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ABSTRACT

This paper introduces a new method to discover mislabeled training samples and
to mitigate their impact on the training process of deep networks. At the heart of
our algorithm lies the Area Under the Loss (AUL) statistic, which can be easily
computed for each sample in the training set. We show that the AUL reliably re-
veals differences in training dynamics between (clean) samples that benefit from
generalization and (mislabeled) samples that need to be “memorized”. We demon-
strate that the estimated AUL score conditioned on clean vs. noisy is approxi-
mately Gaussian distributed and can be well estimated with a simple Gaussian
Mixture Model (GMM). The resulting GMM provides us with mixing coefficients
that reveal the percentage of mislabeled samples in a data set as well as probability
estimates that each individual training sample is mislabeled. We show that these
probability estimates can be used to down-weight suspicious training samples and
successfully alleviate the damaging impact of label noise. We demonstrate on the
CIFAR10/100 datasets that our proposed approach is significantly more accurate
and consistent across model architectures than all prior work.

1 INTRODUCTION

The success of supervised machine learning is inherently dependent on the reliability of the labels in
the training data. Most algorithms assume that the training labels are clean and can be trusted blindly.
However, creating real-world data sets that do not suffer from substantial label noise is extremely
challenging. Human annotators, especially on crowdsourced platforms, can be prone to making
labeling mistakes. “Weakly-labeled” datasets (Xiao et al., 2015; Joulin et al., 2016; Li et al., 2017a),
which collect labels through proxy variables or web scraping, are especially likely to mislabeled
samples. In fact, even the celebrated MNIST (LeCun & Cortes, 2005) and ImageNet (Deng et al.,
2009) data sets famously contain multiple mislabeled images (see Figure 1 for suspicious examples
detected by our proposed method). In practice, it is often too costly to perform manual curation or
quality control to remove such examples on large datasets.

In this paper we develop a framework that provides multiple ways to handle label noise. Our
method exploits the recent paradigm of training deep neural networks via stochastic gradient de-
scent (SGD) (Huang et al., 2019; He et al., 2016). These overparameterized networks can achieve
zero training error even when labels are assigned randomly (Zhang et al., 2017) — essentially mem-
orizing the entire data set. Contrary to classical machine learning wisdom, subsequent empirical
and theoretical analyses (Arpit et al., 2017; Allen-Zhu et al., 2019; Arora et al., 2019) show that de-
spite their capacity to overfit, these models can achieve impressive generalization performance. The
implicit regularization of SGD permits memorization only if it is necessary to classify a particular
training point correctly. We refer to this (latent) variable as the memorization need of a sample.

Although prior works often attempt to detect label noise through various methods involving valida-
tion loss on rotating hold-out sets (Chen et al., 2019), training auxiliary neural networks (Xiao et al.,
2015; Jiang et al., 2017), or meta-learning (Ren et al., 2018), we argue that the model’s training
dynamics can be far more revealing. For example, data points with high memorization need will
exhibit noticeably different loss trajectories than those with low memorization need (see Figure 2).

We capture these differences in loss trajectories by introducing a simple, informative training statis-
tic: the Area Under the Loss Curve (AUL). As its name suggests, the AUL can be trivially computed
for a whole training set or any single training sample. It smooths the loss trajectory across all train-
ing epochs, capturing the general learning behavior of the samples for which it is computed. We
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ImageNet-100 High AUL ImagesMNIST: High AUL Images

Figure 1: Images from MNIST (left) and the first 100 classes of ImageNet (right) with the largest
Area Under the Loss Curve (AUL). The high-AUL images are mislabeled or extremely ambiguous.
MNIST AULs are from a LeNet model and ImageNet AULs are from a DenseNet-121 model.

observe that in the presence of label noise, the distribution of AUL scores tends to be bimodal and
can be estimated with a 1-dimensional, 2-component Gaussian mixture model (GMM). This pro-
vides us with three useful ways to manage label noise: a) the mixing coefficients naturally estimate
the fraction of noisy samples in the training data set; b) the membership likelihood of the higher-
mean Gaussian estimates the probability that a sample is mislabeled; c) the clean-label probabilities
can be used to weight samples in order to mitigate the influence of label noise in training.

