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ABSTRACT

Seeking effective networks has become one of the most crucial and practical areas
in deep learning. The architecture of a neural network can be represented as a di-
rected acyclic graph, whose nodes denote the transformation of layers and edges
represent information flow. Despite the selection of micro node operations, macro
connections among the whole network, noted as topology, largely affects the opti-
mization process. We first rethink the residual connections via a new topological
view and observe the benefits provided by dense connections to the optimization.
Motivated by which, we propose an innovative method to optimize the topology of
a neural network. The optimization space is defined as a complete graph, through
assigning learnable weights which reflect the importance of connections, the op-
timization of topology is transformed into learning a set of continuous variables
of edges. To extend the optimization to larger search spaces, a new series of net-
works, named as TopoNet, are designed. To further focus on critical edges and
promote generalization ability in dense topologies, auxiliary sparsity constraint is
adopted to constrain the distribution of edges. Experiments on classical networks
prove the effectiveness of the optimization of topology. Experiments with To-
poNets further verify both availability and transferability of the proposed method
in different tasks e.g. image classification, object detection, and face recognition.

1 INTRODUCTION

Deep learning successfully transits the feature engineering from manual to automatic design. As a
tendency, seeking effective neural networks gradually becomes an important and practical direction.
Topologically, the architecture of a network can be expressed as a direct acyclic graph, whose nodes
denote the transformation of layers and edges represent information flow. Corresponding to micro
operations within a layer/block, the macro connections of the whole network also experienced a
series of evolutions. And we denote the macro connections as topology in this work.

At initial periods, AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014) with
plain topology were proposed. Due to the problems of gradient vanishing and exploding, extending
the network to a deeper level for better representation is nearly difficult. To better adapt the optimiza-
tion process of gradient descent, GoogleNet (Szegedy et al., 2015) adopted parallel modules, and
Highway networks (Srivastava et al., 2015) utilized gating units to regular the flow of information,
resulting in multipath and elastic topologies. Driven by the significance of depth, the residual block
consisted of residual mapping and shortcut was raised in ResNet (He et al., 2016a). Topological
changes in neural networks successfully scaled up neural networks to hundreds or even thousands
of layers. The residual topology was widely approved and applied in the following works, e.g. Mo-
bileNet (Sandler et al., 2018; Howard et al., 2019) and ShuffleNet (Zhang et al., 2018). Divergent
from relative sparse topologies, DenseNet (Huang et al., 2017) wired densely within a block to reuse
features fully. Recent advances in computer vision also explore neural architecture search (NAS)
methods (Zoph et al., 2018; Liu et al., 2019b; Tan et al., 2019) to jointly search micro operations
and topology. To trade-off efficiency and performance, their topologies are hand-designed stacked
patterns and constrained in limited searching spaces. Orthogonally, randomly wired networks (Xie
et al., 2019) explored random topology as architecture by different generators, and obtained com-
petitive performance. These trends reflect the great impact of topology on the optimization of neural
networks. Echoing this perspective, we wonder: Can topology itself in neural networks be opti-
mized? What is the suitable route to do this?
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Figure 1: From natural view to topological view of networks with residual connections. We map
both addition and unary layer to nodes, and data flow to edges. Red node denotes input x and green
one means output y. Red signs give an example of this mapping for a node with in-degree of 3.

To answer these questions, we start by understanding the most representative residual connection
for its topology. It formulates x + F(x) as a basic component, in which x represents the identity
shortcut, and F(x) denotes the residual mapping. Figure 1 presents two residual architectures with
interval of 1 and 2 respectively. And the number of interval represents the number of layers that
make up a block. If we map both combining (e.g., addition) and transformation (e.g., 3 × 3 conv)
to a node, and flow of features to an edge, then the architecture can be expressed as a directed
acyclic graph (DAG) in topology. From the topological view, the residual connections are rather
denser than the natural perspective. This novel representation illustrates residual networks perform
multiple feed-forward paths instead of a single deep network. When the interval degrades to 1, its
topology evolves into a complete DAG. For a complete DAG with n nodes, the number of available
paths from input to output is (n−1)!. As a result, most layers are straight connected to the input and
output, resulting in direct access to the gradients and the original input. So we make a hypothesis
that dense wirings in topology benefit the optimization process.

