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ABSTRACT

Recent works have empirically shown that there exist adversarial examples that
can be hidden from neural network interpretability, and interpretability is itself
susceptible to adversarial attacks. In this paper, we theoretically show that with
the correct measurement of interpretation, it is actually difficult to hide adversar-
ial examples, as confirmed by experiments on MNIST, CIFAR-10 and Restricted
ImageNet. Spurred by that, we develop a novel defensive scheme built only on ro-
bust interpretation (without resorting to adversarial loss minimization). We show
that our defense achieves similar classification robustness to state-of-the-art robust
training methods while attaining higher interpretation robustness under various
settings of adversarial attacks.

1 INTRODUCTION

It has become widely known that convolutional neural networks (CNNs) are vulnerable to adver-
sarial examples, namely, perturbed inputs with intention to mislead networks’ prediction (Szegedy
et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016a; Carlini & Wagner, 2017; Chen et al.,
2018; Su et al., 2018). The vulnerability of CNNs has spurred extensive research on adversarial
attack and defense. To design adversarial attacks, most work has focused on creating either im-
perceptible input perturbations (Goodfellow et al., 2015; Papernot et al., 2016a; Carlini & Wagner,
2017; Chen et al., 2018) or adversarial patches robust to the physical environment (Eykholt et al.,
2018; Brown et al., 2017; Athalye et al., 2017). Many defense methods have also been developed to
prevent CNNs from misclassification when facing adversarial attacks. Examples include defensive
distillation (Papernot et al., 2016b), training with adversarial examples (Goodfellow et al., 2015), in-
put gradient or curvature regularization (Ross & Doshi-Velez, 2018; Moosavi-Dezfooli et al., 2019),
adversarial training via robust optimization (Madry et al., 2018), and TRADES to trade adversarial
robustness off against accuracy (Zhang et al., 2019). Besides studying adversarial effects on network
prediction decisions, this work explores the connection between adversarial robustness and network
interpretability, and provides novel insights on when and how interpretability helps the robustness.

Having a prediction might not be enough for many real-world machine learning applications. It is
also crucial to demystify why CNNs make certain decisions. Thus, the problem of network interpre-
tation arises. Various methods have been proposed to understand the mechanism of decision making
by CNNs. One category of methods justify a prediction decision by assigning importance values
to reflect the influence of individual pixels or image sub-regions on the final classification. Exam-
ples include pixel-space sensitivity map methods (Simonyan et al., 2013; Zeiler & Fergus, 2014;
Springenberg et al., 2014; Smilkov et al., 2017; Sundararajan et al., 2017) and class-discriminative
localization methods (Zhou et al., 2016; Selvaraju et al., 2017; Chattopadhay et al., 2018; Petsiuk
et al., 2018), where the former evaluates the sensitivity of a network classification decision to pixel
variations at the input, and the latter localizes which parts of an input image were looked at by the
network for making a classification decision. Sensitivity map methods include vanilla gradient (Si-
monyan et al., 2013), deconvolution (Zeiler & Fergus, 2014), guided backpropagation (Springenberg
et al., 2014), SmoothGrad (Smilkov et al., 2017), integrated gradient (IG) (Sundararajan et al., 2017)
to name a few. They highlight fine-grained details in the image but are not class-discriminative for
visual explanation. By contrast, localization approaches like class activation map (CAM) (Zhou
et al., 2016), GradCAM (Selvaraju et al., 2017), GradCAM++ (Chattopadhay et al., 2018) and RISE
(Petsiuk et al., 2018) are highly class-discriminative, namely, localizing image sub-regions reasoned
for a prediction class. We refer readers to Sec. 2 for some representative interpretation methods.
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Besides interpreting CNNs via feature importance maps, some methods zoom into the internal re-
sponse of neural networks. Examples include network dissection (Bau et al., 2017), which evaluates
the alignment between individual hidden units and semantic concepts, and learning perceptually-
aligned representations from robust training (Engstrom et al., 2019).

Very recently, some works (Xu et al., 2019b;a; Zhang et al., 2018; Subramanya et al., 2018; Ghorbani
et al., 2019; Dombrowski et al., 2019; Chen et al., 2019) are beginning to study adversarial robust-
ness by exploring the spectrum between classification accuracy and network interpretability. It was
shown in (Xu et al., 2019b;a) that an imperceptible adversarial perturbation to fool classifiers can
lead to a significant change in a class-specific network interpretability map, e.g., CAM. Thus, it was
argued that such an interpretability discrepancy can be used as a helpful metric to differentiate ad-
versarial examples from benign inputs. However, the work (Zhang et al., 2018; Subramanya et al.,
2018) showed that under certain conditions, generating an attack (which we call interpretability
sneaking attack, ISA) that fools the classifier as well as its coupled interpreter (in terms of keeping
interpretability map highly similar to that of benign input) is not significantly more difficult than
generating adversarial inputs deceiving the classifier only. The existing work had no agreement on
whether or not it is really easy for adversarial examples to fool the interpreter. Besides investigat-
ing robustness in classification through the lens of interpretability, the work (Ghorbani et al., 2019;
Dombrowski et al., 2019) studied the robustness in interpretability and showed that network inter-
pretation maps can significantly be manipulated via imperceptible input perturbations but keeping
classifier’s decision intact. We call this type of threat model attack against interpretability (AAI).
The most relevant work to ours is (Chen et al., 2019), which robustified network interpretation with
the aid of integrated gradient (IG), an axiomatic attribution map. It proposed a robust attribution
training, which was shown as a principled generalization of previous formulations of robust classi-
fication and an effective defense against AAI. Different from the previous work, our paper contains
the following contributions.

1. We show that enforcing stealthiness of adversarial examples from network interpretation
could be challenging. Its difficulty relies on how one measures the interpretability discrep-
ancy caused by input perturbations.

2. We propose an `1 norm based 2-class interpretability discrepancy measure and theoretically
show that constraining it helps adversarial robustness.

3. We develop an interpretability-aware robust training method and empirically show that
interpretability alone can be used to defend adversarial attacks for both misclassifcation
and misinterpretation. Compared to the IG-based robust attribution training (Chen et al.,
2019), our approach is simpler in implementation, and provides better robustness even as
facing a strong adversary.

