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ABSTRACT

We propose and investigate the design of a new convolutional layer where kernels
are parameterized functions. This layer aims at being the input layer of convolu-
tional neural networks for audio applications. The kernels are defined as functions
having a band-pass filter shape, with a limited number of trainable parameters.
We show that networks having such an input layer can achieve state-of-the-art
accuracy on several audio classification tasks. This approach, while reducing the
number of weights to be trained along with network training time, enables larger
kernel sizes, an advantage for audio applications. Furthermore, the learned filters
bring additional interpretability and a better understanding of the data properties
exploited by the network.

1 INTRODUCTION

In audio signal processing, time-frequency representations such as spectrograms are central tools.
They have an intuitive interpretation and reveal insightful information to the human expert. It is not a
surprise that many deep learning approaches to audio signals use such representations as well (Choi
et al., 2017; Purwins et al., 2019). It is also convenient as most of the deep network architectures
have been developed for image processing and require 2D arrays of values as inputs. The network
learns to detect time-frequency patterns, similarly to what is done on images. Depending on the task,
it may then output a classification of a sound (Piczak, 2015; Salamon & Bello, 2017), a denoised
signal (Lu et al., 2013) or separated sources (Chandna et al., 2017).

However, natural images and spectrograms do not possess the same properties and turning an audio
file into an image has some limitations. Among them, spectrogram representations can be defined in
many different ways, with different time window shapes and sizes or different frequency spacing. Choi
et al. (2017) and Purwins et al. (2019) give a review of the different time-frequency representations
used in deep learning. In addition, patterns in the time-frequency plane are different from those
that can be found in images: the former are usually less complex, with smoother edges and limited
textures. Furthermore, the axes are not equivalent in the spectrogram as frequency is different from
time. For example a frequency-shifted pattern may result in a different sound classification (Lee &
Nam, 2017), while a temporal shift does not. Moreover, the spectrogram is the magnitude of the
short-time Fourier transform and the information contained in the phase is not taken into account.
Lastly, computing a spectrogram, and possibly inverting it for synthesis, adds a computational burden
which can be important for large audio datasets.

To overcome these limitations, an alternative direction has been chosen consisting of taking an
end-to-end approach where the raw audio file is the input of the network. The recent success of
Wavenet (Oord et al., 2016; Paine et al., 2016; Oord et al., 2017) demonstrates the efficiency of
this approach for audio synthesis. Raw audio input is also beneficial for speech separation tasks.
Tasnet (Luo & Mesgarani, 2018) as well as Wave-U-Net (Stoller et al., 2018) show better performances
for speech separation and faster processing compared to spectrogram-masking approaches.

In end-to-end approaches, one-dimensional convolutions are applied to raw audio signals. However,
kernel size needs to be much larger than the one used for image applications. Indeed, at a sampling
rate of 44kHz, 44 samples represent 1 ms of audio signal. To capture audio patterns that have duration
of 10, 100 ms or more, in particular low frequency patterns, either large kernels are needed or deeper
convolutional architectures (to allow for combinations of kernels at many different positions in time).
Both solutions lead to a large increase in the number of parameters to be learned and hence require
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more training time and more data. The "atrous" convolution have been introduced in Wavenet in
order to increase the time length of the kernel without increasing the number of weights to learn.
Finding alternative ways for unlocking the time-length limit is an important challenge for raw audio
processing in deep learning.

Motivation. In the case of end-to-end learning, several studies investigate convolution kernels learned
from the raw audio signal (Dieleman & Schrauwen, 2014; Tüske et al., 2014; Golik et al., 2015;
Sainath et al., 2015). They all show that the input kernel’s focus in frequency is similar to the one
of the Mel or auditory scale. The kernel shapes in the spectral domain are similar to band-pass
filters, with more narrow-band kernels localized on the low frequency spectrum than in the high
frequency. This behavior does not depend on the network architecture nor on the application such
as speech recognition (Hoshen et al., 2015; Zeghidour et al., 2018) or audio tagging (Dieleman
& Schrauwen, 2014). All of these results suggest that the logarithmic spacing of frequencies and
bandwidth properties first established in the psycho-acoustics studies with the Mel/Bark scales
are somehow universal in audio analysis tasks. These works point out the tendency of the input
convolution kernels to adopt band-pass filter shapes. Hence, we hypothesize that designing kernels
with a band-pass property results in an inductive bias that helps the network converge more rapidly
and possibly reduces overfitting. Our first motivation is to confirm this hypothesis.