To verify the hypothesis and explore the effects of differently wired topologies, toy experiments on
CIFAR-100 (Krizhevsky et al., 2009) are conducted. To ensure universality, three types of layer
are selected respectively, including 3 × 3 conv, 3 × 3 inverted bottleneck (Sandler et al., 2018)
and 3 × 3 separable depthwise conv (Howard et al., 2017). Defining the total number of nodes,
we establish three series of networks under different intervals. Loss curves during training and
test performance are given in Figure 2. It demonstrates an obvious topology-induced impact on
optimization. First, it shows denser networks (intervals of 1 and 2) can achieve lower training losses
in the majority of cases. Second, the optimal topology is different for different node types (2 for
conv, 1 for depthwise and inverted bottleneck). It is possible due to that not all connections are
beneficial, and the aggregation of features should be discretionary. So we modify the hypothesis as
the topology with dense and effective connections are necessary for networks that are compatible
with the optimization process. Regardless of the node types, the optimal structure is always a subset
of the complete graph. Naturally, finding the optimal topology in a full searching space is equivalent
to finding the optimal sub-graph in the complete graph.

To focus on the optimization of topology itself, in this work, we exclude the influence of the mixture
of different layers/nodes and select the complete DAG as the searching space. Through assign-
ing learnable weights which reflect the importance of connections of edges, the topology can be
optimized through gradient descent. Then task-related architectures can be achieved conveniently.
Besides, this optimization method is also compatible with existing networks. Given a basic network,
optimization of topology can lead to improvement without additional computing burdens. To verify
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Figure 2: The impact of topology changes on the training process in CIFAR-100. Each subgraph
represents the loss curves of networks composed of a single node type when the topology changes.
The tags at the top give the type of node used, interval of residual blocks and test Top-1 accuracy.

the effectiveness of the optimization of topology in larger searching spaces, we also propose a well-
designed network named TopoNet. To solve the optimization problem in a large space and promote
generalization, we attach auxiliary sparsity regularization to the distribution of edges, resulting in
critical connections and better generalization. Our contributions are as follows:

• We first rethink the residual connections via a new topological view and observe the benefits
provided by dense connections to the optimization.

• We propose an innovative method to optimize the topology of a neural network. The opti-
mization space is defined as a complete graph, through assigning learnable weights which
reflect the importance of connections, the optimization of topology is transformed into
learning a set of continuous variables of edges.

• The proposed optimization method of topology is effective for existing networks.
• When extended to larger search space, TopoNets and optimization using sparsity constraint

verify the availability and transferability in different tasks, including image classification
on ImageNet, object detection on COCO and face recognition on MegaFace.

2 METHODOLOGY

2.1 TOPOLOGICAL REPRESENTATION OF ARCHITECTURE

We represent the neural network using a directed acyclic graph (DAG) in topology: G = (N , E).
Each node ni ∈ N owns an operation oi, such as convolution or identity mapping, parametrized
by wi, where i stands for the topological ordering. Edge eji = (j, i, αji) ∈ E means the flow of
features from node j to node i, and the importance of the connection is determined by αji. Each
node aggregates inputs from connected pre-order nodes, and conduct transformation to get an output
tensor xi. Then xi is sent out to the post-order nodes by the output edges. Among these nodes, the
first in topological ordering is appointed to be input, and the last to be output. These two nodes
do not transform features, just send/gather features. Except for the input and output nodes, other
nodes perform feature transformation, such as convolution, activation and normalization. To focus
on the impact of topological changes, the same type of operation is applied for all nodes. It can be
formulated as follows:

xi = oi(x
′
i;wi), where x′i =

∑
eji∈E

αji · xj . (1)

For a network with k stages, k DAGs are initialized and connected in series. Each graph is linked to
its preceding or succeeding stage by output or input node. The topology of network can be denoted
as a set α = {αk

ji}, and weights of transformation as a set w = {wk
i }. Given an input x, the

mapping function from sample to feature can be written as:

F(x) = Gk(· · · G2(G1(x;α1,w1);α2,w2) · · · ;αk,wk). (2)

2.2 SEARCHING SPACE AND OPTIMIZATION METHOD

In most previous literature (Tan et al., 2019; Guo et al., 2019), searching for a cell that is later
stacked as blocks for a deep network is an expedient solution to trade-off search efficiency and result
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Table 1: Architectures of TopoNets for ImageNet.