2 PRELIMINARIES AND MOTIVATION: INTERPRETABILITY OF CNNS FOR
JUSTIFYING A CLASSIFICATION DECISION

To explain what and why CNNs predict, we consider two types of network interpretation methods:
a) class activation map (CAM) and b) pixel sensitivity map (PSM). The former localizes a class-
discriminative image region that explains which parts of an input image are focused by the CNN for
assigning a class label (Zhou et al., 2016; Selvaraju et al., 2017; Chattopadhay et al., 2018). The
latter evaluates the importance of individual input pixels by finding the sensitivity of classification
decision to a tiny change at these pixels (Simonyan et al., 2013; Springenberg et al., 2014; Smilkov
et al., 2017; Sundararajan et al., 2017; Yeh et al., 2019).

Let f(x) ∈ RC denote a CNN-based predictor that maps an input x ∈ Rd to a probability vector
of C classes. Here fc(x), the cth element of f(x), denotes the classification score (given by logit
before the softmax) for class c. Let L(x, c) denote an interpreter (CAM or PSM) that reflects where
in x contributes to the classifier’s decision on c.

CAM-type methods. CAM (Zhou et al., 2016) produces a class-discriminative localization map
for CNNs, which performs global averaging pooling over convolutional feature maps prior to the
softmax. Let the penultimate layer output K feature maps, each of which is denoted by a vector
representation Ak ∈ Ru for channel k ∈ [K]. Here [K] represents the integer set {1, 2, . . . ,K}.
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The ith entry of CAM LCAM(x, c) is given by

[LCAM(x, c)]i =
1

u

∑
k∈[K]

wckAk,i, i ∈ [u], (1)

where wck is the linear classification weight that associates the channel k with the class c, and Ak,i
denotes the ith element of Ak. The rationale behind (1) is that the classification score fc(x) can be
written as the average of CAM values (Zhou et al., 2016), fc(x) =

∑u
i=1[LCAM(x, c)]i. For visual

explanation, LCAM(x, c) is often up-sampled to the input dimension d using bi-linear interpolation.

GradCAM (Selvaraju et al., 2017) generalizes CAM for CNNs without the architecture ‘global av-
erage pooling → softmax layer’ over the final convolutional maps. Specifically, the weight wck in
(1) is given by the gradient of the classification score fc(x) with respect to (w.r.t.) the feature map
Ak, wck = 1

u

∑u
i=1

∂fc(x)
∂Ak,i

. GradCAM++ (Chattopadhay et al., 2018), a generalized formulation
of GradCAM, utilizes a more involved weighted average of the (positive) pixel-wise gradients but
provides a better localization map if an image contains multiple occurrences of the same class. In
this work, we focus on CAM since it is computationally light and our models used in experiments
follow the architecture ‘global average pooling→ softmax layer’.

PSM-type methods. PSM uses calculations with gradients to assign importance scores to individ-
ual pixels toward explaining the classification decision about an input. Examples of commonly-used
approaches include vanilla gradient (Simonyan et al., 2013), guided backpropogation (Springenberg
et al., 2014), SmoothGrad (Smilkov et al., 2017), and integrated gradient (IG) (Sundararajan et al.,
2017). In particular, IG satisfies the completeness attribution axiom that PSM ought to obey. Specif-
ically, it averages gradient saliency maps for interpolations between an input x and a baseline image
a:

[LIG(x, c)]i = (xi − ai)
∫ 1

α=0

∂fc(a+ α(x− a))

∂xi
dα ≈ (xi − ai)

m∑
i=1

∂fc(a+ i
m
(x− a))

∂xi

1

m
, i ∈ [d],

(2)

where m is the number of steps in the Riemman approximation of the integral. The completeness
axiom (Sundararajan et al., 2017, Proposition 1) states that

∑d
i=1[LIG(x, c)]i = fc(x) − fc(a),

where the baseline image a is often chosen such that fc(a) ≈ 0, e.g., the black image. Note
that CAM also satisfies the completeness axiom. PSM is able to highlight fine-grained details in
the image, but is computationally intensive and not very class-discriminative compared to CAM
(Selvaraju et al., 2017).

Interpretability discrepancy caused by adversarial perturbation. Let x′ = x + δ represent an
adversarial example w.r.t. x, where δ denotes an adversarial perturbation. By replacing the input
image x with x′, the CNN will be fooled from the true label t to the target (incorrect) label t′. It was
recently shown in (Xu et al., 2019b;a) that the adversary could introduce an evident interpretability
discrepancy w.r.t. both the true and the target label in terms of L(x, t) vs. L(x′, t), and L(x, t′)
vs. L(x′, t′). An illustrative example is provided in Figure 1. We see that an adversary suppresses
the network interpretation w.r.t. the true label but promotes the interpretation w.r.t. the target label.
We also observe that compared to IG, CAM and GradCAM++ better localize class-specific discrim-
inative regions. The results imply both pros and cons of an interpreter L. On the positive side, the
L allows the user to detect the misbehavior of a classifier (in terms of interpretability discrepancy)
when facing adversarial examples. On the negative side, L might be vulnerable to a tiny change on
the input (even for benign perturbation), which raises the question of the robustness in interpretabil-
ity. In what follows, we explore the spectrum between adversarial robustness and interpretability
from a unified attack-defense perspective.

