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ABSTRACT

The ability to represent and compare machine learning models is crucial in order to
quantify subtle model changes, evaluate generative models, and gather insights on
neural network architectures. Existing techniques for comparing data distributions
focus on global data properties such as mean and covariance; in that sense, they
are extrinsic and uni-scale. We develop a first-of-its-kind intrinsic and multi-scale
method for characterizing and comparing data manifolds, using a lower-bound
of the spectral Gromov-Wasserstein inter-manifold distance, which compares all
data moments. In a thorough experimental study, we demonstrate that our method
effectively discerns the structure of data manifolds even on unaligned data of
different dimensionality, and showcase its efficacy in evaluating the quality of
generative models.

1 INTRODUCTION

The geometric properties of neural networks provide insights about their internals (Morcos et al.,
2018; Wang et al., 2018) and help researchers in the design of more robust models (Arjovsky et al.,
2017; Binkowski et al., 2018). Generative models are a natural example of the need for geometric
comparison of distributions. As generative models aim to reproduce the true data distribution Py
by means of the model distribution P,(z;©), more delicate evaluation procedures are needed.
Oftentimes, we wish to compare data lying in entirely different spaces, for example to track model
evolution or compare models having different representation space.

B i ¥
In order to evaluate the performance of generative models, e 7}
past research has proposed several extrinsic evaluation ;
measures, most notably the Fréchet (Heusel et al., 2017) and
Kernel (Binkowski et al., 2018) Inception Distances (FID
and KID). Such measures only reflect the first two or three
moments of distributions, meaning they can be insensitive to
global structural problems. We showcase this inadvertence
in Figure 1: here FID and KID are insensitive to the global
structure of the data distribution. Besides, as FID and KID are  pjoyre 1: Two distributions having
based only on extrinsic properties they are unable to compare  the same first 3 moments, meaning

unaligned data manifolds. FID and KID scores are close to 0.

In this paper, we start out from the observation that models capturing the multi-scale nature of the
data manifold by utilizing higher distribution moment matching, such as MMD-GAN (Li et al.,
2017) and Sphere-GAN (Park & Kwon, 2019), perform consistently better than their single-scale
counterparts. On the other hand, using extrinsic information can be misleading, as it is dependent on
factors external to the data, such as representation. To address this drawback, we propose IMD, an
Intrinsic Multi-scale Distance that is able to compare distributions using only intrinsic information
about the data, and provide an efficient approximation thereof that renders computational complexity
nearly linear. We empirically demonstrate that IMD effectively quantifies change in model
representations. In two application case studies, we use IMD to assess the sample quality of GANs
and provide reliable insights into the layer-wise output dynamics of neural networks.
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2 RELATED WORK

The geometric perspective on data is ubiquitous in machine learning. Geometric techniques enhance
unsupervised and semi-supervised learning, generative and discriminative models (Belkin & Niyogi,
2002; Arjovsky et al., 2017; Mémoli, 2011). We outline the applications of the proposed manifold
comparison technique and highlight the geometric intuition along the way.

2.1 GENERATIVE MODEL EVALUATION

Past research has explored many different directions for the evaluation of generative models. Setting
aside models that ignore the true data distribution, such as the Inception Score (Salimans et al., 2016)
and GILBO (Alemi & Fischer, 2018), we discuss most relevant geometric ideas below; we refer the
reader to Borji (2019) for a comprehensive survey.

Critic model-based metrics. Classifier two-sample tests (C2ST) (Lopez-Paz & Oquab, 2017) aim
to assess whether two samples came from the same distribution by means of an auxiliary classifier.
This idea is reminiscent of the GAN discriminator network (Goodfellow et al., 2014): if it is possible
to train a model that distinguishes between samples from the model and the data distributions, it
follows that these distributions are not entirely similar. The convergence process of the GAN-like
discriminator (Arjovsky et al., 2017; Binkowski et al., 2018) lends itself to creating a family of
metrics based on training a discriminative classifier (Im et al., 2018). Still, training a separate critic
model is often computationally prohibitive and requires careful specification. Besides, if the critic
model is a neural network, the resulting metric lacks interpretability and training stability.

Many advanced GAN models such as Wasserstein, MMD, Sobolev and Spherical GANs impose
different constraints on the function class so as to stabilize training (Arjovsky et al., 2017; Binkowski
et al., 2018; Mroueh et al., 2018; Park & Kwon, 2019). Higher-order moment matching (Bifkowski
et al., 2018; Park & Kwon, 2019) enhances GAN performance, enabling GANs to capture
multi-scale data properties, while multi-scale noise ameliorates GAN convergence problems (Jenni
& Favaro, 2019). Still, no feasible multi-scale GAN evaluation metric has been proposed to date.

Positional distribution comparison. In certain settings, it is acceptable to assign zero probability
mass to the real data points (Odena et al., 2018). In effect, metrics that estimate a distribution’s
location and dispersion provide useful input for generative model evaluations. For instance, the
Fréchet Inception Distance (FID) (Heusel et al., 2017) computes the Wasserstein-2 (i.e., Fréchet)
distance between distributions approximated with Gaussians, using only the estimated mean and
covariance matrices; the Kernel Inception Distance (KID) (Bifikowski et al., 2018) computes a
polynomial kernel k(z,y) = (42 7y + 1) and measures the associated Kernel Maximum Mean
Discrepancy (kernel MMD). Unlike FID, KID has an unbiased estimator (Gretton et al., 2012;
Binkowski et al., 2018). However, even while such methods, based on a limited number of
moments, may be computationally inexpensive, they only provide a rudimentary characterization
of distributions from a geometric viewpoint.

Intrinsic geometric measures. The Geometry Score (Khrulkov & Oseledets, 2018) characterizes
distributions in terms of their estimated persistent homology, which roughly corresponds to the
number of holes in a manifold. Still, the Geometry Score assesses distributions merely in terms of
their global geometry. In this work, we aim to provide a multi-scale geometric assessment.

