta) 1 · 10−7 - 3 · 10−7

L.R. decays every 100 epochs if above min.
Cached embedding L.R. - 1 · 10−3 -

Num. training epochs 4000 3000 40000
Num. runs 5 5 10

Num. base tasks (eval) 60 100 36 or 20
Num. base tasks (training) 1200 (= 60 * 20) 100 36 or 20
Num. meta classifications 6 - 8

Num. meta mappings 20 - 3
Num. new base tasks 40 30 4 or 20

Num. new meta mappings 16 - 0
Num. new meta classifications 0

Base dataset size 1024
Base datasets refreshed Every 50 epochs
M batch size 50 128 768

Table 1: Detailed hyperparameter specification for different experiments. A “-” indicates a parameter
that does not apply to that experiment. Where only one value is given, it applied to all the experiments
discussed. As a reminder: the shared representational space is denoted by Z. Input encoder:
I : input → Z. Output decoder O : Z → output. Target encoder T : targets → Z. Meta-network
M : {(Z,Z), ...} → Z – takes a set of (input embedding, target embedding) pairs and produces a
function embedding. Hyper-network 〈 : Z → parameters – takes a function embedding and produces
a set of parameters. Task network F : Z → Z – the transformation that executes the task mapping,
implemented by a deep network with parameters specified byH. Where language was used to cue
meta-mappings, it was processed by language encoder: L : natural language→ Z.
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Each epoch consisted of a separate learning step on each task (both base and meta), in a random order.
In each task, the meta-learner would receive only a subset (the “batch size“ above) of the examples to
generate a function embedding, and would have to generalize to the remainder of the examples in the
dataset. The embeddings of the tasks for the meta-learner were computed once per epoch, so as the
network learned over the course of the epoch, these embeddings would get “stale,” but this did not
seem to be too detrimental.

The results reported in the figures in this paper are averages across multiple runs, with different
trained and held-out tasks (in the polynomial case) and different network initializations (in all cases),
to ensure the robustness of the findings.

F.3 SOURCE REPOSITORIES

The full code for the experiments and analyses can be found on github: (will be available in the
de-anonymized version)

G NUMERICAL RESULTS

In this section we provide the mean values and bootstrap confidence intervals corresponding to the
major figures in the paper, as well as the baseline results in those figures. Tables were generated with
stargazer (Hlavac, 2018).

G.1 POLYNOMIALS

named_run_type is_new mean_loss boot_CI_low boot_CI_high

HoMM Trained 0.015 0.012 0.018
HoMM Held out 0.246 0.188 0.308

Untrained HoMM network Trained 5.735 4.823 6.74
Untrained HoMM network Held out 5.968 4.984 6.991

Table 2: Table for basic meta-learning, figure 2a

named_run_type result_type mean_loss boot_CI_low boot_CI_high

HoMM Trained mapping, on trained task 0.094 0.091 0.098
HoMM Trained mapping, on held-out task 1.721 1.419 2.115
HoMM Held-out mapping, on trained task 1.28 1.213 1.35
HoMM Held-out mapping, on held-out task 1.775 1.706 1.846

Untrained HoMM network Trained mapping, on trained task 12.998 11.689 14.381
Untrained HoMM network Trained mapping, on held-out task 15.002 13.39 16.83
Untrained HoMM network Held-out mapping, on trained task 8.36 7.898 8.833
Untrained HoMM network Held-out mapping, on held-out task 8.786 8.317 9.27

Table 3: Table for meta-mapping results from examples, figure 3a

named_run_type result_type mean_loss boot_CI_low boot_CI_high

Language Trained mapping, on trained task 0.515 0.483 0.552
Language Trained mapping, on held-out task 2.244 1.921 2.623
Language Held-out mapping, on trained task 2.072 1.958 2.19
Language Held-out mapping, on held-out task 2.35 2.254 2.447

Untrained HoMM network Trained mapping, on trained task 13.328 11.977 14.823
Untrained HoMM network Trained mapping, on held-out task 15.313 13.602 17.354
Untrained HoMM network Held-out mapping, on trained task 8.205 7.795 8.662
Untrained HoMM network Held-out mapping, on held-out task 8.625 8.131 9.104

Table 4: Table for meta-mapping results from language, figure 4a
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G.2 CARDS

named_run_type named_game_type is_new_game average_reward avg_rwd_CI_low avg_rwd_CI_high