3 ROBUSTNESS IN CLASSIFICATION OR INTERPRETABILITY? AN ATTACK
PERSPECTIVE

In this section, we examine two types of threat models, interpretability sneaking attack (ISA) and
attack against interpretability (AAI), which craft perturbed inputs with intention to fool one of clas-
sifier and interpreter but to keep stealthiness from the other one. Since an adversarial example
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Figure 1: Interpretation (L) of benign (x) and adversarial (x′) image from restricted ImageNet (Engstrom
et al., 2019) with respect to the true label t=‘monkey’ and the target label t′=‘fish’. Here the adversarial
example is generated by 10-step PGD attack with perturbation size 0.02 (Madry et al., 2018), and we consider
three types of interpretation maps, CAM, GradCAM++ and IG. Given an interpretation method, the first column
is L(x, t) versus L(x′, t), the second column is L(x, t′) versus L(x′, t′), and all maps under each category are
normalized w.r.t. their largest value. At the bottom of each column, we quantify the resulting interpretability
discrepancy by Kendall’s Tau order rank correlation (Selvaraju et al., 2017) between every pair of L(x, i) and
L(x′, i) for i = t or t′.

designed for misclassification gives rise to interpretability discrepancy (which could then be used as
a detector for the adversarial input), the problem of ISA arises: One may wonder whether or not it is
easy to generate adversarial examples that mistake classification but keep interpretation intact. One
the other hand, it is suggested from interpretability discrepancy that an interpreter could be quite
sensitive to input perturbations. Thus, the problem of AAI arises: One may wonder if perturbed
inputs could induce differing explanations but without altering predictions.

3.1 RETHINKING ISA FROM PERSPECTIVE OF INTERPRETABILITY DISCREPANCY

Previous work (Zhang et al., 2018; Subramanya et al., 2018) showed that it is not difficult to hide
adversarial examples from network interpretation when the interpretability discrepancy is measured
w.r.t. a single class label (either the true label t or the target label t′). However, we see from
Figure 1 that the adversary (against classification) alters interpretability maps w.r.t. both t and t′.
This motivates us to rethink whether the single-class interpretability discrepancy measure is proper,
and whether ISA is truly easy to bypass an interpretability discrepancy check.

We consider the following generic form of interpretability discrepancy

D
(
x,x′

)
=

1

|C|
∑
i∈C

∥∥L(x, i)− L(x′, i)∥∥
p
, (3)

where recall that x and x′ are natural and adversarial examples respectively, L represents an inter-
preter, e.g., CAM or IG, C denotes the set of class labels used in L, |C| is the cardinality of C, and we
consider p ∈ {1, 2} in this paper. Clearly, a specification of (3) relies on the choice of C and p. We
specify (3) with C = {t, t′} and p = 1, leading to `1 2-class interpretability discrepancy measure,

D2,`1

(
x,x′

)
=

1

2

(∥∥L(x, t)− L(x′, t)∥∥
1
+
∥∥L(x, t′)− L(x′, t′)∥∥

1

)
. (4)

Rationale behind `1 2-class discrepancy measure. Compared to the previous work (Zhang et al.,
2018; Subramanya et al., 2018) using a single class label, we choose C = {t, t′}1, motivated by the
fact that an interpretability discrepancy occurs w.r.t. both t and t′ (Figure 1). Moreover, although
Euclidean distance (namely, `2 norm or its square) is arguably one of the most commonly-used dis-
crepancy metrics (Zhang et al., 2018), we show in Proposition 1 that the proposed interpretability
discrepancy measure D2,`1 (x,x′) has a non-trivial lower bound for any successful adversarial at-
tack. This provides an explanation on why it could be difficult to hide adversarial examples from
network interpretability methods. Moreover, `1 is an upper bound of the `2 norm and promotes the
sparsity of interpretability discrepancy, which enforces pixels of L to stay intact when facing input
perturbations.

1In addition to the 2-class case, our experiments will also cover the all-class case C = [C].
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Proposition 1. Given a classifier f(x) ∈ RC and its interpreter L(x, c) for c ∈ [C], suppose
that the interpreter satisfies the completeness axiom, namely,

∑
i[L(x, c)]i = fc(x). For a natural

example x and an adversarial example x′ with prediction t and t′ respectively, D2,`1 (x,x′) in (4)
has the lower bound

D2,`1

(
x,x′

)
≥ 1

2
(ft(x)− ft′(x)) . (5)

Proof: See proof in Appendix A. �

Proposition 1 connects D2,`1 (x,x′) with the classification margin ft(x)− ft′(x). Thus, if a classi-
fier has a large classification margin on the natural example x, it will be difficult to find a successful
adversarial attack with small interpretability discrepancy. In other words, constraining the inter-
pretability discrepancy prevents misclassification since generating adversarial examples becomes
infeasible under D2,`1 (x,x′) < 1

2 (ft(x)− ft′(x)). Also, the completeness condition of L sug-
gests specifying (4) with CAM (1) or IG (2). Here we focus on CAM due to its light computation.

Design of ISA. We pose the following optimization problem for design of ISA, which not only
fools a classifier’s decision but also minimizes the resulting interpretability discrepancy,

minimize
δ

λmax{maxj 6=t′ fj(x+ δ)− ft′(x+ δ),−τ}+D2,`1 (x,x+ δ)

subject to ‖δ‖∞ ≤ ε,
(6)

where λ > 0 is a regularization parameter that strikes a balance between the success of an attack
and its resulting interpretability discrepancy, τ ≥ 0 (e.g., 0.1 used in the paper) is a tolerance
on the classification margin of a successful attack between the target label t′ and the non-target
top-1 prediction label arg maxj 6=t′ fj(x + δ), D2,`1 was defined by (4), and ε > 0 is a (pixel-
level) perturbation size. In (6), the first term of the objective corresponds to a C&W-type attack
loss (Carlini & Wagner, 2017), which reaches −τ if the attack succeeds in misclassification. To
find ISA of minimum interpretability discrepancy, we perform a bisection on λ until there exists no
successful attack that can be found when λ further decreases. Although we focus on `∞ attack in
(6), but a similar formulation applies to `1 and `2 attacks. Attacks are found using PGD, with sub-
gradients taken at non-differentiable points. We consider only targeted attacks to better evaluate the
effect on interpretability of target classes, although this approach can be extended to an untargeted
setting (e.g., by using the target label-free interpretability discrepancy measure introduced in the
next section).