2.2 NEURAL NETWORK REPRESENTATIONS

Learning how representations evolve during training or across initializations provides a pathway
to the interpretability of neural networks (Raghu et al., 2017). Still, state-of-the-art methods for
comparing representations of neural networks (Kornblith et al., 2019; Morcos et al., 2018; Wang
et al., 2018) consider only linear projections. The intrinsic nature of IMD renders it appropriate for
the task of comparing neural network representations, which can only rely on intrinsic information.

Yin & Shen (2018) introduced the Pairwise Inner Product (PIP) loss, an unnormalized covariance
error between sets, as a dissimilarity metric between word2vec embedding spaces with common
vocabulary. We show in Section 4.2 how IMD is applicable to this comparison task too.
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3  MULTI-SCALE INTRINSIC DISTANCE

At the core of deep learning lies the manifold hypothesis, which states that high-dimensional data,
such as images or text, lie on a low-dimensional manifold (Narayanan & Mitter, 2010; Belkin &
Niyogi, 2002; 2007). We aim to provide a theoretically motivated comparison of such data manifolds
based on rich intrinsic information. Our target measure should have the following properties:

intrinsic — it is invariant to isometric transformations of the manifold, e.g. translations or rotations.
multi-scale — it captures both local and global information.

We expose our method starting out with heat kernels, which admit a notion of manifold metric and
can be used to lower-bound the distance between manifolds.

3.1 HEAT KERNELS ON MANIFOLDS AND GRAPHS

Based on the heat equation, the heat kernel captures all the information about a manifold’s intrinsic
geometry (Sun et al., 2009). Given the Laplace-Beltrami operator (LBO) A x on a manifold X, the
heat equation is % = Axu for u : RTx X — R*. A smooth function u is a fundamental solution
of the heat equation at point x € X if w satisfies both the heat equation and the Dirac condition
u(t,-) = 8(- — x) as t — 0. We assume the Dirichlet boundary condition u(t,z) = 0V z € X
and Vt. The heat kernel ky: X'xX'x Rt — R is the unique solution of the heat equation; while heat
kernels can be defined on hyperbolic spaces and other exotic geometries, we restrict our exposition
to Euclidean spaces R, on which the heat kernel is defined as:

kga(x, 2, t) =

_ 1|2
exp (—W) . V2’ e R teRY (1)

(47t)?/>

For a compact X including R? the heat kernel admits the expansion ky(z,zt) =
oo e Mg ()i (x'), where A; and ¢; are the i-th eigenvalue and eigenvector of Ay. Fort ~ 0,
according to Varadhan’s lemma, the heat kernel approximates geodesic distances. Importantly for
our purposes, the Heat kernel is multi-scale: for a local domain with Dirichlet condition D, the
localized heat kernel kp(x, y,t) is a good approximation of ky (x, y, t) if either (i) D is arbitrarily
small and ¢ is small enough, or (ii) ¢ is for arbitrarily large and D is big enough. Formally,

Definition 1 (Grigor’yan, 2006; Sun et al., 2009) (i) For any smooth and relatively compact domain
D C X, limy_okp(z,y,t) = kx(z,y,t) (ii) For any t € RT and any x,y € D; localized heat
kernel kp, (z,y,t) < kp, (z,y,t) if D1 C Da. Moreover, if {D,,} is an expanding and exhausting
sequence Ufil D; =X and D;_1 C D;, then lim;_, kp, (x,y,t) = kx(x,y,t) for any t.

Heat kernels are also defined for graphs in terms of their Laplacian matrices. An undirected graph
is a pair G = (V, E), where V = (vy,...,v,),n = |V], is the set of vertices and £ C (V' x V)
the set of edges. The adjacency matrix of G is a n x n matrix A having A;; =1if (i,j) € E and
A;; =0 otherwise. The normalized graph Laplacian is the matrix £L=1— D-2AD" 2, where D
is the diagonal matrix in which entry D,; holds the degree of node i, i.e, D;; = Z;L=1 A;;. Since
the Laplacian matrix is symmetric, its eigenvectors ¢1, . . ., ¢, are real and orthonormal. Thus, it is
factorized as £ = PAP ", where A is a diagonal matrix with the sorted eigenvalues A\; < ... < Ay,
and @ is the orthonormal matrix ® = (¢4, . .., ¢, ) having the eigenvectors of £ as its columns. The
heat kernel on a graph is also given by the solution to the heat equation on a graph, which requires
an eigendecomposition of its Laplacian: H; = e 1€ = @~ AT =3 e ig,0.

A useful invariant of the heat kernel is the heat kernel trace hkty : X x Rg — ]Ra' , defined by
a diagonal restriction as hktx(t) = [, kx(z,z,t)dz = > ;2 e i or, in the discrete case,
hkte(t) = Tr(H;) = Y, e ™. Heat kernels traces (HKTs) have been successfully applied
to the analysis of 3D shapes (Sun et al., 2009) and graphs (Tsitsulin et al., 2018). The HKT
contains all the information in the graph’s spectrum, both local and global, as the eigenvalues \;
can be inferred therefrom. For example, if there are ¢ disconnected components in the graph, then
limy_y oo hkt 2 () = c.
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3.2 CONVERGENCE TO THE LAPLACE-BELTRAMI OPERATOR

An important property of graph Laplacians is that it is possible to construct a graph among points
sampled from a manifold X such that the spectral properties of its Laplacian resemble those of
the Laplace-Beltrami operator on &X'. Belkin and Niyogi (Belkin & Niyogi, 2002) proposed such a
construction, the point cloud Laplacian, which is used for dimensionality reduction in a technique
called Laplacian eigenmaps. Convergence to the LBO has been proven for various definitions of
the graph Laplacian, including the one we use (Belkin & Niyogi, 2007; Hein et al., 2007; Coifman
& Lafon, 2006; Ting et al., 2010). We recite the convergence results for the point cloud Laplacian
from Belkin & Niyogi (2007):

Theorem 1 Let )\f” and (bfL"Z be the it eigenvalue and eigenvector, respectively, of the point cloud
Laplacian L' ; let \; and ¢; be the i*" eigenvalue and eigenvector of the LBO A. Then, there exists
t, — O such that

. t
lim A" =\
n—o00 2 ¢

Jim [|o; - éifl, =0

Still, the point cloud Laplacian involves the creation of an O(nz) matrix; for the sake of scalability,
we use the k-nearest-neighbours (kKINN) graph by OR-construction (i.e., based on bidirectional kNN
relationships among points), whose Laplacian converges to the LBO for data with sufficiently high
intrinsic dimension (Ting et al., 2010). As for the choice of k, a random geometric kNN graph is
connected when k > logn/log 7 2~z 0.5139 log n (Balister et al., 2005); k = 5 yields connected graphs
for all sample sizes we tested.