Despite its compelling simplicity (the AUL score and GMM fit require only a few lines of Python),
it is currently by far the most reliable and accurate estimator of label noise. We evaluate our method
on standard benchmark datasets with 2 models of synthetic label uncertainty. We demonstrate em-
pirically that our method well-approximates the overall percentage of noisy data and detects mis-
labeled points with high recall across a wide range of noise levels. Furthermore, we use AUL to
achieve state-of-the-art results of 11.1% and 40.2% classification error with 40% class-dependent
label noise on CIFAR10 and CIFAR100, respectively. Finally, we show that the AUL statistic is
consistent across network architectures and training runs.

2 RELATED WORK

Learning with Weak or Noisy Labels. One popular approach to mitigate the effects of label noise
is to design more robust training objectives. Zhang & Sabuncu (2018) propose a novel loss function
by generalizing the cross entropy loss. Others interpolate target labels with predicted labels (Reed
et al., 2014; Ma et al., 2018) or modify the loss term with an estimated noise transition matrix
(Sukhbaatar et al., 2015; Patrini et al., 2016; Hendrycks et al., 2018). Li et al. (2017b) train a network
on a small set of trusted data and guide learning through knowledge distillation. Another line of
work either reweights or filters training samples to discourage learning from mislabeled examples.
Attempted metrics to select training data includes training loss (Han et al., 2018; Shen & Sanghavi,
2019), test/validation loss (Chen et al., 2019), and gradient information on clean samples (Ren et al.,
2018). MentorNet (Jiang et al., 2017) learns a meta-network to output example weights. Malach &
Shalev-Shwartz (2017) train two networks and identify examples with prediction discrepancies. Our
work also mitigates the effects of mislabeled samples through sample weights; however, in contrast
to most prior work we extract these weights from the training dynamics.

Analysis of Neural Network Training. Recently, Neyshabur et al. (2019) and Allen-Zhu et al.
(2019) both bound the generalization error of overparameterized neural networks assuming uncor-
rupted labels. Another line of work analyzes the training dynamics of SGD under various assump-
tions on the loss and network architecture (Mandt et al., 2017; Zou et al., 2019; Li & Liang, 2018).
Several recent works attempt to explain the observation that deep networks can overfit to random
training labels (Zhang et al., 2017). For example, Arpit et al. (2017) measure the gradient norms
across epochs and empirically show that the number of clean data points with high loss sensitivity
decreases throughout training. Arora et al. (2019) prove generalization bounds and convergence
rates of GD for two-layer ReLU networks as a function of the training data and labels. Other recent
papers prove that GD combined with either early stopping (Li et al., 2019) or regularization (Hu
et al., 2019) generalizes robustly in the presence of label noise. These analyses provide both the-
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Figure 2: A comparison of training loss and training AUL as proxies for identifying mislabeled
samples. Top: Histograms of training sample loss over the course of training. The distributions for
clean and mislabeled samples are very separable at the beginning of training, but become less sep-
arable towards the end of training. Bottom: Histograms of training sample AUL. The distributions
for clean and mislabeled samples remain separable even after the network has converged.

oretical and empirical evidence that deep networks follow a two-stage training procedure: models
first learn generalizable parameters on the clean data before memorizing the noisy samples.

3 THE LOSS CURVE AND MEMORIZATION NEED

In this section we demonstrate that training loss dynamics can be used to identify data points with
high memorization need. We generate classification datasets with various amounts of memorization
need by changing the labels of a subset of data points. We then introduce a metric – Area Under
the Loss Curve (AUL) – to identify these mislabeled (i.e. high memorization need) points. The
AUL metric exhibits several desirable properties: high detection accuracy, stability over the course
of training, and invariance to model architecture.