Difficulty of generating ISA versus interpretability discrepancy measure. Through an illustra-
tive example in Figure 2, we elaborate on how the choice of interpretability discrepancy measure
plays a crucial role in hiding adversarial examples from network interpretation. We refer readers
to Sec. 5 for more experimental results. We generate ISA under different specifications of (3) for
different values of perturbation size ε. Compared to `1/`2 1-class (true class t), `2 2-class, and `1/`2
all-class, we see that the `1 2-class interpretability discrepancy (4) cannot be easily mitigated even as
the attack power (in terms of ε) increases. This is verified by a) its high interpretability discrepancy
score and b) its flat slope of discrepancy score against ε in Figure 2-(a)&(b). Figure 2-(c) further
shows CAMs of adversarial examples w.r.t. the true label t and the target label t′ generated by `1
1/2/all-class ISAs. As we can see, both 1-class measure and all-class measure could give a false
sense of ease of hiding adversarial examples. For `1 1-class ISA, although the interpretability dis-
crepancy w.r.t. t is minimized, the discrepancy w.r.t. t′ remains large, supported by the observation
that `1 1-class ISA even yields a smaller correlation between L(x′, t′) and L(x, t′) than PGD at-
tack. Similarly, although the averaged discrepancy over all classes is minimized for `1 all-class ISA,
discrepancies w.r.t. specific labels such as t and t′ do not necessarily reduce.

3.2 ATTACK AGAINST INTERPRETABILITY (AAI)

Different from ISA, AAI produces input perturbations to maximize the interpretability discrepancy
while keeping the classification decision intact. Thus, AAI provides a means to evaluate the ad-
versarial robustness in interpretability. Since t = arg maxi fi(x) = arg maxi fi(x

′) = t′ in AAI,
the 2-class interpretability discrepancy measure (4) reduces to its 1-class version. The problem of
generating AAI is then cast as

minimize
δ

λmax{maxj 6=t fj(x+ δ)− ft(x+ δ), 0} − D1 (x,x+ δ)

subject to ‖δ‖∞ ≤ ε,
(7)
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(a) (b)

L
(·,
t)

L
(·,
t′

)

original image x 10-step PGD attack x′ `1 2-class ISA x′ `1 1-class ISA x′ `1 all-class ISA x′

correlation: 0.4782 correlation: 0.5213 correlation: 0.7107 correlation: 0.5342

correlation: 0.5039 correlation: 0.5416 correlation: 0.4129 correlation: 0.5561
(c)

Figure 2: Seeing the effect of discrepancy measure on hiding adversarial examples from network interpreta-
tion. The same benign image in Figure 1 is considered. (a) ISA using CAM-based `1 1/2/all-class discrepancy
measure versus perturbation size ε, (b) ISA using CAM-based squared `2 1/2/all-class discrepancy measure
versus ε, (c) CAM interpretation of example in Figure 1 and its adversarial counterparts from PGD attack and
different specifications of ISA. All interpretation maps are normalized w.r.t. their largest value. At the bottom
of each interpretation map L(x′, ·), we quantify the interpretability discrepancy by Kendall’s Tau order rank
correlation between every pair of L(x′, i) and L(x′, i) for i ∈ {t, t′}, where x′ is obtained from PGD attack
or each specification of ISA.

where the first term is a hinge loss to enforce ft(x + δ) ≥ maxj 6=t fj(x + δ), namely,
arg maxi fi(x

′) = t (unchanged prediction under input perturbations), and D1 denotes a 1-class
interpretability discrepancy measure, e.g., D1,`1 from (4), or the top-k pixel difference between in-
terpretability maps (Ghorbani et al., 2019). Similar to (6), the regularization parameter λ in (7)
strikes a balance between stealthiness in classification and variation in interpretability. Experiments
in Sec. 5 will show that the state-of-the-art defense methods against adversarial examples do not nec-
essarily preserve robustness in interpretability as ε increases, athough the prediction is not altered.

4 INTERPRETABILITY-AWARE ROBUST TRAINING: DEFENSE PERSPECTIVE

We recall from Sec. 3.1 that adversarial examples that intend to fool a classifier could be difficult to
evade the `1 2-class interpretability discrepancy. Thus, constraining the interpretability discrepancy
helps to prevent misclassification. As an additional benefit, it also robustifies the classifier against
AAI, where the adversary maximizes the interpretability discrepancy.

Target label-free interpretability discrepancy. Different from attack generation, the `1 2-class
discrepancy measure (4) cannot directly be used by a defender since the target label t′ specified by
the adversary is not known a priori. To circumvent this issue, we propose to approximate the in-
terpretability discrepancy w.r.t. the target label by weighting discrepancies from all non-true classes
according to their importance in prediction. This modifies (4) to

D̃
(
x,x′

)
=

1

2

∥∥L(x, t)− L(x′, t)∥∥
1
+

1

2

∑
i 6=t

ef(x
′)i∑

i e
f(x′)i

||L(x, i)− L(x′, i)||1, (8)
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where the softmax function ef(x′)i∑
i e
f(x′)i

adjusts the importance of non-true labels according to their

classification confidence. Clearly, when x′ succeeds in misclassification, the top-1 predicted class
of x′ becomes the target label and the resulting interpretability discrepancy is most penalized.

Interpretability-aware robust training. We propose to train a classifier against the worst-case
interpretability discrepancy (8), yielding the min-max optimization problem

minimize
θ

E(x,t)∼Dtrain

[
ftrain(θ;x, t) + γ maximize

x′:‖x′−x‖∞≤ε
D̃
(
x,x′

)]
, (9)

where θ denotes the model parameters, Dtrain denotes the training dataset, ftrain is the training loss
(e.g., cross-entropy loss), γ > 0 is a regularization parameter, and for ease of notation we omit the
parameters θ and t in D̃ (x,x′).

In problem (9), the inner maximization is only used to evaluate the worst-case interpretability dis-
crepancy. Thus, it is different from adversarial training (Madry et al., 2018), where the training loss
is replaced with the adversarial loss maximizex′:‖x′−x‖∞≤ε ftrain(θ,x′;x, t). The formulation (9)
allows us to examine whether or not robust interpretation is directly beneficial to robust classifica-
tion. For completeness, we will also provide experiment results on a modified formulation of (9)
with the use of the adversarial loss.