3.3 SPECTRAL GROMOV-WASSERSTEIN DISTANCE

Even while it is a multi-scale metric on manifolds, the heat kernel can be spectrally approximated by
finite graphs constructed from points sampled from these manifolds. In order to construct a metric
between manifolds, Mémoli (2011) suggests an optimal-transport-theory-based “meta-distance”: a
spectral definition of the Gromov-Wasserstein distance between Riemannian manifolds based on
matching the heat kernels at all scales. The cost of matching a pair of points (z, ') on manifold M
to a pair of points (y,y’) on manifold NV at scale ¢ is given by their heat kernels k v, ky:

F(x,y,x', ylv t) = ‘kM(xa (E/, t) - k/\f(yayla t)| .

The distance between the manifolds is then defined in terms of the infimal measure coupling

dew (M, N) = inf sup e~ 20T 1T 22 (s o) s
H >0

where the infimum is sought over all measures y on M x N marginalizing to the standard

measures on M and A. For finite spaces, p is a doubly-stochastic matrix. This distance is

lower-bounded (Mémoli, 2011) in terms of the respective heat kernel traces as:

daw (M, N) > supe 20+ |hkt v (1) — hktp(2)] - )
t>0

This lower bound is the scaled L., distance between the heat trace signatures hkt, and hktas.

The scaling factor e~2(t+t™") fayors medium-scale differences, meaning that this lower bound is not
sensitive to local perturbations. The maximum of the scaling factor occurs at ¢ = 1, and more than
1 — 1078 of the function mass lies between ¢t = 0.1 and ¢ = 10.

3.4 HEAT TRACE ESTIMATION

Calculating the heat trace signature efficiently and accurately is a challenge on a large graph as it
involves computing a trace of a large matrix exponential, i.e. Tr(e~*<). A naive approach would
be to use an eigendecomposition exp(—tL) = ®exp(—tA)® T, which is infeasible for large n.
Recent work (Tsitsulin et al., 2018) suggested using either truncated Taylor expansion or linear
interpolation of the interloping eigenvalues, however, both techniques are quite coarse. To combine
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accuracy and speed, we use the Stochastic Lanczos Quadrature (SLQ) (Ubaru et al., 2017; Golub &
Meurant, 2009). This method combines the Hutchinson trace estimator (Hutchinson, 1989; Adams
et al., 2018) and the Lanczos algorithm for eigenvalues. We aim to estimate the trace of a matrix
function with a Hutchinson estimator:

Tr(£(£)) = By (v FLIV) = — 3 v] (L)v,, 3)
V=1

where the function of interest f(-) = exp(-) and v; are n,, random vectors drawn from a distribution
p(v) with zero mean and unit variance. A typical choice for p(v) is Rademacher or a standard
normal distribution. In practice, there is little difference, although in theory Rademacher has less
variance, but Gaussian requires less random vectors (Avron & Toledo, 2011).

To estimate the quadratic form v, f(L£)v; in (3) with a symmetric real-valued matrix £ and a
smooth function f, we plug in the eigendecomposition £ = ®AP ", rewrite the outcome as a
Riemann-Stieltjes integral and apply the m-point Gauss quadrature rule (Golub & Welsch, 1969a):

n b m
Vi FL)vi =V @F (0@ v = 3 f\)id = / FOdut) = Y wef @), @
j=1 @ k=1

where p1; = [@Tvy] ; and () is a piecewise constant function defined as follows

0, ift<a=M\,
[L(t) = Z;’:l /1,3, if A <t< A1
S kg, ifb=M\ <t
and 0y, are the quadrature’s nodes and wy, are the corresponding weights. We obtain wy, and 6, with
the m-step Lanczos algorithm (Golub & Meurant, 2009), which we describe succinctly.

Given the symmetric matrix £ and an arbitrary starting unit-vector qg, the m-step Lanczos
algorithm computes an n X m matrix Q = [qo,q1, .. .,qm—1] With orthogonal columns and an
m x m tridiagonal symmetric matrix T, such that Q" £Q = T. The columns of Q constitute an
orthonormal basis for the Krylov subspace K that spans vectors {qo, £qp, - . . , L',mflqo}; each q;
vector is given as a polynomial in £ applied to the initial vector qo: q; = p;(L£)qo. These Lanczos
polynomials are orthogonal with respect to the integral measure p(¢). As orthogonal polynomials
satisfy the three term recurrence relation, we obtain pi11 as a combination of p; and px_;. The
tridiagonal matrix storing the coefficients of such combinations, called the Jacobi matrix J, is
exactly the tridiagonal symmetric matrix T. A classic result tells us that the nodes 6; and the
weights wy, of the Gauss quadrature are the eigenvalues of T, A\, and the squared first components
of its normalized eigenvectors, T,f, respectively (see Golub & Welsch (1969b); Wilf (1962); Golub
& Meurant (2009)). Thereby, setting qg = v;, the estimate for the quadratic form becomes:

vaf([,)v, ~ ZT;?f()\k), Tk = UO,k = elTuk, /\k = Ak,k T = IJAUT7 (5)
k=1
Applying (5) over n, random vectors in the Hutchinson trace estimator (3) yields the SLQ estimate:
n Moy m L )
Tr(f(L)) = — . ML) | =T 6
Ut (; (k)" £ ( k)) ©