Rate of loss reduction indicates memorization need. To illustrate the training dynamics of high
memorization need data, we train a ResNet-20 on the CIFAR10 dataset where 40% of the training
labels have been replaced with random labels. Following standard practice Huang et al. (2017), we
use data augmentation, which is why the training loss does not diminish to zero for all samples.
The learning rate is initialized to 0.1 and reduced by a factor of 10 at epochs 150 and 225. Since
there is no relation between the incorrect labels and their corresponding images, these data points by
design have a high memorization need. In Figure 2 (top) we plot histograms of the training loss at
various stages of training for both the correctly and incorrectly labeled data points. We make several
observations. First, after the network has converged (epoch 300, top right histogram), most data
points (both correctly and incorrectly labeled) have low training loss. This result is consistent with
the observations of Zhang et al. (2017), suggesting that the network is memorizing these incorrectly
labeled points. More notably however are the loss curves at earlier stages of training. At 75 and 150
epochs (top middle-left and top middle histograms) the training loss for mislabeled points is much
higher than that of the correctly labeled points. In fact, the incorrectly labeled points tend to have
a larger loss than at the beginning of training (epoch 1, top left histogram). Consistent with Arpit
et al. (2017); Arora et al. (2019); Li et al. (2019), this suggests that although all points achieve low
loss, samples with high memorization need require more training iterations to achieve low loss.

Capturing rate of loss change through AUL. Given that loss dynamics are indicative of the
memorization need, our goal is to capture this signal with a robust metric. One challenge is that loss
curves for individual samples are rather noisy as a result of stochastic optimization. In Figure 3 (left)
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Figure 3: Left: Loss trajectories over epochs for a single clean sample and a single mislabeled
example (randomly selected). On average, the clean sample has a lower loss than the mislabeled
example. However, the loss decreases over time for both examples, and the trajectories are noisy
and non-monotonic. Right: AUL trajectory for the same examples. Integrating loss over training
time reduces trajectory noise, making the samples’ different learning dynamics more separable.
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Figure 4: Distribution of AUL (CIFAR10, 40% label noise) computed on ResNets and DenseNets
of different depth. The modes of the distribution are consistent across networks.

we plot loss curves for two example training points – one clean and one mislabeled. The variance
of the loss is quite high, and there are several training epochs where the mislabeled point achieves
lower loss than the correctly labeled point. The second challenge is that training loss becomes less
indicative of memorization need in later epochs. In Figure 2 we observe that all samples have low
training loss by epoch 300. To assess the discriminating ability of the loss, we compute the Area
under the ROC Curve (AUC) at various training stages. Although the final training loss still separates
clean and mislabeled samples with an AUC of 81%, it is far less separable than at earlier epochs. In
other words, the signal in the training loss varies throughout and becomes weaker over time.

One simple way to improve the signal to noise ratio is to integrate training loss over time. As seen
in Figure 3, the losses of correctly-labeled samples decay early during training while the mislabeled
samples’ losses do not decay until later epochs. Therefore, clean samples will in expectation have
a lower loss than mislabeled samples at any given epoch. We formalize this intuition in a metric
which we refer to as Area Under the Loss Curve, or AUL. Formally, for a given sample (x, y),

AULx,y =

T∑
i=1

L (φi(x), y) ,

where T is the total number of epochs, L (·, ·) is the loss function, and φi is the model at epoch i. In
Figure 3 (center, right) we observe that the AUL dynamics are far less noisy than loss dynamics. The
clean sample achieves a lower AUL than the mislabeld sample at every epoch. Moreover, the curves
remain separable even after the loss signal decays in later epochs. Figure 2 (bottom row) shows the
AUL histograms of clean and mislabeled samples at several stages of training. The AUC score of
the AUL is 94% at epoch 75 and remains this high through epoch 300. This contrasts with the loss,
which reaches its best predictive accuracy at epoch 75 (AUC=0.91) and decreases thereafter. While
AUL remains a separable metric throughout the whole training cycle (including learning rate drops),
in practice we find it sufficient to compute the AUL before the first scheduled learning rate drop.

Stability and consistency of AUL and training dynamics. Unlike test-time predictions, which
vary with network architecture and even with network initialization, training dynamics are relatively
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Figure 5: Pearson’s correlation of AUL and other metrics across various network architectures
(RN=ResNet, DN=DenseNet) after 150 epochs. AUL produces a very consistent ranking of the
training data. Training loss produces less consistent rankings. Furthermore, the loss on held-out
data points (from the test set) is also much less correlated across networks than AUL.

consistent across networks. In Figure 4 we plot the AUL distribution after training ResNet and
DenseNet models of various depth (up to the first learning rate drop). Each network is trained on the
CIFAR10 dataset with standard data augmentation, where the same 40% of samples are mislabeled.
The AUL distributions are remarkably similar for networks of different depths. The modes are more
sharply peaked for deeper networks, yet the modes are around roughly the same AUL values. To
further demonstrate the consistency of training dynamics, we compute the Pearson’s correlation
coefficient of the dataset’s AUL scores computed between different network architectures (Figure 5,
left). Most pairs of networks achieve a correlation of 0.98 or 0.99. These results suggest that the
AUL metric captures properties that are dataset-dependent rather than model-dependent.