Difference to (Chen et al., 2019). The recent work (Chen et al., 2019) proposed improving adver-
sarial robustness by leveraging robust IG attributions. However, different from (Chen et al., 2019),
our approach is motivated by the importance of `1 2-class interpretability discrepancy measure. We
will show in Sec. 5 that the incorporation of interpretability discrepancy w.r.t. target class labels,
namely, the second term in (8), plays a key role in boosting classification and interpretation robust-
ness. We will also show that our proposed method is sufficient to improve adversarial robustness
even in the absence of adversarial loss, while the robust attribution regularization method (Chen
et al., 2019) becomes ineffective when the attack becomes stronger. Last but not the least, beyond
IG, our proposed theory and method apply to any network interpretation method with complete-
ness axiom. The use of CAM avoids Riemman approximation used in IG and thus simplifies the
implementation during robust training.

5 EXPERIMENTS

In this section, we empirically show the effectiveness of our proposed methods in various attack
and defense settings. For ISA, we examine how the interpretability discrepancy measure plays a
role in hiding adversarial examples from network interpretation. For AAI, we evaluate its attack
success rate under the natural and various robust models. For interpretability-aware robust training,
we demonstrate its advantages in a) defending against PGD attacks with different steps and pertur-
bation sizes (Madry et al., 2018; Athalye et al., 2018), b) defending against unforeseen adversarial
attacks (Kang et al., 2019), c) rendering robustness in interpretability, and d) computation efficiency
compared to the IG-based robust attribution regularization method (Chen et al., 2019).

Datasets, CNN models, and experiment setting. We evaluate networks trained on the MNIST,
CIFAR-10 and a restricted ImageNet (R-ImageNet) dataset used in (Engstrom et al., 2019). We
consider three models, Small (for MNIST and CIFAR), Pool (for MNIST) and WResnet (for CIFAR
and R-ImageNet): 1) a small CNN architecture consisting of three convolutional layers of 16, 32
and 100 filters (Small), 2) a CNN architecture with two convolutional layers of 32 and 64 filters each
followed by max-pooling which is adapted from (Madry et al., 2018) (Pool), and 3) a Wide Resnet
from (Madry et al., 2018) (WResnet). Each network has a global average pooling layer followed by
a fully connected layer at the end of the network. For R-ImageNet, we use only a normally trained
network, used for evaluating ISA. During adversarial training of all baselines, 40 adversarial steps
are used for MNIST and 10 steps for CIFAR. To ensure stability of all training methods, the size
of perturbation is increased during training from 0 to a final value of 0.3 on MNIST and 8/255 on
CIFAR.

In the following experiments, we consider 5 baselines from the literature: i) standard training (Nor-
mal), ii) adversarial training (Adv) (Madry et al., 2018), iii) TRADES (Zhang et al., 2019), iv)
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IG-Norm that uses IG-based robust attribution regularization (Chen et al., 2019), v) IG-Sum-Norm
(namely, IG-Norm with adversarial loss). Additionally, we consider 3 variants of our method: vi)
the proposed interpretability-aware robust training method (9) (we call Int), vii) Int using `1 1-class
discrepancy (Int-1-class), and viii) Int with adversarial loss (Int-Adv).

Dataset Interpretation
method

`1 norm `2 norm

1-class 2-class all-class 1-class 2-class all-class

MNIST

CAM 3.0723/0.0810 3.2672/0.0223 2.5289/0.0414 0.3061/0.1505 0.5654/0.0321 0.4320/0.0459
GradCAM++ 3.1264/0.0814 3.1867/0.0221 2.5394/0.0366 0.3308/0.1447 0.5531/0.0289 0.4392/0.0456

IG 6.3604/0.0330 6.7884/0.0233 4.3667/0.2314 0.4476/0.0082 0.5766/0.0064 0.2160/0.0337
Repr n/a 2.3668/0.0404 n/a n/a 0.4129/0.0429 n/a

CIFAR-10

CAM 1.9523/0.1450 2.5020/0.0496 1.7898/0.0774 0.1313/0.2369 0.3613/0.0668 0.2746/0.0809
GradCAM++ 1.9355/0.1439 2.4788/0.0513 1.8020/0.0745 0.1375/0.2346 0.3577/0.0676 0.2758/0.0769

IG 4.9499/0.0188 4.9794/0.0177 2.8541/0.1356 0.1230/0.0110 0.1309/0.0092 0.0878/0.0235
Repr n/a 1.7049/0.0785 n/a n/a 0.1288/0.0056 n/a

R-ImageNet

CAM 49.286/0.1005 61.975/0.0331 49.877/0.0557 1.9373/0.1526 2.6036/0.0791 2.0935/0.0863
GradCAM++ 39.761/0.1028 50.303/0.0453 42.390/0.0552 1.9185/0.1609 2.5869/0.0891 2.1151/0.0896

Repr n/a 46.892/0.0657 n/a n/a 2.0730/0.0781 n/a

Table 1: NDS and NSL (format given by NDS/NSL) of successful ISAs generated under different specifi-
cations of interpretability discrepancy measure (3) and datasets MNIST, CIFAR-10 and R-ImageNet. Here a
discrepancy measure with large NDS and small NSL indicates a strong resistance to ISA.

Evaluating ISA. We evaluate the effect of interpretability discrepancy measure on ease of finding
ISAs. Spurred by Figure 2, such an effect is quantified by calculating minimum discrepancy required
in generating ISAs against different values of perturbation size ε in (6). We conduct experiments
over 4 network interpretation methods: i) CAM, ii) GradCAM++, iii) IG, and iv) internal represen-
tation at the penultimate (pre-softmax) layer (denoted by Repr). In order to fairly compare among
different interpretation methods, we compute a normalized discrepancy score (NDS) extended from
(3): Dnorm = 1

|C|
∑
i∈C

∥∥∥ L(x,i)−L(x′,i)
maxj L(x,i)j−minj L(x,i)j

∥∥∥
p
. A smaller value of NDS implies the less dif-

ficulty for ISA to hide adversarial examples. A strong ISA is also expected to resist interpretability
discrepancy even as the perturbation size ε increases; see Figure 2-(a)&(b). To quantify this, we
compute an additional quantity called normalized slope (NSL) that measures the relative change of
NDS for ε ∈ [ε̌, ε̂]: Snorm =

|D(ε̂)
norm−D

(ε̌)
norm|/D

(ε̌)
norm

(ε̂−ε̌)/ε̌ . The smaller NDS is, the less strong ISA is to
evade network interpretation change. In our experiment, we choose ε̌ = ε∗ and ε̂ = 1.6 ε∗, where ε∗
is the minimum perturbation size required for a successful PGD attack for each image x. Here we
perform binary search over ε to find its smallest value for misclassification. Reported NDS and NSL
statistics are averaged over a test set.