We derive error bounds for the estimator based on the Lanczos approximation of the matrix
exponential, and show that even a few Lanczos steps, i.e., m = 10, are sufficient for an accurate
approximation of the quadratic form. However, the trace estimation error is theoretically dominated
by the error of the Hutchinson estimator, e.g. for Gaussian p(v) the bound on the number of
samples to guarantee that the probability of the relative error exceeding e is at most & is 8¢ =2 In(2/4)
(Roosta-Khorasani & Ascher, 2015). Although, in practice, we observe performance much better
than the bound suggests. Hutchinson error implies nearing accuracy roughly 10~2 with n,, > 10k
random vectors, however, with as much as n,, = 100 the error is already 10~3. Thus, we use default
values of m = 10 and n,, = 100 in all experiments in Section 4. Please see Appendix A for full
derivations and figures.
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Figure 2: (a) IMD distances between language pairs for unaligned Wikipedia word embeddings and
(b) distances from the simple English wikipedia visualized for IMD, FID, and KID.

3.5 PUTTING IMD TOGETHER

We employ the heretofore described advances in differential geometry and numerical linear algebra
to create IMD (Multi-Scale Intrinsic Distance), a fast, intrinsic method to lower-bound the spectral
Gromov-Wasserstein distance between manifolds.

Given data samples in R?, we build a kNN graph G by OR-construction, such that its Laplacian
spectrum approximates the one of the Laplace-Beltrami operator of the underlying manifold (Ting
et al., 2010), and then compute hktg(t) = >, e ! ~ I'. We compare heat traces in the spirit of
Equation (2), i.e., |hktq, (t) — hktg, (¢)] for ¢ € (0.1,10) sampled from a logarithmically spaced
grid.

Constructing exact kNN graphs is an O(dn?) operation; however, approximation algorithms take
near-linear time (’)(dn1+“’) (Dong et al., 2011; Aumiiller et al., 2019). As we will see, in practice,
with approximate kNN graph construction (Dong et al., 2011), computational time is low while
result variance is similar to the exact case.

The m-step Lanczos algorithm on a sparse n x n kNN Laplacian £ with one starting vector has
O(knm) complexity, where kn is the number of nonzero elements in £. The symmetric tridiagonal
matrix eigendecomposition incurs an additional O(m logm) (Coakley & Rokhlin, 2013). We apply
this algorithm over n, starting vectors, yielding a complexity of O(n,(mlogm + kmn)), with
constant kK = 5 and m = 10 by default. In effect, IMD’s time complexity stands between those
of two common GAN evaluation methods: KID, which is O(dn?) and FID, which is O(d® + dn).
The time complexity of Geometry Score is unspecified in Khrulkov & Oseledets (2018), yet in
Section 4.6 we show that its runtime grows exponentially in sample size.

4 EXPERIMENTS

We evaluate IMD on the ability to compare intermediate representations of machine learning
models. For instance, in a recommender system we could detect whether a problem is related to the
representation or the the classifier in the end of a pipeline. In this section, we show the effectiveness
of our intrinsic measure on multiple tasks and show how our intrinsic distance can provide insights
beyond previously proposed extrinsic measures.

Summary of experiments. We examine the ability of IMD' to measure several aspects of difference
among data manifolds. We first consider a task from unsupervised machine translation with
unaligned word embeddings and show that IMD captures correlations among language kinship
(affinity or genealogical relationships). Second, we showcase how IMD handles data coming from
data sources of unequal dimensionalities. Third, we study how IMD highlights differences among
image data representations across random initializations and through training process of neural
networks.

' Our code is available open-source: https://github.com/imd-iclr/imd.
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4.1 COMPARING UNALIGNED LANGUAGE MANIFOLDS

The problem of unaligned representations is particularly severe in the domain of natural language
processing as the vocabulary is rarely comparable across different languages or even different
documents. We employ IMD to measure the relative closeness of pairs of languages based on
the word embeddings with different vocabularies. Figure 2 (a) shows a heatmap of pairwise IMD
scores. IMD detects similar languages (Slavic, Semitic, Romanic, etc.) despite the lack of ground
truth vocabulary alignment. On the other hand, Figure 11 in Appendix C shows that FID and KID,
are not able to distinguish the intrinsic language-specific structure in word embeddings. Detailed
description and setting of the experiment can be found in Appendix C.
i 1
0

Figure 3: Comparison of IMD and PIP loss on
word embeddings of different dimension. IMD
todetect subtle changes in the dimensionality.
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Comparing data having different
dimensionality is cumbersome, even when
representations are aligned. We juxtapose IMD
by PIP loss (Yin & Shen, 2018) which allows
the comparison of aligned representations
for word embeddings. To this end, we
measure IMD distance between English word
embeddings of varying dimensions. Figure 3
shows the heatmap of the scores between sets
of word vectors of different dimensionalities.
Closer dimensionalities have lower distance
scores for both metrics.  However, IMD
highlights better the increase in the size of
word vectors, e.g. word vectors of size 4 and 8 are clearly closer to each other than embeddings of
size 4 and 16 in terms of IMD, which is not true for PIP.

4.3 TRACKING THE EVOLUTION OF IMAGE MANIFOLDS

Next, we employ IMD to inspect the internal dynamics of neural networks. We investigate the
stability of output layer manifolds across random initializations. We train 10 instances of the
VGG-16 (Simonyan & Zisserman, 2015) network using different weight initializations on the
CIFAR-10 and CIFAR-100 datasets. We compare the average IMD scores across representations
in each network layer relative to the last layer. As Figure 4 (left) shows, for both CIFAR-10 and
CIFAR-100, the convolutional layers exhibit similar behavior; IMD shows that consequent layers
do not monotonically contribute to the separation of image representations, but start to do so after
initial feature extraction stage comprised of 4 convolutional blocks. A low variance across the 10
networks trained from different random initializations indicates stability in the network structure.
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2 CIFAR-100, VGG-16
= 60 Gl
2 400 |- B _ == CIFAR-10, VGG-16 >
2 o | S
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S _ 40 X e CIFAR-10, ResNet-20 §
= 200 [~ - N . CIFAR-100, ResNet-20 <
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Convolutional layer no. Epoch no.