Conversely, the testing predictions of different models are less correlated than training dynamics.
In Figure 5 (middle left) we measure the inter-network correlation of loss validation set samples.
We average each sample’s loss over all training epochs which – similarly to AUL – reduces the
impact of noise from any one epoch. The averaged validation loss achieves correlations between
0.8 and 0.95. While this is still a high correlation, we note that it is not as consistent as AUL.
Finally, we observe that integrating loss values over time improves the consistency of the metric.
Figure 5 (middle right) plots the inter-network correlation training loss at epoch 150 (the last epoch
before the learning rate is dropped). Most networks achieve a correlation between 0.79 and 0.85 –
roughly 10 percentage points less than training AUL. There is even less inter-network correlation for
validation loss (Figure 5, right). At epoch 150 the correlation is on average 0.55, which is roughly
40 percentage points less than averaged validation loss. The loss of an individual sample at any
given epoch is likely impacted by stochastic training noise, and integrating reduces this noise.

4 INCORPORATING AUL DYNAMICS INTO ROBUST TRAINING

Though AUL is relatively invariant to network architecture choices, its range depends on both the
dataset and the training length. Next we introduce simple algorithms that convert the relative AUL
metric into interpretable probabilities for (a) estimating the amount of noise in a dataset, (b) identi-
fying which samples are likely to be mislabeled, and (c) reweighting samples to reduce overfitting.

4.1 ESTIMATING NOISE AND IDENTIFYING MISLABELED SAMPLES

For x, a given input from the training dataset, let y be its ground-truth label (which is unobserved),
and let ỹ be the potentially incorrect observed label. We assume that the observed labels in the
dataset follow some unknown noise model p(ỹ | y). One goal is to estimate the amount of label
noise in the training dataset: i.e. p(ỹ | y). A more challenging goal is identifying which samples are
most likely to be mislabeled. More specifically, we want to estimate p(ỹ 6= y | x) for all x.

As mentioned in the previous section, AUL is a relative metric and so its values cannot be directly
converted into a probability p(ỹ 6= y | x) that a sample is mislabeled. Therefore, we instead
estimate the conditional AUL distributions for clean and mislabeled samples, i.e. p(AULx,ỹ | y = ỹ)
and p(AULx,ỹ | y 6= ỹ) respectively. p(y 6= ỹ | AULx,ỹ) is estimated from these conditional
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Figure 6: AUL distribution on CIFAR10 (ResNet-32) with varying amounts of mislabeled data. The
AUL distribution is bimodal, with the two modes corresponding to clean and mislabeled samples.

distributions using Bayes’ rule. Without knowing which samples are clean, estimating these two
conditional distributions is an unsupervised problem.

Approximating the AUL distribution with a Gaussian mixture. We observe in Figure 6 that
the AUL distribution p(AULx,ỹ) is distinctly bimodal when label noise is present. The networks
in this figure are ResNet-32 models trained on CIFAR10, and the AUL is measured before the
learning rate drop (epoch 150). When no noise is present (far left plot), the distribution is unimodal
with a long tail of high AUL samples. Intuitively, the mode corresponds to the loss for “easy” or
“average” examples while the tail corresponds to “hard” examples. For noisy datasets however, we
observe that the separability of AUL creates a distribution with two distinct modes – corresponding
to p(AULx,ỹ | y = ỹ) and p(AULx,ỹ | y 6= ỹ). Though the two modes become closer as the
amount of noise increases (e.g. with 80% noise the distance between the two modes is a quarter of
the distance between 20% noise modes), they are always separable.

We identify these two modes by fitting the AUL distribution with a mixture of two Gaussians. The
low-mean Gaussian (blue) approximates the clean-conditional AUL distribution p(AULx,ỹ | y = ỹ),
while the high-mean Gaussian (orange) approximates the mislabeled distribution p(AULx,ỹ | y 6=
ỹ). In practice the actual conditional distributions are not necessarily Gaussian, yet we find that
this simple model is nevertheless quite good for the applications in Section 5. From this Gaussian
mixture, it is easy to estimate the label noise and mislabeled samples. Let zx,ỹ be the probability that
sample (x, ỹ) belongs to the high-mean (i.e. mislabeled) Gaussian distribution. zx,ỹ is the model’s
estimate of p(y 6= ỹ | AULx,ỹ), and Ex,ỹ [zx,ỹ] is the estimate of dataset noise.