In Table 1, we present NDS and NSL of ISAs generated under different realizations of interpretabil-
ity discrepancy measure (3), each of which is given by a combination of interpretation method
(CAM, GradCAM++, IG or Repr), `p norm (p ∈ {1, 2}) and number of interpreted classes. Note
that Repr is independent of the number of classes, and thus we report NDS and NSL correspond-
ing to Repr in the 2-class column of Table 1. Given an `p norm and an interpretation method, we
consistently find that the use of 2-class measure achieves the largest NDS and smallest NSL at the
same time. This implies that the 2-class discrepancy measure increases the difficulty of ISA to evade
network interpretability check. Moreover, given a class number and an interpretation method, we
see that NDS under `1 norm is greater than that under `2 norm, since the former is naturally an
upper bound of the latter. Also, the use of `1 norm often yields a smaller value of NSL, implying
that the `1-norm based discrepancy measure is more resistant to ISA. Furthermore, by fixing the
combination of `1 norm and 2 classes, we observe that IG is the most resistant to ISA due to their
relatively high NDS and low ISA, and Repr yields the worst performance. However, compared to
CAM, the computation cost of IG increases dramatically as the input dimension, the model size,
and the number of steps in Riemman approximation increase. We find that it becomes infeasible to
generate ISA using IG for WResnet under R-ImageNet within 200 hours.

Evaluating AAI. We specify problem (7) under the top-k attack setting (Ghorbani et al., 2017),
where the top-k intersection between the original and adversarial interpretability maps is minimized.
The strength of AAI is then measured by the Kendall’s Tau order rank correlation between the
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aforementioned two interpretability maps (Chen et al., 2019). The higher the correlation is, the
more robust the model is against AAI. Reported rank correlations are averaged over a test set.

Method ε = 0.05 0.1 0.2 0.3

MNIST, Small

Normal 0.907 0.797 0.366 -0.085
Adv 0.978 0.955 0.910 0.857
TRADES 0.978 0.955 0.905 0.847
IG-Norm 0.958 0.894 0.662 0.278
IG-Norm-Sum 0.976 0.951 0.901 0.850
Int 0.982 0.968 0.941 0.913
Int-Adv 0.980 0.965 0.936 0.912
Int-1-class 0.874 0.818 0.754 0.692

ε = 2/255 4/255 6/255 8/255

CIFAR, WResnet

Normal 0.595 0.159 0.067 -0.069
Adv 0.912 0.816 0.724 0.629
TRADES 0.918 0.832 0.747 0.652
Int 0.859 0.763 0.746 0.682
Int-Adv 0.885 0.803 0.751 0.696

Table 2: Performance of AAI for different values
of perturbation size ε in terms of Kendall’s Tau or-
der rank correlation between the original and ad-
versarial interpretability maps. Best robustness re-
sults (corresponding to highest correlation values)
are highlighted (1st, 2nd, 3rd) under each column
of a dataset-model pair.

In Table 2, we present the performance of AAI under
multiple perturbation sizes to attack models trained
using different training methods. For the model
Small under MNIST, we evaluate AAI over 5 base-
lines (Normal, Adv, TRADES, IG-Norm, IG-Sum-
Norm) and 3 variants of our method (Int, Int-1-class
and Int-Adv). For a larger model WResnet under
CIFAR-10, the training methods using IG (IG-Norm
and IG-Norm-Sum) are excluded due to their pro-
hibitive computation cost. The insights learnt from
Table 2 are summarized as below. First, the normally
trained model (Normal) does not automatically give
robustness guarantees in interpretability, particularly
for AAI with ε ≥ 0.2. Second, the methods Adv,
TRADES, IG-Sum-Norm and Int-Adv that uses ad-
versarial loss offer certain robustness against AAI
but the performance gets worse as the perturbation
size ε increases. Third, in the absence of adversarial
loss, the baseline IG-Norm becomes less robust as ε
increases. By contrast, our proposed method Int is
consistently more robust and its advantage becomes
more evident as ε increases.

Evaluating interpretability-aware robust training. We previously showed in Table 2 that
interpretability-aware robust training (Int, Int-Adv) often achieves more robust interpretability than
state-of-the-art adversarial training methods particularly for large perturbation size. In what fol-
lows, we provide a thorough evaluation on how interpretability helps adversarial robustness against
misclassification.

Figure 3: Computation time per epoch and ad-
versarial test accuracy for a Small MNIST model
trained with different methods.

Robustness versus efficiency. In Figure 3, we present
the training time (left y-axis) and the adversarial test
accuracy (right y-axis) for different training meth-
ods (x-axis), which are ranked in a decreasing or-
der of computation complexity. Here the adver-
sarial test accuracy (ATA) is measured using 200-
step (`∞-norm) perturbation size ε = 0.3 on the
Small MNIST model (Madry et al., 2018). As we
can see, all AT-type methods (IG-Norm-Sum, Int-
Adv, TRADES and Adv) offer robust classification
with ATA around 80%. Among non-AT but inter-
pretability promoted defensive schemes (IG-Norm,
Int, Int-1-class), we find that only the proposed Int
yields competitive ATA. We will show that IG-Norm
becomes much less robust in classification when
PGD attack becomes stronger (see results in Ta-
ble 4). Moreover, the non-robustness of Int-1-class verifies the importance of 2-class interpretability
discrepancy measure on rendering robust classification. Last but not the least, Adv, TRADES and
Int-based methods have similar computational complexity, but IG-based methods make training time
(per epoch) significantly higher, 3 times more than Int-Adv even under the Small MNIST model.