Layers Output Component Edges of Different Topologies
Size and Channels Random, p Residual, l Complete

Head 112× 112 7× 7 conv, C - - -

Stage 1 56× 56 N1 nodes, 2× C p ·
(
N1
2

)
N1−2
l

+
(N1−2

l
+2

2

) (
N1
2

)
Stage 2 28× 28 N2 nodes, 4× C p ·

(
N2
2

)
N2−2
l

+
(N2−2

l
+2

2

) (
N2
2

)
Stage 3 14× 14 N3 nodes, 8× C p ·

(
N3
2

)
N3−2
l

+
(N3−2

l
+2

2

) (
N3
2

)
Stage 4 7× 7 N4 nodes, 16× C p ·

(
N4
2

)
N4−2
l

+
(N4−2

l
+2

2

) (
N4
2

)
Classifier 1× 1 GAP, 1k-d FC, softmax - - -

optimality. But it constrains the possible topologies in a small subset of all possible graphs. Different
from them, we relax connections from block-wise to layer-wise, and define the searching space as
a complete DAG. It provides all possible connections and is much wider than cell-based or block-
based approaches. For a complete DAG with N nodes, the searching space contains 2N(N−1)/2

possible topological structures. Assigning learnable weights to edges transforms the optimization of
topology into learning a set of continuous variables weights for edges α. It provides a differentiable
type to update topology through gradients according to the loss of task noted as Ltask. Compared
with existing differentiable methods (e.g. DARTS), there is no need to conduct argmax operation
for α since it determines the fusion of features instead of the selection of operations. Continuous
α also guarantees the consistency between training and testing. During the process of optimization,
both w and α are optimized jointly. This optimization process can be viewed as:

min
w,α
Ltask = min

w,α
L(F(x;w,α),y) (3)

2.3 EXPANDING TO LARGER SEARCHING SPACES BY TOPONET

The verification of the optimization method requires a network as a base, which determines the
upper bound of the searching space. Existing networks are limited by the number of nodes, and
can only provide narrow possible structures. These may cover the influence caused by topological
changes and affect the search for optimal topology.

Therefore, we design a series of architectures named as TopoNets that can flexibly adjust searching
space, types of topology and node. As shown in Table 1, it consists of four stages with number
of nodes of {N1, N2, N3, N4}. The topology in each stage is defined by a graph, whose type can
be opted from {complete, random, residual}. The complete graph is used for the optimization of
topology. For a more strict comparison, we also take the other two types as baselines. The residual
one has been described in detail before, and the interval is referred to l. In the random one, an
edge between two nodes is linked with probability p, independent of all other nodes and edges. The
higher the probability, the denser it is. Following two simple design rules used in (He et al., 2016a),
(i) in each stage, the nodes have the same number of filters C; (ii) and if the feature map size is
halved, the number of filters is doubled. The change of filters is implied by the first calculation
node in each graph. For the head of the network, we use a single convolutional layer for simplicity.
The network ends with a classifier composed of a global average pooling (GAP), a 1000-dimension
fully-connected (FC) layer and softmax function.

2.4 SPARSITY CONSTRAINT

Much as the mammalian brain (Rauschecker, 1984) in biology, where synapses are created in the first
few months of a child’s development, followed by gradual re-weighting through postnatal knowl-
edge, growing into a typical adult with relative sparse connections. Same observation also be found
in Figure 2 (left) that moderate sparsity benefits the generalization. Inspired from these, we choose
L1 regularization, denoted as Lsparse, to penalize non-zero parameters of edges resulting in more
parameters near zero. This sparsity constraint promotes attention to more critical connections. Then
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Algorithm 1: Optimization of Topology in Neural Networks.