The studies cited above remain experimental without, yet, precise spectral and temporal properties
of the kernels. In addition, most of them initialize the kernels as band-pass filters with a Mel
scale frequency spacing. So the influence of the kernel initialization remains unclear. Our second
motivation is to investigate more precisely these filters’ properties.

Our contribution1. Adopting a hybrid approach, half way between the raw audio and the spectro-
gram, we propose to learn particular filters’ shapes having a limited number of parameters that fully
define them. These filters are the kernels of the first convolutional input layer of the network. This set
of kernels may be seen as a filter bank. Consequently, the new input layer acts on the raw audio and
outputs a learned time-frequency representation, adapted to the task. The functions we propose are
modulated Gaussian windows, Gammatone and Gammachirp functions. Their performance will be
compared with Wavelets, that are present in literature.

The goal of these filters is two-fold. Firstly, it reduces the number of parameters to learn. It makes
the size of the kernel independent of the number of weights to learn and enables the usage of large
temporal inputs. We show that this approach speeds up the learning process and improves the accuracy
on several audio classification tasks. In addition, our experiments show that the number of filters
required to obtain the best results is small, around 20-30. We also demonstrate that the performances
of different functions proposed in audio signal processing (modulated Gaussian, Gammatone and
Gammachirp functions) give close results and are better than Wavelets at classifying sounds. Secondly,
this layer of parameterized functions helps understanding the filtering process done within the first
layer of deep networks. This opens the way to a better interpretation of the neural networks and
beyond, of the intricate relationship and the shape of audio patterns in the time-frequency space. In
our experiments, a relationship between the central frequency of the filter and its temporal width
emerges with the learning. This is in agreement with the ERB (Equivalent Rectangular Bandwidth)
and Bark scales found in psycho-acoustic studies.

Related work. The kernel shapes proposed in the present work are based on specific signal process-
ing functions. They are used for performing short-time Fourier transforms or more generally for
designing filterbanks. Modulated (truncated) Gaussian are emblematic examples. Gammatones and
Gammachirp functions are used in cochlear models (Saremi et al., 2016). They provide interesting
results when combined with deep learning models for speech enhancement (Baby & Verhulst, 2018).

The concept of learning filters has been first introduced in three recent works by Seki et al. (2017), Ra-
vanelli & Bengio (2018) and Khan & Yener (2018). The first one introduces Gaussian filters in the
input layer. Parameters are the amplitude, the Gaussian width and the modulation frequency. An
increase of the classification accuracy is reported with the learned parameters. However, the filter
learning is seen as a fine-tuning of the network after the first training pass with fixed Gaussian param-
eters. In the present work, the filter layer is fully integrated in the learning process, the parameters
are learned from the beginning. In Ravanelli & Bengio (2018), the authors introduce a layer, called

1The SpectroBank code will be made publicly available after the review process. The main part of it has
been submitted for review.
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SincNet, made of sine modulated functions that approximate band-pass rectangular windows in the
frequency domain. The learned parameters are the minimal and maximal cut-off frequencies of
each band-pass filter. One of the main results is given by the cumulative frequency response of the
SincNet filters. The network tends to focus more on particular regions of the frequency space, where
formants are localized. This is interesting as it shows how the parameterized filters enable a precise
interpretation of the learning and underline particular spectral properties of the data. The present
work goes further in this direction. Eventually, Khan & Yener (2018) introduce Wavelet filter banks
learned for speech recognition. Each kernel is a Wavelet defined by a single parameter, its scale. It
shows evidences both of the efficiency of this approach and of the possibility to interpret the shape of
the learned kernels. We compare the efficiency of the Wavelet filters with several other modulated
windows and show that the former under-performs on audio signals.

2 LEARNABLE FILTER BANKS (SPECTROBANK)

We design a new convolutional neural network layer, called SpectroBank. In this layer the kernels
are functions defined by a few parameters that are learned. We call these functions filters, making a
parallel with filters in signal processing. Indeed, these functions have the property of being band-pass
filters and are well known in audio signal processing. One of the trainable parameters of each filter is
the central frequency of the band-pass filter. The second parameter is the bandwidth of the filter (or a
quantity closely related to it). Hence this set of filters forms a filter bank where the frequency and
bandwidth of the filters may be adapted to the data and to the learning task. Note that the learned
filterbank may not cover the entire spectrum but should focus on important spectral regions that are
the most discriminative for classification.

The input of the SpectroBank layer is a 1D audio signal and the output is a 2D representation. The
output representation axes are time and filter number. Since each filter is associated to a particular
frequency band, this 2D representation can be seen as a time-frequency one (or time-scale in the
case of Wavelets). Initializing the filters by increasing frequencies (or scales), we can influence the
frequency ordering to follow the filter number.