4.2 IMPROVING TRAINING WITH CORRUPTED LABELS

A high-capacity model trained on a noisy dataset is in danger of overfitting, as memorizing misla-
beled samples may hurt the generalization of correctly labeled samples. Next we describe how to
remedy this by using AUL probability estimates to down-weight mislabeled samples during training.

Assume that we have trained a neural network and computed AULxi,ỹi
for every training sample

(xi, ỹi). Since this network was trained on noisy data it has likely learned features that are specific
to the mislabeled examples and will not generalize well. Therefore we propose to train a new
model where the samples are reweighed using the AUL probability estimates. More formally, let
zi = p(ỹi 6= y | AULxi,ỹi

)) be the probability that a sample is mislabeled based on the Gaussian
mixture fit. We train a network from scratch where the loss for each minibatchM is computed as

L (M) =
1

c

|M|∑
i=1

ziL (xi, ỹi) , c =

|M|∑
i=1

zi,

where (xi, ỹi) are the samples inM.

5 RESULTS

We measure the efficacy of AUL dynamics at estimating dataset noise, identifying mislabeled sam-
ples, and improving training with noisy data. In order to quantitatively measure the performance, we
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Figure 7: Identifying mislabeled data in noisy variants of CIFAR10 using AUL from trained
ResNet-32 models. Left: predicted amount of noise in training set (uniform noise model, far left;
pair flip noise model, middle left). Right: prediction/recall curves for identifying mislabeled data
(uniform, middle right; pair flip, far right).

Table 1: Test-error comparison of noisy-data training methods on datasets with corrupted train-
ing labels. All methods train a ResNet-32 on the CIFAR10/CIFAR100 datasets with varying
amounts/types of label noise. (Uniform: mislabeled samples are assigned a random incorrect la-
bel. Pair Flip: mislabeled samples are assigned a to a class-specific incorrect label.)

Dataset CIFAR10 CIFAR100
Noise Model Uniform Uniform Uniform Uniform Pair Flip Uniform Uniform Uniform Uniform Pair Flip
% Mislabeled 0.20 0.40 0.60 0.80 0.40 0.20 0.40 0.60 0.80 0.40

Standard 23.2± 0.2 40.3± 0.5 57.1± 0.5 75.3± 0.5 40.3± 0.2 50.3± 0.3 62.0± 0.7 76.0± 0.1 91.1± 0.7 61.8± 0.6
Random 16.5± 0.7 22.8± 1.6 35.8± 2.8 55.6± 5.5 21.2± 0.1 43.0± 0.1 51.2± 0.5 63.5± 0.9 83.7± 1.8 51.4± 0.4

Reed-Hard 22.4± 0.4 37.4± 0.9 52.0± 0.5 68.8± 0.9 37.2± 0.2 48.6± 0.3 58.9± 0.5 70.3± 0.4 89.8± 1.6 58.8± 0.7
MentorNet-PD 13.3± 0.2 18.1± 0.4 —- 66.0± 4.9 —- 35.8± 0.6 42.5± 0.4 —- 75.7± 1.4 —-
Co-Teaching 11.2± 0.2 13.5± 0.2 19.3± 0.2 80.7± 1.2 16.9± 0.6 35.9± 0.2 39.8± 0.4 52.0± 0.5 89.1± 1.4 51.7± 0.4

D2L 12.3± 0.5 15.6± 0.6 27.3± 1.2 Diverged 23.6± 3.0 46.0± 2.0 70.3± 3.6 Diverged Diverged 83.1± 2.3
INCV 10.5± 0.2 13.2± 0.2 18.9± 0.5 46.7± 3.8 16.1± 1.0 41.4± 0.9 44.6± 0.4 56.3± 0.6 76.3± 1.1 52.0± 0.6
AUL 9.2± 0.1 11.5± 0.2 16.0± 0.3 37.8± 2.4 11.1± 0.3 34.2± 0.4 39.9± 0.6 50.5± 1.0 76.5± 0.9 40.2± 0.2