Input: Network wired with k DAGs G(N , E ;w,α); training set {(x, y)(s)}Ss=1; SparseType; λ.
Output: Optimized weights w and topology α.
for s = 1 . . . S do

Conduct forward propagation F(x), obtain Ltask and Lsparse ;
Calculate backward gradient and update w with∇wLtask ;
if SparseType is uniform then

Update α with∇αLtask + λ · ∇αLsparse ;
else if SparseType is adaptive then

Count input edges {eji|j < i} and its in-degree δi for each node ni;
Update αji according to δi with∇αjiLtask + λ · log(δi) · ∇αjiLsparse ;

end

the objective function of our proposed method can be formulated as:

min
w,α
Ltask + λ · Lsparse = min

w,α
L(F(x;w,α),y) + λ · ‖α‖1, (4)

where y stands for the label w.r.t the input x, and λ is a hyper-parameter to balance the sparsity level.
During the process of back-propagation, w can be updated through∇wLtask. Due to the properties
of a complete graph, we raise two types to update α. The first one attaches sparsity constraint on
all weights of edges uniformly by computing ∇αLtask + λ · ∇αLsparse, and is called uniform
sparse. The other one is logarithmically related to the in-degree δi of a node ni with input edges
{eji|j < i}. It performs larger constraint on dense input and smaller on sparse input, and is noted
as adaptive sparse. These two types will be further discussed in the experiments section. Algorithm
1 summarizes the procedure for the optimization of topology in neural networks.

3 EXPERIMENTS AND ANALYSIS

3.1 OPTIMIZATION FOR CLASSICAL NETWORKS

To investigate the applicability of the optimization method on representative networks, we select
ResNet-18 (He et al., 2016a) consited of 3 × 3 conv and MobileNetV2-1.0 (Sandler et al., 2018)
consisted of inverted bottleneck as node operation. For the optimization of ResNet-18, we change
the interval of 2 in the BasicBlock to 1 to form the complete graph. For MobileNetV2-1.0, each node
involves a residual connection and can be viewed as complete graph naturally. As a complement, we
deepen the depth by doubling the node in each stage, resulting in more possible topologies. Through
assigning learnable α to their edges, the topologies can be optimized using Formula 3.

Table 2: Optimization results for classical networks on ImageNet.
Basic Network Topology Params(M) FLOPs(G) Top-1(%) Top-5(%)

ResNet-18 origin 11.69 1.82 70.33 89.69
optimized 11.69 1.82 70.99(+0.66) 89.64

MobileNetV2-1.0 origin 3.51 0.31 72.62 91.16
optimized 3.51 0.31 72.86(+0.24) 91.12

MobileNetV2-1.0-2N origin 6.43 0.62 75.93 92.86
optimized 6.43 0.62 76.40(+0.53) 93.14

We evaluate our method on the ImageNet 2012 classification dataset (Russakovsky et al., 2015) that
consists of 1000 classes. The models are trained on the 1.28 million training images and evaluated on
the 50k validation images. For original topology, we achieve consistent results with PyTorch Model
Zoo 1. Comparative experiments are shown in Table 2. Under similar Params and FLOPs, the
optimization of topology brings 0.66% improvement on Top-1 for ResNet-18. For MobileNetV2-
1.0 and its 2N, the promotions are 0.24% and 0.53% separately. These confirm the optimization of
topology is effective to existing networks, and larger searching space can make more profit.

1https://pytorch.org/docs/stable/torchvision/models.html
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A detailed experimental setup for this section can be found in Sect. A.1.

3.2 OPTIMIZATION FOR DESIGNED TOPONETS

Due to restricted optional topologies of classical networks, the topology can be only optimized in
small searching spaces, which limits the representation ability of topology. In this section, we design
a larger searching space using TopoNets, and fully illustrate the improvement brought by topology
optimization. The properties of edges and nodes in the optimized topology are also analyzed.

3.2.1 EXPERIMENTAL SETUP FOR TOPONET

To initialize as many nodes as possible with defined parameters and calculations, we select the
separable depthwise convolution that includes a 3 × 3 depthwise convolution followed by a 1 × 1
pointwise convolution. Similar with (Xie et al., 2019), a triplet unit ReLU-conv-BN forms the
transformation in a node. The number of nodes in each stage is {14, 20, 26, 14}. In this setting, the

number of possible discrete topologies is 2
(
14
2

)
· 2
(
20
2

)
· 2
(
26
2

)
· 2
(
14
2

)
≈ 6× 10209. The weights of

α are initialized to be 1. And C is set to be 64 to match ResNet-50 (He et al., 2016a) for equivalent
comparison in the amount of parameters and calculations.