In all the definitions, N denotes the filter length and n is the variable (sample number). The time in
second can be expressed using the sampling frequency fs with t = n/fs and the frequency in Hertz
with f × fs, where f ∈ [0, 0.5] is the normalized frequency in the formulas.

Mexican hat Wavelet. In order to compare to the state-of-the-art, we use the Mexican hat Wavelet
introduced in the paper by Khan & Yener (2018):
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with n ∈ [−N/2, (N − 1)/2] and s > 0 being the scale parameter.

Gaussian filter. Here, n ∈ [−N/2, (N − 1)/2]. The Gaussian filter g is defined as follows:
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The parameter σ > 0 is the variance of the Gaussian (temporal window width) and f is the oscillating
frequency. It is a complex-valued function that we split into its real and imaginary parts. For each f
and σ two kernels are created, one with the cosine modulation and one with the sine one.

Gammatone filter. The Gammatone filter (Darling, 1991; Patterson et al., 1992; Hohmann, 2002) is
another example of kernel. It is defined on the interval n ∈ [0, N − 1] as :

h(n) = A(γ, b)nγ−1e−2πbn (cos(2πfn) + i sin(2πfn)) , (3)

where A is the normalization, A(γ, b) =
√

2(4πb)(2γ+1)/Γ(2γ + 1). The parameter γ is the order
of the Gammatone. It can be learned or fixed to 2 or 4. These two orders are the best suited ones for
modeling the human hearing related filter bank (Patterson et al., 1987). In the experiments, we will
fix γ = 2 or γ = 4. The other learnable parameters are b, related to the width of the function, and f
the frequency. The symbol Γ denotes the Gamma function. The bandwidth B of h depends linearly
on b and is given by the following formula (Darling, 1991):

B(γ, b) = 2(21/γ − 1)1/2b. (4)
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Gammachirp filter. This function is similar to the Gammatone family ones but possesses an
oscillating frequency that may evolve with time. The Gammachirp function (Irino & Patterson, 1997)
is defined on the interval n ∈ [0, N − 1] as follows:

k(n) = A(γ, b)nγ−1e−2πbn [cos(2πfn+ c ln(n+ ε)) + i sin(2πfn+ c ln(n+ ε))] , (5)
where A is defined above. In the present work, γ is fixed to γ = 4. This filter possesses 3 parameters,
b related to the width of the window, f to the frequency and c to the chirp value. To avoid the
logarithmic singularity at the origin, we add a small positive value ε = 10−4 to the expression.

Remark 1: All the functions are defined and normalized in the continuous domain. In our application,
the filters are discretized and truncated in order to be implemented in the convolution layer. Since
they all vanish away from zero, it remains a good approximation, provided that the function’s width
does not exceed the fixed filter length N .

Remark 2: The modulated window functions are defined with a cosine (real part) and a sine (imaginary
part) term, relating them to the Fourier transform, the spectral domain and the standard definition of
filters in signal processing. For the sake of simplicity, in our experiments, we have chosen to use only
the cosine term. The absence of the sine term did not affect the accuracy of our classification results.
The network is able to adapt and detect discriminative patterns with a shifted cosine modulation.

Remark 3: It is important to distinguish the filter length N from the filter temporal width σ or b (or s
for the scale). The filter length is fixed, can not be learned and is the size of the vector on which the
filter is defined. The temporal width is learned and specifies the spread of the function over the vector
of size N . Therefore, the filter temporal width is always smaller than the filter’s length.

3 EXPERIMENTS AND RESULTS

We apply SpectroBank to several classification tasks described in the following sections. We want to
assess it on standard tasks found in the literature presented in the introduction. We have chosen 2
freely available speech datasets: AudioMNIST (Becker et al., 2018) and Google Speech Commands
v2 (Warden, 2018). Both datasets contain words pronounced by different speakers. These datasets
are dedicated to limited-vocabulary speech recognition tasks and the goal is to train the network to
correctly recognize the word present in each audio sequence. We also investigate the performances
of SpectroBank on an environmental sound dataset in order to cover more diverse audio patterns.
We have chosen the UrbanSound8K dataset (Salamon et al., 2014). This dataset have been used
recently for end-to-end learning (Dai et al., 2017; Abdoli et al., 2019). Statistics and spectral energy
distribution per class of these datasets are given in the Appendix B.