Figure 4: (left) IMD score across convolutional layers of the VGG-16 network on CIFAR-10 and
CIFAR-100 datasets; (right) training progression in terms of accuracy (dotted) and IMD (solid) on
CIFAR-10 and CIFAR-100 datasets for VGG-16 and ResNet-20, with respect to VGG-16.
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Table 1: IMD agrees with KID and FID across varying datasets for GAN evaluation.
MNIST FashionMNIST CIFAR10 CelebA
Metric WGAN WGAN-GP WGAN WGAN-GP WGAN WGAN-GP WGAN WGAN-GP
IMD 5774+ 10.77+ 11814+ 1345+ 1810+ 10.84+ 1011+ 2.84 +

0.47 0.42 0.52 0.54 0.36 0.42 0.33 0.31
KID x10°47.26 + 5.53+ 11993+ 2549+ 9389+ 5959+ 21728+ 92.71+

0.07 0.03 0.14 0.07 0.09 0.09 0.14 0.08
FID 31.75+ 895+ 15244+ 3531+ 10143+ 80.65+ 20563+ 85.55=+

0.07 0.03 0.12 0.07 0.09 0.09 0.09 0.08

We now examine the last network layers during training with different initializations. Figure 4
(right) plots the VGG16 validation errors and IMD scores relative to the final layer representations
of two pretrained networks, VGG16 itself with last layer dimension d = 512 and ResNet-20 with
d = 64 and ~50 times less parameters. We observe that even in such unaligned spaces, IMD
correctly identifies the convergence point of the networks. Surprisingly, we find that, in terms of
IMD, VGG-16 representations progress towards not only the VGG-16 final layer, but the ResNet-20
final layer representation as well; this result suggests that these networks of distinct architectures
share similar final structures.

4.4 EVALUATING GENERATIVE MODELS

We now move on to apply IMD to evaluation of
generative models. First, we evaluate the sensitivity of
IMD, FID, and KID to simple image transformations
as a proxy to more intricate artifacts of modern
generative models. We progressively blur images
from the CIFAR-10 training set, and measure the
distance to the original data manifold, averaging
outcomes over 100 subsamples of 10k images each.
To enable comparison across methods, we normalize
each distance measure such that the distance between
CIFAR-10 and MNIST is 1. Figure 5 reports the
results at different levels o of Gaussian blur. We
additionally report the normalized distance to the
CIFAR-100 training set (dashed lines =.-7=.Z). FID and
KID quickly drift away from the original distribution Figure 5: FID, KID and IMD on the
and match MNIST, a dataset of a completely different CIFAR-10 dataset with Gaussian blur.

nature. Contrariwise, IMD is more robust to noise and follows the datasets structure, as the
relationships between objects remain mostly unaffected on low blur levels. Moreover, with both FID
and KID, low noise (0 = 1) applied to CIFAR-10 suffices to exceed the distance of CIFAR-100,
which is similar to CIFAR-10. IMD is much more robust, exceeding that distance only with o = 2.

Metric relative to MNIST

Gauss.i-an blur level o

Next, we turn our attention to the sample-based
evaluation of generative models. We then
train the WGAN (Arjovsky et al., 2017) and
WGAN-GP (Gulrajani et al., 2017) models on four
datasets: MNIST, FashionMNIST, CIFAR10 and
CelebA. We sample 10k samples, Y, from each
GAN. We then uniformly subsample 10k images from
the corresponding original dataset, X, and compute
the IMD, KID and FID scores between X and Y. .
Table 1 reports the average measure and its 99% 10 5 e T —
confidence interval across 100 runs. IMD, as well as 10 10 10
both FID and KID, reflect the fact that WGAN-GP ) t ]

is a more expressive model. We provide details Figure 6: Plotting the normalized heat
on architecture, training, and generated samples trace allows interpretation of medium- and
in Appendix C. Additionally, in Appendix C we g!obal—spale structure of datasets. Best
demonstrate superiority of IMD on synthetic data. viewed in color.
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Figure 7: Stability and scalability experiment: (left) stability of FID, KID and IMD wrt. sample size
on CIFAR-10 and CIFAR-100 dataset; (right) scalability of FID, KID and IMD wrt. sample size on
synthetic datasets.

4.5 INTERPRETING IMD

To understand how IMD operates, we investigate the behavior of heat kernel traces of different
datasets that are normalized by a null model. Tsitsulin et al. (2018) proposed a normalization by the
heat kernel trace of an empty graph, which amounts to taking the average, rather than the sum, of
the original heat kernel diagonal. However, this normalization is not an appropriate null model as it
ignores graph connectivity. We propose a heat kernel normalization by the expected heat kernel of
an Erd6s-Rényi graph (further details in the Appendix D).

Figure 6 depicts the obtained normalized hkt, for all datasets we work with. We average results over
100 subsamples of 10k images each. For ¢ = 10, i.e., at a medium scale, CelebA is most different

from the random graph, while for large-scale ¢ values, which capture global community structure,

%t"(t) reflects the approximate number of clusters in the data. Surprisingly, CIFAR-100 comes

close to CIFAR-10 for large ¢ values; we have found that this is due to the fact that the pre-trained
Inception network does not separate the CIFAR-100 data classes well enough. We conclude that the
heat kernel trace is interpretable if we normalize it with an appropriate null model.

4.6 VERIFYING STABILITY AND SCALABILITY OF IMD

In addition to the complexity analysis in Section 3.5, we assess the scaling and sample stability
of IMD. Since IMD, like FID, is a lower bound to an optimal transport-based metric, we cannot
hope for an unbiased estimator. However, we empirically verify, in Figure 7 (left), that IMD does
not diverge too much with increased sample size. Most remarkably, we observe that IMD with
approximate kNN (Dong et al., 2011) does not induce additional variance, while it diverges slightly
further than the exact version as the number of samples grows.