Table 3: Optimization results for designed TopoNets on ImageNet.
Network Initial Edges Params(M) FLOPs(G) Top-1(%) Top-5(%)

ResNet-50 - 25.57 4.08 76.50 93.10

Random, p = 0.8 {56,130,221,56} 23.23 3.95 77.59 93.69
Random, p = 0.6 {44,104,172,44} 23.23 3.95 77.85 93.65
Random, p = 0.4 {31,64,117,31} 23.23 3.95 77.94 93.76

Residual, l = 4 {19,36,46,19} 23.23 3.95 77.61 93.57
Residual, l = 3 {23,40,61,23} 23.23 3.95 78.10 93.83
Residual, l = 2 {34,64,103,34} 23.23 3.95 78.29 93.78

Complete {91,190,325,91} 23.23 3.95 77.24 93.40
Complete, α {91,190,325,91} 23.23 3.95 78.22 93.80
Complete, α, uniform sparse {91,190,325,91} 23.23 3.95 78.47 93.81
Complete, α, adaptive sparse {91,190,325,91} 23.23 3.95 78.61 93.92

†The changes of Params and FLOPs caused by edges for different topologies are negligible.

3.2.2 IMAGE CLASSIFICATION

Figure 3: The effect of sparsity constraint on distributions of α. Histogram on the left indicates that
sparsity drives most of the weights near zero. Adjacency matrices on the right shows the difference
between uniform and adaptive one, whose rows correspond to the input edges for a particular node
and columns represent the output ones. Colors indicate the weights of edges.

We conduct experiments in image classification as in Sect. 3.1. The validation results are shown in
Table 3. Some conclusions can be drawn from the results. (i) Compared with ResNet-50, TopoNets
achieve higher performances overall. These reflect the efficiency and elegance of the designed net-
work. (ii) TopoNets of random (0.4 ∼ 0.8) and residual (2 ∼ 4) reflect the benefits of moderate
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sparseness on representation using prior design. (iii) Under complete graphs, direct optimization
of topology can yield 0.98% improvement on Top-1. A similar result is obtained by residual (2),
which further reflects residual connection is a pretty manual-designed topology. (iv) Through as-
signing sparsity constraints, performances have been further improved. TopoNet of adaptive sparse
gets the best Top-1 by 78.61%. This proves the benefits of sparseness for dense topology.

In order to intuitively understand the optimization effect of sparsity constraints on dense topological
connections, distributions of α in optimized topologies are given in Figure 3. Compared with w/o
sparse, sparsity constraints push more parameters near zero, resulting in focusing on critical con-
nections. With the enhancement of constraints, more connections disappear. Excessive constraints
will damage the representation of features, so λ is set to be e-4 in all experiments. In the right, two
types of constraints are shown in different stages. Adaptive one penalizes denser connections a lot
and further strengthens relatively sparser but critical connections.

A detailed experimental setup for this section can be found in Sect. A.2.1.

3.2.3 GRAPH DAMAGE FOR TOPOLOGICAL PROPERTIES

Figure 4: Impact of node (left) and edge (right) removal for complete type of TopoNet.

To analyze the optimized topology, we select the trained complete model in Table 3.

First, we explore the influence by removing individual nodes according to its topological ordering
in the graph and evaluating without extra training. We expect them to break because dropping any
layer drastically changes the input distribution of all subsequent layers. Surprisingly, most removals
do not lead to a noticeable change as shown in Figure 4 (left). It can be explained that the available
paths is reduced from (n − 1)! to (n − 2)!, leaving sufficient paths. This suggests that each node
in the complete graph do not strongly rely on others, although it is trained jointly. Direct links
with input/output nodes makes each node contribute to the final feature representation, and benefits
the optimization process. Another observation is that nodes at the fore of topological orderings
contribute more to a stage. This can be used to reallocate calculation resources in future work.

Second, we consider the impact of edge removal. All edges with α below a threshold are pruned
from the graph, only remaining the important connections. Accuracies before and after retraining are
given in Figure 4 (right). Without retraining, accuracy decreases as the degree of pruning deepens.
It is interesting to see that we have the “free lunch” of reducing less than 40% without losing much
accuracy. If we fix α of remaining edges and retrain the weights, it can maintain accuracy with
80% of the nodes removed. This proves that the optimization process has found indeed important
connections. After pruning edges, nodes with zero in-degree or zero out-degree may be safely
removed. It can be used to reduce the parameters and accelerate inference in practical applications.