Random 50% holdout High card Trained 0.53 0.521 0.541
Random 50% holdout High card Held out 0.441 0.42 0.462
Random 50% holdout Match Trained 0.537 0.524 0.55
Random 50% holdout Match Held out 0.539 0.523 0.556
Random 50% holdout Pairs Trained 0.521 0.504 0.536
Random 50% holdout Pairs Held out 0.453 0.434 0.47
Random 50% holdout Straight flush Trained 0.525 0.508 0.54
Random 50% holdout Straight flush Held out 0.484 0.466 0.502
Random 50% holdout Blackjack Trained 0.582 0.557 0.603
Random 50% holdout Blackjack Held out 0.492 0.468 0.513
Targeted 10% holdout High card Trained 0.527 0.518 0.536
Targeted 10% holdout Match Trained 0.536 0.526 0.546
Targeted 10% holdout Pairs Trained 0.522 0.512 0.531
Targeted 10% holdout Straight flush Trained 0.524 0.509 0.538
Targeted 10% holdout Straight flush Held out 0.361 0.332 0.39
Targeted 10% holdout Blackjack Trained 0.586 0.575 0.598

Table 5: Table for basic meta-learning, figure 2b

is_new_game named_run_type named_game_type expected_reward

Trained Targeted 10% holdout High card 0.531
Trained Targeted 10% holdout Match 0.541
Trained Targeted 10% holdout Pairs 0.532
Trained Targeted 10% holdout Straight flush 0.537
Held out Targeted 10% holdout Straight flush 0.274
Trained Targeted 10% holdout Blackjack 0.592
Trained Random 50% holdout High card 0.531
Held out Random 50% holdout High card 0.396
Trained Random 50% holdout Match 0.541
Held out Random 50% holdout Match 0.541
Trained Random 50% holdout Pairs 0.532
Held out Random 50% holdout Pairs 0.37
Trained Random 50% holdout Straight flush 0.536
Held out Random 50% holdout Straight flush 0.452
Trained Random 50% holdout Blackjack 0.595
Held out Random 50% holdout Blackjack 0.456

Table 6: Table for playing most correlated learned strategy for basic meta-learning, dashed colored
lines in figure 2b

named_game_type expected_reward

Blackjack 0.592
High card 0.531

Match 0.541
Pairs 0.532

Straight flush 0.536

Table 7: Table for playing optimal rewards for basic meta-learning, solid lines in figure 2b
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is_new_game named_run_type named_game_type expected_reward

Trained Targeted 10% holdout High card 0.531
Trained Targeted 10% holdout Match 0.541
Trained Targeted 10% holdout Pairs 0.532
Trained Targeted 10% holdout Straight flush 0.537
Held out Targeted 10% holdout Straight flush 0.274
Trained Targeted 10% holdout Blackjack 0.592
Trained Random 50% holdout High card 0.531
Held out Random 50% holdout High card 0.396
Trained Random 50% holdout Match 0.541
Held out Random 50% holdout Match 0.541
Trained Random 50% holdout Pairs 0.532
Held out Random 50% holdout Pairs 0.37
Trained Random 50% holdout Straight flush 0.536
Held out Random 50% holdout Straight flush 0.452
Trained Random 50% holdout Blackjack 0.595
Held out Random 50% holdout Blackjack 0.456

Table 8: Table for most correlated baselines for basic meta-learning, dashed colored lines in figure 2b

named_run_type named_meta_task is_new average_reward avg_rwd_CI_low avg_rwd_CI_high

Targeted 10% holdout Switch suits Trained 0.523 0.512 0.534
Targeted 10% holdout Switch suits Held out 0.234 0.196 0.273
Targeted 10% holdout Losers Trained 0.532 0.511 0.546
Targeted 10% holdout Losers Held out 0.289 0.241 0.322
Random 50% holdout Switch suits Trained 0.528 0.521 0.533
Random 50% holdout Switch suits Held out 0.375 0.368 0.382
Random 50% holdout Losers Trained 0.531 0.523 0.538
Random 50% holdout Losers Held out 0.427 0.417 0.436

Table 9: Table for meta-mapping from examples, figure 3b

named_run_type named_meta_task is_new average_reward avg_rwd_CI_low avg_rwd_CI_high

Language (random 50%) Switch suits Trained 0.525 0.52 0.534
Language (random 50%) Switch suits Held out 0.371 0.353 0.384
Language (random 50%) Losers Trained 0.524 0.521 0.527
Language (random 50%) Losers Held out 0.426 0.413 0.44
Language (targeted 10%) Switch suits Trained 0.531 0.52 0.542
Language (targeted 10%) Switch suits Held out 0.225 0.146 0.305
Language (targeted 10%) Losers Trained 0.539 0.533 0.544
Language (targeted 10%) Losers Held out 0.341 0.308 0.367

Table 10: Table for meta-mapping from language, figure 4b

named_run_type named_meta_task is_new expected_reward

Targeted 10% holdout Switch suits Trained 0.298
Targeted 10% holdout Switch suits Held out 0.368
Targeted 10% holdout Losers Trained -0.446
Targeted 10% holdout Losers Held out -0.463
Random 50% holdout Switch suits Trained 0.37
Random 50% holdout Switch suits Held out 0.278
Random 50% holdout Losers Trained -0.465
Random 50% holdout Losers Held out -0.444

Table 11: Table of rewards if system ignored meta-mapping, colored dashed lines in figure 3b
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