Oracle 9.0± 0.1 9.7± 0.8 10.8± 1.8 12.6± 3.5 10.8± 0.1 35.5± 0.1 39.0± 0.4 44.8± 1.0 55.1± 0.7 38.6± 0.7

corrupt the labels of the CIFAR10 and CIFAR100 datasets according to two predefined noise mod-
els. The uniform noise model assumes that discrepancies between true labels and observed labels
are random. A given label can be changed to any other class label with equal probability. The pair
flip noise model assumes that mislabeling mistakes depend on the true label. If an observed label is
incorrect, then it will belong to only one other possible class. More formally, if p is the percentage
of mislabeled points, we have

pUniform(ỹ | y) =

{
(1− p) ỹ = y
p

k−1 ỹ 6= y
, pFlip(ỹ | y) =


(1− p) ỹ = y

p ỹ = (y + 1)

0 o.w.
.

These noise models, which have been well-studied in prior work (Han et al., 2018; Hendrycks et al.,
2018), represent two extremes: uniform is class-independent and pair flip is fully class-dependent.

We first test the ability of AUL to estimate the amount of mislabeled data in the training set. We
construct noisy versions of CIFAR10 and CIFAR100 by applying the two noise models with varying
amounts of noise on 45,000 training examples. The uniform noise model is applied with 10%−90%
of samples mislabeled, and the pair flip model is applied with 10% − 40%. To compute AUL we
train a 32-layer ResNet (He et al., 2016) on each corrupted dataset. The networks are trained for 150
epochs using SGD with a constant learning rate of 0.1 and a batch size of 64. This corresponds to the
standard training hyperparameters for ResNets before the first learning rate drop (which typically
occurs at epoch 151). We identify potentially mislabeled samples by fitting the AUL distribution
with a mixture of 2 Gaussians, as described in Section 4.1. Results are averaged over 4 trials.

Noise estimates. Figure 7 displays the estimated noise for the corrupted CIFAR10 datasets (uni-
form noise – left, pair flip – middle left). We observe that AUL tends to overestimate high in the
low- and high-noise settings (e.g. below 0.2 and above 0.8 in the uniform noise setting). Neverthe-
less, the AUL-based estimates are able to closely recover the true amount of noise in most settings.
Analogous plots for the corrupted CIFAR100 datasets can be found in Appendix A.

Identifying mislabeled samples. After fitting the Gaussian mixture to the AUL distribution, we
classify examples as mislabeled if p(ỹ 6= y | AULx,ỹ) > 0.5. Figure 7 displays the precision
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and recall of mislabeled sample identification on the corrupted CIFAR10 datasets (uniform noise –
middle right, pair flip – right). (See Appendix A for CIFAR100 plots.) The predictions achieve a
recall of roughly 90% on most noise models, suggesting that the AUL distribution model identifies
most mislabeled points. The AUL estimates have the lowest precision in the small noise regime –
around 60% to 70%. However, this corresponds to relatively few misclassifications since the number
of predicted mislabeled samples is small in this setting. In the other noise settings the model achieves
precision around 90%. It is worth emphasizing that the AUL model achieves this high performance
without any supervision or prior knowledge about the noise model.

Robust training with corrupted labels. Next we evaluate the performance of models trained on
corrupted datasets with the reweighting scheme proposed in Section 4.2. In all experiments, we train
32-layer ResNets on the CIFAR10 and CIFAR100 variants described above. We assume that we do
not have access to a clean validation set, and so all models are trained without early stopping.

To set up a sensible lower bound for performance, we train a network that follows a Standard
training procedure (i.e. no method for combating mislabeled samples). The Oracle baseline –
which is only trained on correctly-labeled portion of data – represents a sensible upper bound. We
also compare to a Random (Ren et al., 2018) baseline, where each sample is assigned a random
weight. The weights are drawn from a rectified normal distribution Ren et al. (2018) and are re-
drawn at every epoch. Reed-Hard (Reed et al., 2014) and D2L (Ma et al., 2018) interpolate the
one-hot target label with the predicted label. MentorNet-PD (Jiang et al., 2017) learns a weighting
scheme for training examples using a LSTM. 1 Co-teaching (Han et al., 2018) simultaneously train
two networks that inform each other about which training examples to keep. INCV (Chen et al.,
2019) is an extension of co-teaching that first filters training data through iterative cross-validation.