3.2.4 TRANSFERABILITY ON DIFFERENT TASKS

To evaluate the generalization and transferability for both optimization method and TopoNets, we
also conduct experiments on COCO object detection task (Lin et al., 2014). We adopt FPN (Lin
et al., 2017) as the object detection method. The backbone is replaced with corresponding pretrained
one in Table 3, and is fine-tuned on COCO train2017 dataset. The training configurations of different
models are consistent. Test performances are given in Table 4. To comparable ResNet-50, TopoNets
obtain significant promotions in AP with less computation costs. Contrast with elegant residual

7



Under review as a conference paper at ICLR 2020

topology, our optimization method can also achieve increase by 0.95%. These results indicate the
effectiveness of the proposed network and the optimization method.

A detailed experimental setup for this object detection can be found in Sect. A.2.2. Our method also
succeeds in face recognition, whose details are given in Sect. A.2.3.

Table 4: Transferability results (%) on COCO object detection.
Backbone AP AP50 AP75 APS APM APL

ResNet-50 36.42 58.66 38.90 21.93 39.84 46.74

Residual, l = 2 40.74(+4.32) 63.22 44.62 25.01 44.18 52.74
Complete, α 41.35(+4.93) 63.32 45.08 25.63 44.99 53.47
Complete, α, uniform sparse 41.46(+5.04) 63.83 44.91 25.07 45.31 53.52
Complete, α, adaptive sparse 41.69(+5.27) 63.86 45.45 25.58 45.52 53.69

4 RELATED WORKS

We briefly review related works in the aspects of neural network structure design and relevant opti-
mization methods.

Neural network design is widely studied in previous literature. From shallow to deep, the shortcut
connection plays an important role. Before ResNet, an early practice (Venables & Ripley, 2013)
also added linear layer connected from input to the output to train multi-layer perceptrons. Besides,
“inception” layer was proposed in (Szegedy et al., 2015) that is composed of a shortcut branch and
a few deeper branches. Except on large networks, shortcut also proved effective in small networks,
e.g. MobileNet (Sandler et al., 2018), ShuffleNet (Zhang et al., 2018) and MnasNet (Tan et al.,
2019). The existence of shortcut eases vanishing/exploding gradients (He et al., 2016a; Srivastava
et al., 2015). In this paper, we explain from a topological view that shortcut offers dense connec-
tions and benefits optimization. On the macro structure, there also exist many networks with dense
connections. DenseNet (Huang et al., 2017) contacted all preceding layers and passed on the feature
maps to all subsequent layers in a block. HRNet (Sun et al., 2019) benefits from dense high-to-low
connections for fine representations. Densely connected networks promote the specific task of lo-
calization (Tang et al., 2018). Moreover, we optimize the desired network from the complete graph.
This also provides a supplement to (Xie et al., 2019) where random graphs generated by different
generators are employed to form a network.

Above the optimization process, our method is consistent with DARTS (Liu et al., 2019b) which is
differentiable. Different from it, we do not adopt alternative optimization strategies for weights and
architecture. Joint training can replace the transferring step from one task to another, and obtain task-
related topology. Different from sample-based optimization methods (Real et al., 2019), our method
obtains optimized architecture in the manner of one-shot. (Bender et al., 2018; Guo et al., 2019)
also explored this type and utilized weight-sharing across models to amortize the cost of training.
Searching from the full space is evaluated in object detection by NAS-FPN (Ghiasi et al., 2019),
in which the feature pyramid is sought in all cross-scale connections. In the aspect of semantic
segmentation, Auto-DeepLab (Liu et al., 2019a) also formed a hierarchical architecture to enlarge
possible spaces. The sparsity optimization can also be observed in other applications, e.g. path
selection for a multi-branch network (Huang & Wang, 2018), and pruning unimportant channels for
fast inference (Han et al., 2015).

5 CONCLUSION

In this work, we have found a feasible way to the optimization of topology in neural networks.
Motivated by the topological view, the optimization space is defined as a complete graph, through
assigning learnable weights which reflect the importance of connections, the optimization of topol-
ogy is transformed into learning a set of continuous variables of edges. This method is compatible
with existing networks, such as ResNet and MobileNet. TopoNet and corresponding sparsity con-
straint also proved the effectiveness and transferability in the larger optimization space. Moreover,
the observed properties of topology can be used for future works.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS FOR CLASSICAL NETWORKS

A.1.1 RESNET-18

On ImageNet, we train ResNet-18 using 16 GPUs 2 for 100 epochs with batch size of 1024. The
initial learning rate is 0.4 and is lowered by 10 times at 30, 60 and 90 epochs. Following (Gross
& Wilber, 2016), we use a weight decay of e-4 and a Nesterov momentum (Sutskever et al., 2013)
of 0.9 without dampening. We adopt the same data augmentation scheme for training images as
in (Gross & Wilber, 2016; He et al., 2016a;b) The training and test size is 224 × 224. We report
classification accuracy on the validation set.