In order to compare the impact of the SpectroBank layer on the learning and classification results,
we use existing network architectures and modify the first layer. For networks with raw audio input,
the first convolutional layer (performing a standard 1D convolution) is replaced by our proposed
parameterized convolution layer. Our layer is then followed by a non-linear ReLU activation function.
A stride parameter is available allowing to define the overlap in time of consecutive convolutions.
Our focus being to learn from audio, we decided to compare our approach only to similar techniques,
despite the fact that image-based network achieve sometimes higher accuracy than the purely audio-
based ones. All the models used for the experiments were implemented using the Keras framework
and will be made publicly available along with the final version of the paper. Detailed architectures
of all networks can be found in appendix C. Training was performed using a NVidia GTX1080Ti
having 11 GB of RAM.

Input layer initialization. When initializing a filter bank for learning, most of the available solutions
start from a filter bank with a Mel-scale (or log-scale) frequency spacing (Sainath et al., 2013;
Zeghidour et al., 2018; Ravanelli & Bengio, 2018; Khan & Yener, 2018). This frequency distribution
is supposed to be optimal for audio processing and learning. However, in the present work, we want
to check this assumption. Hence we use linearly spaced frequencies (or scales), distributed over the
entire spectrum and a constant initialization value for the bandwidth (σ or b).

3.1 THE IMPACT OF SPECTROBANK PARAMETERS

The learnable parameters of the SpectroBank filters are not the only values that may influence the
network accuracy. The choice of the filter type is important as well as the filter length and the layer
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stride (filter overlap). We have tested different configurations and the results are shown on Fig. 1.
On the left, the accuracy increases with the number of filters up to around 30. Beyond this, no
improvement is reported. This number is hence a good compromise between accuracy and network
complexity. Similar trend holds for all filter types. These results highlight the better performance of
the modulated windows compared to the Wavelets. On Fig. 1b, the impact of the filters overlap (or
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Figure 1: Influence of several SpectroBank layer properties on the network accuracy. (Dataset:
Google Speech Commands)

kernel stride) is shown. It can lead to an accuracy drop of 5% when the convolution kernel are shifted
by 75% of their length (25% overlap).Indeed, the filter width (spread of the modulated window or
Wavelet) may be much smaller than the filter total length N . Nevertheless, the overlap is measured
on the total length. In extreme cases, narrow windows may not overlap at all and information is lost
during the convolution process. On the other extreme, for large overlap (or small stride), the output
of the SpectroBank layer may be too redundant. The convolutional layers following the SpectroBank
layer, deeper inside the network, may not be able to combine efficiently this output to detect large
temporal patterns. This results as well in a drop of the accuracy.

Within the range 1 to 100 ms, the filter length has no influence on the learning performance (except
in the 99% overlap setting). The patterns that discriminate the classes seems to be well captured by
any of these lengths.

3.2 AUDIOMNIST RESULTS

The original AudioMNIST paper (Becker et al., 2018) performs digit classification using raw audio
as input to a network called AudioNet. The code2 supplied with the paper has been re-used to
perform 5-fold validation on the data. AudioNet is made of six convolutional layers, each convolution
being followed by a max-pooling layer, and two dense layers, connected to an output layer. In all
tests performed using this dataset, the models were trained using the Adam optimizer with default
parameters during 50 epochs. Batch size used was set to 256 and loss function used was the categorical
cross-entropy. Test accuracy was then computed after this training phase and the same process was
repeated for each fold.

On the AudioMNIST dataset sampled at 8 kHz, AudioNet has ca. 17 million trainable parameters.
The original paper from (Becker et al., 2018) claims an accuracy of 92.53% ± 2.04%, whereas
our implementation of AudioNet using Keras and Adam optimizer (instead of SGD in the original
paper) yields an average accuracy of 94.9%± 1.54%, which is already a significant improvement.
We performed the same 5-fold validation using a modified version of AudioNet where the first
convolutional layer is replaced by a SpectroBank layer. This layer consists in 32 4th-order Gammatone
filters of length 80 (corresponding to 10 ms at 8 kHz). The stride has been set such that the overlap
between two consecutive convolution steps is equal to 75%. In this modified network, the number of

2https://github.com/soerenab/AudioMNIST

5

https://github.com/soerenab/AudioMNIST


Under review as a conference paper at ICLR 2020

trainable parameters drops to ca. 3.5 million trainable parameters, i.e. a reduction in size by a factor
5. Using the SpectroBank-enabled AudioNet the average accuracy increases to 96.8%± 1.22%.