In terms of scalability, Figure 7 (right) shows that the theoretical complexity is supported in
practice. Using approximate kNN, we break the O(n?) performance of KID. FID’s time complexity
appears constant, as its runtime is dominated by the O(d?) matrix square root operation. Geometry
score (GS) fails to perform scalably, as its runtime grows exponentially. Due to this prohibitive
computational cost, we eschew other comparison with GS. Furthermore, as IMD distance is
computed through a low-dimensional heat trace representation of the manifold, we can store HKT
for future comparisons, thereby enhancing performance in the case of many-to-many comparisons.

5 DISCUSSION AND FUTURE WORK

We introduced IMD, a geometry-grounded, first-of-its-kind intrinsic multi-scale method for
comparing unaligned manifolds, which we approximate efficiently IMD with guarantees, utilizing
the Stochastic Lanczos Quadrature. We have shown the expressiveness of IMD in quantifying the
change of data representations in NLP and image processing, evaluating generative models, and in
the study of neural network representations. Since IMD allows comparing diverse manifolds, its
applicability is not limited to the tasks we have evaluated, while it paves the way to the development
of even more expressive techniques founded on geometric insights.
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APPENDIX

A TRACE ESTIMATION ERROR BOUNDS

We will use the error of the Lanczos approximation of the action of the matrix exponential
f(L)v =exp t* v to estimate the error of the trace. We first rewrite quadratic form under
summation in the trace approximation to a convenient form,

L)V~ kaf Ar) Z[e1 W’ fO) =e] Uf(A)U e, =e] f(T)er.  (7)

k=0

Because the Krylov subspace /C,,, (L, v) is built on top of vector v with Q as an orthogonal basis of
Km(L,v),ie.qo =vandv L q; fori € (1,...,m — 1), the following holds

vif(L)v v Qf(T)er =ef f(T)es (8)

Thus, the error in quadratic form estimate v f(L£)v is exactly the error of Lanczos approximation
f(L)v = Qf(T)e;. To obtain the error bounds, we use the Theorem 2 in Hochbruck & Lubich
(1997), which we recite below.

TheoremZ Let L be a real symmetric positive semi-definite matrix with eigenvalues in the

mterval A Then the error in the m-step Lanczos appraxlmanon of exp~t£v, e
= IIEXp Quexp™* ™
106*“*/ (5pt) Vapt <m < 2pt (9a)
€ S t\m
" 10(pt)7167”t(%> . m>2pt (9b)

Since v is a unit vector, thanks to Cauchy—Bunyakovsky—Schwarz inequality, we can upper-bound
the error of the quadratlc form approximation by the error of the exp~*4 v approximation, i.e.
VT f(L)v—e]/Uf(A)UTe | < |exp v —Qexp Tme| = epn.

Following the argumentation in Ubaru et al. (2017), we obtain a condition on the number of Lanczos
steps m by setting €,, < § finin()), where fr,i,(A) is the minimum value of f on [Ain, Anaz)-
We now derive the absolute error between the Hutchinson estimate of Equation (3) and the SLQ of
Equation (6):

Ny Ny

nv ;va Zeirf T(
nT,Z
< ;;Emnema

where T(%) is the tridiagonal matrix obtained with Lanczos algorithm with starting vector v;.

Tra, f(£) = T| < new < 2 fruin(V) < S TH(F(£)), (10)

Tr, (£(£)) ~T|

IN

Tf —elf( )

Finally, we formulate SLQ as an (¢, ¢) estimator,

1= 6 < Pr || Te(f(£) — Tra, (£(£))] <

€

2

TH(f(£))

< Pr || T(£(£) = Ton, (F(0)| + | Tra, (£(£)) = T| < 5| Te(r ()| + 5| Te(s(£))]

< Pr || Te(£(£)) - T| < | Te(£(£)

)
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For the normalized Laplacian £, the minimum eigenvalue is 0 and f,in(0) = exp(0) = 1, hence
€ém < 35, and the eigenvalue interval has p = 0.5. We can thus derive the appropriate number of

Lanczos steps m to achieve error e,

206—m2/(245t)’
€<

m

Figure 8 shows the tightness of the bound for the
approximation of the matrix exponential action on
vector v, €, = || exp(—tL) — Q,, exp(—tT,)eq]|-
We can see that for most of the temperatures ¢, very
few Lanczos steps m are sufficient, i.e. we can set
m = 10. However, the error from the Hutchinson
estimator dominates the overall error. Figure 9 shows
the error of trace estimation does not change with
m and for t = 0.1 is around 1073, In case of a
Rademacher p(v), the bound on the number of random
samples is n, > 5 log(2/§) (Roosta-Khorasani &
Ascher, 2015). Employing 10k vectors results in the
error bound of roughly 10~2. In practice, we observe
the performance much better than given by the bound,
see Figure 9.

One particular benefit of small m value is that we
do not have to worry about the orthogonality loss
in the Lanczos algorithm which often undermines
its convergence. Since we do only a few Lanczos
iterations, the rounding errors hardly accumulate
causing little burden in terms of orthogonality loss
between the basis vectors of the Krylov subspace.

A0t~ 1e—05t (0.5615)7”’

Vat<m <t (11a)
m>t (11b)

=t = 0.1 bt =5.05 =@t = 10.0
t = 2.575 —4—t = 7.525

_
9
L
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9
3

—
o
|

—

w

Matvec approximation error, €.,

10719

Number of Lanczos steps, m

Figure 8:  Errors (solid) and error
bounds (dotted) for the approximation of
matrix exponential action with varying
temperature ¢.
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Figure 9: Trace estimation errors (solid) and error bounds (dotted) for: (left) the number of Lanczos
steps m with fixed number of random vectors n,, = 100; (right) the number of random vectors n,,
in Hutchinson estimator with fixed number of Lanczos steps m = 10. Lines correspond to varying

temperatures t.
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B VARIANCE REDUCTION

We apply the variance reduction technique from Anonymous (2019). The idea is to use Taylor
expansion to substitute a part of the trace estimate with its easily computed precise value,

t2 2 t2 2
Tr(exp(—tL)) = slq{exp(—tﬁ) —(I—-tL+ £ )} +Tr(I—tL+ 2L ) (12)
2 2 20 112
= slq[exp(—t[,) —(I—-tL+ ! )] +n+Tr(—tL) + % (13)
2L L]z
= slq[exp(—tﬁ)} —l—slq[tﬁ} - slq[T)} —tn—&-T, (14)
where we use the fact that || £|| = 1/ Tr(£ " £) and that the trace of normalized Laplacian is equal

to n. It does reduce the variance of the trace estimate for smaller temperatures ¢t < 1.