A.1.2 MOBILENETV2

On ImageNet, we train MobileNetV2 using 16 GPUs for 200 epochs with batch size of 1024. The
initial learning rate is 0.4 and cosine shaped learning rate decay (Loshchilov & Hutter, 2017) is
adopted. Following (Sandler et al., 2018), we use a weight decay of 4e-5 and dropout (Hinton et al.,
2012) of 0.2. Nesterov momentum of 0.9 without dampening is also used. The training and test size
is 224× 224. We report classification accuracy on the validation set. And the data augmentation is
used the same as Sect. A.1.1.

A.2 EXPERIMENTAL DETAILS FOR TOPONETS

A.2.1 IMAGE CLASSIFICATION

On ImageNet, TopoNets of random, residual and complete are trained using 16 GPUs for 100 epochs
with batch size of 1024. The initial learning rate is 0.4, and cosine shaped learning rate decay is
adopted. We use a weight decay of e-4 and a Nesterov momentum of 0.9 without dampening.
Dropout is not used. Label smoothing regularization (Szegedy et al., 2017) with a coefficient of 0.1
is also used. The training and test size is 224 × 224. For fair comparison, ResNet-50 are trained
under the same setting. We report classification accuracy on the validation set.

A.2.2 TRANSFERABILITY ON OBJECT DETECTION

We perform experiments on the 80 category COCO detection dataset. We train using the COCO
train2017 dataset, and test using the COCO val2017 dataset. Following (Lin et al., 2017), the input
image is resized such that its shorter side has 800 pixels. We adopt synchronized SGD training on
16 GPUs. A mini-batch involves 2 images per GPU and 256 anchors per image. We use a weight
decay of e-4 and a momentum of 0.9 without dampening. Our fine-tuning is based on 1× setting of
the publicly available Detectron (Girshick et al., 2018).

A.2.3 TRANSFERABILITY ON FACE RECOGNITION

We evaluate and compare the performance of proposed methods as feature extractors for face
recognition. The most challenging face identification task on MegaFace dataset (Kemelmacher-
Shlizerman et al., 2016) is selected. The MegaFace dataset includes 1M images of 690K different
individuals as the gallery set and 100K photos of 530 unique individuals from FaceScrub (Ng &
Winkler, 2014) as the probe set. Following (Deng et al., 2019), we select ArcFace as loss, and
MS1MV2 (Guo et al., 2016) for training set. For feature extraction, a hidden FC layer is added
before the classifier. And the output dimension of FC in the classifier is set equal to the number
of individuals of the training set. And the dimension of feature representation is set to 256 for all
experiments. We train for 80k iterations with batch size of 512 using 8 GPUs. The initial learning
rate is 0.0375. Following (Deng et al., 2019), the learning rate is lowered by 10 times at 30k, 50k
and 70k iterations. We use a weight decay of e-4 and a momentum of 0.9 without dampening.

2All of our experiments were performed using NVIDIA Tesla V100 GPUs with our implementation in
PyTorch (Paszke et al., 2017).
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Identification results are given in Table 5, and it should be noted that the Rank-1 accuracy of one mil-
lion distractors is extremely strict. TopoNets achieve outperforming performances against ResNet-
50 with less calculation costs. Comparisons among TopoNets also illustrate the applicability of the
optimization for topology in face recognition.

Table 5: Optimization results on MegaFace face identification.

Network Params (M) Rank-1 (%)
Conv/BN FC (1M distractors)

ResNet-50 23.51 25.69 94.69

Residual, l = 2 20.64 12.85 96.10(+1.41)
Complete, α 20.64 12.85 96.44(+1.75)
Complete, α, uniform sparse 20.64 12.85 96.51(+1.82)
Complete, α, adaptive sparse 20.64 12.85 96.62(+1.93)
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