Int does not cause obfuscated gradients and importance of 2-class measure. It was shown in (Atha-
lye et al., 2018; Carlini, 2019) that some defense methods cause obfuscated gradients, which give
a false sense of security. There exist two characteristic behaviors of obfuscated gradients: a) One-
step attacks perform better than iterative attacks; b) Increasing distortion bound does not increase
success. Motivated by that, we evaluate our interpretability-aware robust training methods under
PGD attacks with a) different steps and b) different perturbation sizes. Table 3 reports ATA of
interpretability-aware robust training relative to various baselines, where 200-step PGD attacks are
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conducted for ε ∈ {0, 0.05, 0.1, 0.2, 0.3}. As we can see, ATA decreases as ε increases. Thus, our
methods do not exhibit the behavior a) of obfuscated gradients. We also observe that across datasets
and architectures, Int achieves comparable PGD accuracy on the largest evaluated ε to adversarial
training (0.790 vs 0.890 on MNIST, 0.270 vs 0.170 on CIFAR). We highlight that such a robustness
of classification is achieved by promoting robustness of interpretability alone (without using the ad-
versarial loss). It is worth mentioning that IG-Norm fails to defend PGD attack with ε = 0.3 for the
Small MNIST model. We further note that Int-1-class performs much worse than Int, supporting the
importance of using 2-class discrepancy measure (see Prop. 1). Besides robust classification, IG-
Norm and Int-1-class are also not sufficient to render robustness in interpretation (Table 2). Next,
Table 4 shows ATA of interpretability-aware robust training against k-step PGD attacks (examining
behavior b) of obfuscated gradients), where k ∈ {1, 10, 100, 200}. As we can see, ATA decreases
as k increases. This also suggests that the high robust accuracy from our methods is not a result of
obfuscated gradients. Similar to Table 3, we see that compared to Int, IG-Norm and Int-1-class are
insufficient to defend PGD attacks with k ≥ 100.

Beyond `∞-norm PGD attacks. In Table 5, we present ATA of interpretability-aware robust train-
ing and various baselines for defending attacks (Gabor, Snow, JPEG `∞, JPEG `2, and JPEG `1)
recently proposed in (Kang et al., 2019). These attacks are called ‘unforseen attacks’ since they
are not met by PGD-based robust training and often induce larger perturbations than conventional
PGD attacks. For robust training methods without resorting to adversarial loss, we find that Int sig-
nificantly outperforms IG-Norm especially under Snow and JPEG `p attacks. Int also yields quite
competitive robustness compared to AT-type methods, verifying that interpretability alone could
help adversarial robustness.

Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Small

Normal 1.000 0.530 0.045 0.000 0.000
Adv 0.980 0.960 0.940 0.925 0.890
TRADES 0.970 0.970 0.955 0.930 0.885
IG-Norm 0.985 0.950 0.895 0.410 0.005
IG-Norm-Sum 0.975 0.955 0.935 0.910 0.880
Int-1-class 0.975 0.635 0.330 0.140 0.125
Int 0.935 0.930 0.905 0.840 0.790
Int-Adv 0.950 0.945 0.905 0.880 0.855

ε = 2/255 4/255 6/255 8/255

CIFAR, WResnet

Normal 0.765 0.250 0.070 0.060 0.060
Adv 0.720 0.605 0.485 0.330 0.170
TRADES 0.765 0.610 0.460 0.295 0.170
Int 0.735 0.630 0.485 0.365 0.270
Int-Adv 0.665 0.585 0.510 0.385 0.320
Int-1-class 0.685 0.505 0.360 0.190 0.065

Table 3: 200-step PGD accuracy for different val-
ues of perturbation size ε. Best ATA results are
highlighted (1st, 2nd, 3rd) at each column. Note
that ATA with ε = 0 reduces to natural accuracy.

Method Steps= 1 10 100 200

MNIST, Small, ε = 0.3

Normal 0.990 0.070 0.000 0.000
Adv 0.975 0.945 0.890 0.890
TRADES 0.970 0.955 0.885 0.885
IG-Norm 0.970 0.905 0.005 0.005
IG-Norm-Sum 0.970 0.940 0.880 0.880
Int-1-class 0.950 0.365 0.125 0.125
Int 0.935 0.910 0.790 0.790
Int-Adv 0.950 0.905 0.855 0.855

CIFAR, Wresnet, ε = 8/255

Normal 0.470 0.075 0.060 0.060
Adv 0.590 0.205 0.185 0.185
TRADES 0.590 0.180 0.165 0.165
Int 0.620 0.310 0.275 0.275
Int-Adv 0.580 0.345 0.335 0.335
Int-1-class 0.505 0.100 0.060 0.060

Table 4: Multi-step PGD accuracy. Best ATA
results are highlighted (1st, 2nd, 3rd) at each
column.

6 CONCLUSION
Method Gabor Snow JPEG `∞ JPEG `2 JPEG `1

CIFAR-10, Small

Normal 0.125 0.000 0.000 0.030 0.000
Adv 0.190 0.115 0.460 0.380 0.230
TRADES 0.220 0.085 0.425 0.300 0.070
IG-Norm 0.155 0.015 0.000 0.000 0.000
IG-Norm-Sum 0.185 0.110 0.480 0.375 0.215
Int 0.160 0.105 0.440 0.345 0.260
Int-Adv 0.150 0.120 0.340 0.310 0.235

Table 5: ATA on different unforeseen attacks in (Kang
et al., 2019). Best results in each column are high-
lighted (1st, 2nd, 3rd)

In this paper, we investigate the connection be-
tween network interpretability and adversarial
robustness. We show theoretically and empiri-
cally that with the correct choice of discrepancy
measure, it is difficult to hide adversarial exam-
ples from interpretation. We leverage this dis-
crepancy measure to develop a interpretability-
aware robust training method that displays 1)
high classification robustness in a variety of set-
tings and 2) high robustness of interpretation.
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APPENDIX

A PROOF OF PROPOSITION 1

For ∀c ∈ [C], by the completeness axiom we have fc(x) =
∑
i[L(x, c)]i. Using this fact, we obtain

that

ft′(x
′)− ft′(x) =

∑
i

([L(x′, t′)]i − [L(x, t′)]i)

≤
∑
i

|[L(x′, t′)]i − [L(x, t′)]i| = ‖L(x′, t′)− L(x, t′)‖1. (10)

Similarly, we have

ft(x)− ft(x′) ≤ ‖L(x, t)− L(x′, t)‖1. (11)

Adding (10) and (11) rearranging yields

[ft′(x
′)− ft(x′)] + [ft(x)− ft′(x)] ≤ ‖L(x′, t′)− L(x, t′)‖1 + ‖L(x, t)− L(x′, t)‖1. (12)

Since ft′(x′) − −ft(x′) ≥ 0, we then have ‖L(x′, t′) − L(x, t′)‖1 + ‖L(x, t) − L(x′, t)‖1 ≥
ft(x)− ft′(x), which is equivalent to (5).