To obtain this advantage over the whole range of ¢, we utilize the following variance reduction form:
Tr(exp(—tL)) = slq[exp(—tﬁ) -(I- at[,)} +n(1 — at), (15)

where there exists an alpha that is optimal for every ¢, namely setting & = 1/ exp(t). We can see
the variance reduction that comes from this procedure in the Figure 12.

C EXPERIMENTS DISCUSSION

Here we include additional results that did not find their way to the main paper body.

C.1 FID AND KID FAIL TO FIND STRUCTURE IN UNALIGNED CORPORA

Figure 11 shows the matrix of distances for FID and KID aligned and colored in the same way as
Figure 2 (a). FID and KID can not find meaningful structure in the data in the same way as IMD as
they rely on extrinsic data properties.

C.2 WORD EMBEDDING EXPERIMENT DETAILS.

We use gensim (Rehiifek & Sojka, 2010) to learn word vectors
on the latest Wikipedia corpus snapshot on 16 languages:
Polish, Russian, Greek, Hungarian, Turkish, Arabic, Hebrew,
English, Simple English, Swedish, German, Spanish, Dutch,
Portugese, Vietnamese, and Waray-Waray. We then compute
FID, KID and IMD scores on all the pairs, we average 100 metric  good GAN bad GAN

runs for the heatmap figures 2. For the different dimensionality ~FID 0.00529 +  0.00627 +
experiment, we learn vectors on the English Wikipedia of sizes 0.00070 0.00076
equal to the powers of 2 from 4 to 512. After that we compute  KID 0.00172 = 0.00259 +

IMD and covariance error, i.e. normalized PIP loss, between 0.00073 0.00077
. . IMD 9.02059 + 14.0732 +
the pairs of sizes to generate the heatmap figure 3. 1.5195 21706

C.3 VANILLA GAN ON TORUS Figure 10: Bad GAN produces

samples inside the torus hole
(red). FID and KID cannot detect
such behaviour.

We provide an additional experiment clearly showing the case
where IMD is superior to its main competitors, FID and KID.
We train two vanilla GANSs on the points of a 3D torus. The bad
GAN fails to learn the topology of the dataset it tries to mimic, yet previous metrics cannot detect
this fact. IMD, on the contrary, can tell the difference. Figure 10 shows the points sampled from the
GAN with some of the points inside the hole. KID and FID confidence intervals overlap for good
and bad GANs, meanwhile IMD scores are clearly distinct from each other.

C.4 NORMALIZATION DETAILS

For the purpose of normalizing IMD, we need to approximate that graph’s eigenvalues. Coja-Oghlan
(2007) proved that \; < 1 —ed /2 < Xy < A, < 14 ed /2 for the core of the graph for some
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Figure 11: FID and KID are not able to capture language affinity from unaligned word2vec
embeddings.

constant c. We have empirically found that ¢ = 2 provides a tight approximation for random graphs.
That coincides with the analysis of Chung et al. (2004), who proved that \,, = (1 + o(1))2d />
if dpin > Vd log3 n even though in our case dy,i, = d = k. We thus estimate the spectrum of
a random Erd@s-Rényi graph as growing linearly between A\; = 1 — 2d/? and \, = 1+ 2d /2,
which corresponds to the underlying manifold being two-dimensional (Tsitsulin et al., 2018).

D EXPERIMENTAL SETTINGS

We train all our models on a single server with
NVIDIA V100 GPU with 16Gb memory and 2 x 20
core Intel E5-2698 v4 CPU. For the experiment
summarized in Table 1 in the Section 4.1 we
train WGAN and WGAN-GP models on 4 datasets:
MNIST, FashionMNIST, CIFAR10 and CelebA and
sample 10k samples, Y, from each of the GANs. We
uniformly subsample 10k images from the original —m— SLQ w/ variance reduction
datasets, X, and compute the IMD, KID and FID E T T
scores between X and Y. We report the mean as well 10° 10t
as the 99% confidence interval across 100 runs. Temperature, ¢

—
o
L

—_
T
I
\\Hum LURRARLY B URRRRALT

—
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,_.
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w

~——o— original SLQ

Standard variation, o

H
9
1

Below we report the architectures, hyperparameters
and generated samples of the models used for the
experiments. We train each of the GANs for 200 epochs on MNIST, FMNIST and CIFAR-10,
and for 50 epochs on CelebA dataset. For WGAN we use RMSprop optimizer with learning rate of
5x107°. For WGAN-GP we use Adam optimizer with learning rate of 10™%, 5, = 0.9, 82 = 0.999.

Figure 12: Variance of the trace estimate.

E GRAPH EXAMPLE

Figure 13 provides visual proof that the 5NN graph
reflects the underlying manifold structure of the
CIFAR-10 dataset. Clusters in the graph exactly
correspond to CIFAR-10 classes.