We train all networks on 45,000 training examples. We compute the AUL of these samples by
training a network for 150 epochs with a learning rate of 0.1. AULs are converted to sample weights
using the Gaussian mixture described in Section 4.2. The standard, oracle, and reweighted networks
are trained using the procedure of He et al. (2016) – 300 epochs of SGD with an initial learning rate
of 0.1 that is dropped by a factor of 10 at epochs 150 and 225. All other methods are trained using
hyperparameters that are defined in their publicly available implementations.

Table 1 displays the test set performance for the methods on the corrupted CIFAR10 and CIFAR100
datasets. We observe several trends. First, there is a large performance gap between the Oracle
and Standard baselines, suggesting that the standard networks overfit to the mislabeled examples.
On CIFAR10 the gap is 14% with 20% uniform noise, and 62% with 80% noise. Most of the
baseline methods reduce this performance gap. Our proposed reweighting scheme (AUL) achieves
the best error on all dataset variants, especially on the high uniform noise and pair flip datasets. Most
notably, AUL is able to recover the oracle performance on low-noise CIFAR10 and surpass oracle
performance on low-noise CIFAR100. We hypothesize that the AUL reweighting not only identifies
mislabeled examples but also reduces the impact of difficult or ambiguous examples.

6 DISCUSSION AND CONCLUSION

In this paper we introduce the AUL statistic, which reveals differences in training loss dynamics
to reliably identify noisy labels. We observe that this statistic is far more stable across architec-
tures than for example the validation loss. This finding is compatible with the commonly made
observation that even networks with different initializations vary noticeably in their predictions —
a welcome side-effect for model ensembling (Caruana et al., 2004), but a nuisance when detecting
outliers. While the AUL score should be highly effective to increase classifier robustness and ana-
lyze or improve the label quality of data sets, we believe that the its ability to detect samples with
high memory need may open applications far beyond the scope of this paper. As future work, we
are planning to investigate the use of the AUL score to estimate sample “hardness” for the use in
curriculum learning (Bengio et al., 2009) and to detect mis-predictions on unsupervised data in the
context of semi-supervised learning (Chapelle et al., 2009).

1Due to incomplete release, we cannot train MentorNet (Jiang et al., 2017) in few noise settings.
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A ADDITIONAL RESULTS

A.1 AVERAGE LOSS AND AUL TRAJECTORIES

To further visualize the difference between the loss and AUL metrics, we plot the distribution of loss
and AUL as a function of training epoch in Figure 8. The losses and AULs are computed using a
ResNet-20 model trained on CIFAR10 with 40% uniform noise. We see that the loss distributions
for clean and mislabeled data points become less separable as training increases. Conversely, AUL
remains separable throughout the course of training.
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Figure 8: Distribution of loss (left) and AUL (right) over the course of network training. Shaded
region represents 1 standard deviation.

A.2 NOISE ESTIMATES AND MISLABELED SAMPLE IDENTIFICATION FOR CIFAR100

In this section we replicated the experiments from Section 5 on the CIFAR100 dataset. Figure 9
(left, middle left) displays the noise estimation for the CIFAR100 dataset on the uniform and pair
flip models, respectively. We do note that the estimates for the pair flip noise models tend to be
larger than the actual amount of noise. Nevertheless, we find that – similarly to CIFAR10 – the
model is able to accurately recover the amount of noise in the dataset. Figure 9 (middle right, right)
displays the identification precision/recall for the CIFAR100 dataset. We again find that the recall is
in the upper 90%. The precision tends to be lower with less noise, but rises above 80% when there
is more than 30% noise.
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Figure 9: Identifying mislabeled data in noisy variants of CIFAR100 using AUL from trained
ResNet-32 models. Left: predicted amount of noise in training set (uniform noise model, far left;
pair flip noise model, middle left). Right: prediction/recall curves for identifying mislabeled data
(uniform, middle right; pair flip, far right).
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A.3 ADDITIONAL HIGH-AUL IMAGES

Figure 10: Additional images from the first 100 classes of ImageNet with large AUL when trained
on a DenseNet-121 model.
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