14



Under review as a conference paper at ICLR 2020

B ADDITIONAL TABLES

Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.990 0.435 0.070 0.000 0.000
Adv 0.930 0.885 0.835 0.695 0.535
TRADES 0.955 0.910 0.870 0.720 0.455
IG-Norm 0.980 0.940 0.660 0.050 0.000
IG-Norm-Sum 0.920 0.885 0.840 0.700 0.540
Int 0.950 0.930 0.875 0.680 0.390
Int-Adv 0.870 0.840 0.810 0.755 0.690
Int-1-class 0.975 0.885 0.720 0.200 0.130

ε = 0 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.650 0.015 0.000 0.000 0.000
Adv 0.505 0.470 0.380 0.330 0.285
TRADES 0.630 0.465 0.355 0.235 0.140
IG-Norm 0.525 0.435 0.360 0.295 0.230
IG-Norm-Sum 0.390 0.365 0.325 0.310 0.285
Int 0.530 0.450 0.345 0.290 0.215
Int-Adv 0.675 0.145 0.005 0.000 0.000
Int-1-class 0.515 0.450 0.380 0.315 0.265

Table A1: 200 steps PGD accuracy, additional results.

Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.990 0.435 0.070 0.000 0.000
Adv 0.930 0.885 0.835 0.695 0.535
TRADES 0.955 0.910 0.870 0.720 0.460
IG-Norm 0.980 0.945 0.660 0.060 0.000
IG-Norm-Sum 0.920 0.885 0.840 0.700 0.540
Int 0.950 0.930 0.875 0.680 0.385
Int-Adv 0.870 0.840 0.810 0.755 0.700
Int-1-class 0.975 0.885 0.720 0.200 0.130

ε = 0 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.650 0.015 0.000 0.000 0.000
Adv 0.505 0.470 0.380 0.330 0.285
TRADES 0.630 0.465 0.355 0.235 0.140
IG-Norm 0.525 0.435 0.360 0.295 0.230
IG-Norm-Sum 0.390 0.365 0.325 0.310 0.285
Int 0.530 0.450 0.345 0.290 0.215
Int-Adv 0.675 0.145 0.005 0.000 0.000
Int-1-class 0.515 0.450 0.380 0.315 0.265

Table A2: 100 step PGD accuracy, additional results.
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Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.990 0.470 0.135 0.135 0.135
Adv 0.930 0.885 0.845 0.845 0.845
TRADES 0.955 0.910 0.870 0.870 0.870
IG-Norm 0.980 0.945 0.705 0.705 0.705
IG-Norm-Sum 0.920 0.885 0.850 0.850 0.850
Int 0.950 0.930 0.885 0.885 0.885
Int-Adv 0.870 0.840 0.810 0.810 0.810
Int-1-class 0.975 0.885 0.750 0.750 0.750

ε = 0 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.650 0.015 0.000 0.000 0.000
Adv 0.505 0.470 0.380 0.325 0.280
TRADES 0.630 0.465 0.360 0.240 0.145
IG-Norm 0.675 0.145 0.005 0.000 0.000
IG-Norm-Sum 0.515 0.450 0.380 0.315 0.265
Int 0.525 0.435 0.360 0.295 0.235
Int-Adv 0.390 0.365 0.325 0.310 0.285
Int-1-class 0.530 0.450 0.345 0.290 0.220

Table A3: 10 step PGD accuracy, additional results.

Method ε = 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.934 0.876 0.719 0.482
Adv 0.976 0.951 0.896 0.824
TRADES 0.976 0.952 0.891 0.815
IG-Norm 0.942 0.872 0.648 0.341
IG-Norm-Sum 0.976 0.951 0.895 0.824
Int 0.964 0.928 0.852 0.771
Int-Adv 0.977 0.957 0.921 0.891
Int-1-class 0.930 0.871 0.779 0.704

ε = 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.694 0.350 0.116 -0.031
Adv 0.958 0.907 0.849 0.783
TRADES 0.940 0.867 0.781 0.689
IG-Norm 0.810 0.552 0.308 0.131
IG-Norm-Sum 0.958 0.907 0.847 0.779
Int 0.965 0.926 0.883 0.840
Int-Adv 0.979 0.956 0.931 0.904
Int-1-class 0.961 0.918 0.871 0.820

Table A4: Kendall rank correlation coefficients of top-k CAM attacks against interpretability found
using 200 steps of PGD, additional results.
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Method ε = 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.957 0.912 0.811 0.594
Adv 0.978 0.955 0.903 0.839
TRADES 0.978 0.955 0.900 0.822
IG-Norm 0.979 0.955 0.879 0.771
IG-Norm-Sum 0.979 0.956 0.905 0.843
Int 0.949 0.893 0.759 0.588
Int-Adv 0.983 0.967 0.938 0.909
Int-1-class 0.934 0.858 0.747 0.717

ε = 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.691 0.335 0.118 -0.031
Adv 0.958 0.908 0.850 0.781
TRADES 0.939 0.866 0.779 0.690
IG-Norm 0.805 0.546 0.303 0.117
IG-Norm-Sum 0.957 0.906 0.844 0.773
Int 0.964 0.925 0.881 0.831
Int-Adv 0.975 0.949 0.919 0.886
Int-1-class 0.959 0.914 0.861 0.803

Table A5: Kendall rank correlation coefficients of top-k GradCAM++ attacks against interpretability
found using 200 steps of PGD, additional results.
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