Figure 13: CIFAR-10 graph colored with
true class labels.
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Figure 17: CelebA samples (left: WGAN, right: WGAN-GP)
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MNIST WGAN
ConvGenerator (
(latent_to_features): Sequential (
(0) : Linear (in_features=100, out_features=512, bias=True)
(1) : ReLU()
)
(features_to_image) : Sequential (
(0) : ConvTranspose2d (128, 64, kernel_size=(4, 4),
stride=(2, 2), padding=(1, 1))
(1) : ReLU()
(2) : BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True)
(3) : ConvTranspose2d (64, 32, kernel_size=(4, 4),
stride=(2, 2), padding=(1, 1))
(4) : ReLU()
(5) : BatchNorm2d (32, eps=1le-05, momentum=0.1, affine=True)
(6) : ConvTranspose2d (32, 16, kernel_size=(4, 4),
stride=(2, 2), padding=(1, 1))
(7): ReLU()

(8) : BatchNorm2d (16, eps=1le-05, momentum=0.1,

stride=(2, 2), padding=(1, 1))
(10) : Sigmoid()

)

ConvDiscriminator (
(image_to_features): Sequential (

LeakyReLU (negative_slope=0.2)
LeakyReLU (negative_slope=0.2)
LeakyReLU (negative_slope=0.2)
Sigmoid ()

ifeatures_to_prob): Sequential (

(0) : Linear (in_features=512, out_features=1,
(1) : Sigmoid()

18

)

)

)t

): Conv2d (32, 64, kernel_size=(4, 4), stride=(2, 2),
) .

): Conv2d (64, 128, kernel_size=(4, 4), stride=(2,

)

affine=True)
(9) : ConvTranspose2d(l6, 1, kernel_size=(4, 4),

Conv2d (16, 32, kernel_size=(4, 4), stride=(2, 2),

bias=True)

2),

(0): Conv2d(l, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1,

padding= (1,

padding= (1,

padding=(1,

1))
1))
1))

1))
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MNIST WGAN-GP, FMNIST (WGAN, WGAN-GP)

MNISTGenerator (

(blockl): Sequential (
(0) : ConvTranspose2d (256, 128, kernel_size=(5, 5), stride=(1, 1))
(1) : ReLU(inplace)

)

(block2): Sequential (
(0) : ConvTranspose2d (128, 64, kernel_size=(5, 5), stride=(1, 1))
(1) : ReLU(inplace)

)

(deconv_out) : ConvTIranspose2d (64, 1, kernel_size=(8, 8), stride=(2, 2))
(preprocess) : Sequential (
(0) : Linear (in_features=128, out_features=4096, bias=True)

(1) : ReLU(inplace)
)
(sigmoid) : Sigmoid()
)

MNISTDiscriminator (

(main) : Sequential (
(0): Conv2d(l, 64, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(1) : ReLU(inplace)
(2): Conv2d (64, 128, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(3): ReLU(inplace)
(4): Conv2d (128, 256, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(5): ReLU(inplace)

)

(output) : Linear (in_features=4096, out_features=1, bias=True)

CIFAR-10 (WGAN, WGAN-GP)

CIFARGenerator (
(preprocess) : Sequential (
(0) : Linear (in_features=128, out_features=4096, bias=True)

(1) : BatchNormld (4096, eps=le-05, momentum=0.1l, affine=True)
(2) : ReLU(inplace)
)
(blockl): Sequential (
(0) : ConvTranspose2d (256, 128, kernel_size=(2, 2), stride=(2, 2))
(1) : BatchNorm2d (128, eps=le-05, momentum=0.1, affine=True)
(2) : ReLU(inplace)
)
(block?2): Sequential (
(0) : ConvTranspose2d (128, 64, kernel_size=(2, 2), stride=(2, 2))
(1) : BatchNorm2d (64, eps=1le-05, momentum=0.1, affine=True)
(2) : RelLU(inplace)
)
(deconv_out) : ConvTranspose2d (64, 3, kernel_size=(2, 2), stride=(2, 2))
(tanh) : Tanh ()
)

CIFARDiscriminator (
(main) : Sequential (
(0): Conv2d (3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1) : LeakyReLU (negative_slope=0.01)
(2): Conv2d (64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(3) : LeakyReLU (negative_slope=0.01)
(4): Conv2d (128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(5) : LeakyReLU (negative_slope=0.01)
)

(linear): Linear (in_features=4096, out_features=1, bias=True)
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CelebA (WGAN, WGAN-GP)

CelebaGenerator (
(preprocess) : Sequential (
(0) : Linear (in_features=128, out_features=8192, bias=True)
(1) : BatchNormld (8192, eps=1le-05, momentum=0.1, affine=True)
(2) : ReLU(inplace)
)
(blockl): Sequential (
(0) : ConvTranspose2d (512, 256, kernel_size=(5, 5), stride=(2, 2),
padding=(2, 2), output_padding=(1, 1), bias=False)
(1) : BatchNorm2d (256, eps=le-05, momentum=0.1, affine=True)
(2) : RelLU(inplace)
)
(block?2): Sequential (
(0) : ConvTranspose2d (256, 128, kernel_size=(5, 5), stride=(2, 2),
padding=(2, 2), output_padding=(1, 1), bias=False)
(1) : BatchNorm2d (128, eps=le-05, momentum=0.1, affine=True)
(2) : ReLU(inplace)
)
(block3): Sequential (
(0) : ConvTranspose2d (128, 64, kernel_size=(5, 5), stride=(2, 2),
padding=(2, 2), output_padding=(1, 1), bias=False)
(1) : BatchNorm2d (64, eps=le-05, momentum=0.1, affine=True)
(2) : ReLU(inplace)
)
(deconv_out) : ConvTranspose2d (64, 3, kernel_size=(5, 5), stride=(2, 2),
padding=(2, 2), output_padding=(1, 1))
(tanh) : Tanh ()
)

CelebaDiscriminator (
(main) : Sequential (
(0): Conv2d (3, 64, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))

(1) : LeakyReLU (negative_slope=0.01)

(2) Conv2d (64, 128, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(3) : LeakyReLU (negative_slope=0.01)

(4): Conv2d (128, 256, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(5) : LeakyReLU (negative_slope=0.01)

(6) Conv2d (256, 512, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(7) : LeakyReLU (negative_slope=0.01)

(8) Conv2d (512, 1, kernel_size=(4, 4), stride=(1, 1))
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