Another SpectroBank-enabled network was used to perform the classification task on AudioMNIST.
The architecture, loosely adapted from the one used in the paper by Abdoli et al. (2019), is described
in appendix (Table 5). Despite its much smaller number of trainable parameters (ca. 300’000), its
average accuracy improves to 98.0%±0.41%. A summary of all results achieved using AudioMNIST
can be found in Table 1.

Table 1: AudioMNIST mean test accuracy

Network # Trainable parameters Avg. accuracy

AudioNet 17 M 94.9%± 1.54%
SpectroBank-AudioNet 3.5 M 96.8%± 1.22%
SpectroBank-custom 300 k 98.0%± 0.41%

3.3 GOOGLE SPEECH COMMAND RESULTS

The Google Speech Command dataset provides similar data to the AudioMNIST one, with a larger
number of classes (35) to distinguish. In the original setting, the goal was to classify 15 unwanted
words together as unknown. However, in the experiments we performed, we classify each word
independently. This dataset does not have pre-defined folds, but train, test and validation data are
specified explicitly. We focus on the "Basic" network of the SampleCNN group described in Kim et al.
(2019). Using an input signal resampled to 22.05 kHz, the Basic network has 8 identical blocks, each
block being made of a 1D convolution (size 3), followed by a batch normalization, ReLU activation
and max pooling. In our experiments, we adapted the proposed setting in order to keep the original
16 kHz sampling of the dataset and ended up with a 7 blocks (vs. 8) network in order to avoid
empty dimensions. The code3 provided by Kim et al. (2019) was used as basis for our experiments.
Reducing the number of blocks to 7 and keeping the original 16 kHz sampling rate yields networks
having similar number of trainable parameters (ca. 2.3 million vs ca. 2.5 million respectively for 7
blocks/16 kHz and 8 blocks/22.05 kHz).

Given that Google Speech Commands does not possess pre-defined folds for n-fold validation, the
experiments were repeated 5 times in order to compute the mean accuracy. The original results
from Kim et al. (2019) give an average accuracy of 92.5%± 0.7% (averaged over 3 training runs).
When reproducing a similar experiment (training performed with SGD optimizer, with early stopping),
with the simplified SampleCNN using 16 kHz data, we found the average accuracy to be 93.34%±
1.26%.

We created a SpectroBank-enabled version of SampleCNN, replacing the first block by a spectrobank
layer and modifying the other basic blocks introduced by Kim et al. (2019), as described in appendix C,
table 8. The SpectroBank layer is made of 80 order-4 Gammatone filters, overlapping by 80%
and having a length representing 10 ms. As our initial layer contains less filters than the initial
implementation (80 vs. 128), the basic block modifications allow to keep non-empty sizes when the
number of basic blocks increases. The number of basic blocks is identical (7), reducing the number of
trainable parameters to 1 million. Unlike the original paper, this network was trained using the Adam
optimizer, while keeping the same learning rate reduction strategy. The early stopping is usually
activated after less than 20 epochs. The mean accuracy achieved using this network improves slightly
to 93.45%± 1.35%.

3.4 URBANSOUND8K RESULTS

One of the main interests of this dataset resides in the fact that the environmental sounds exhibit
spectral characteristics that are quite different from speech datasets studied in the previous sections.
It is however a more challenging dataset, firstly because its size is almost an order of magnitude
smaller, and secondly because of the longer input data (each sample being 4 seconds long).

3https://github.com/tae-jun/sampleaudio
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We base our experiments on the works from Dai et al. (2017) and more recently Abdoli et al. (2019),
that also perform classification task using convolutional networks on raw audio input. Dai et al. (2017)
define several network architectures, with numbers of trainable parameters ranging from 200’000 to 4
millions. We will focus on the two smallest networks, referred to as M3 and M5 in the original paper.
Despite dataset being split into 10 folds for training and validation, only one test (using the 10th fold
for validation) has been done in Dai et al. (2017). We tested those networks using an existing Keras
implementation4 and performed 10-fold validation to get the mean accuracy over all folds, using data
resampled to 8 kHz. The average accuracy for M3 was found to be 58.94%± 3.83% (vs. 56.12% in
the original paper) and the one for M5 66.98%± 6.37% (vs. 63.4% initially).

SpectroBank-enabled versions of M3 and M5 have been created for comparison. The first layer
consists in 24 4th-order Gammatone filters, overlapping by 75% and having a length representing
10 ms. All networks were trained for 100 epochs using the Adam optimizer, reducing the learning
rate by a factor 2 after 10 epochs without improvement of the validation loss. SpectroBank-enabled
M3 accuracy is very close to the one achieved with initial M3, namely 59.17%± 5.33%. However,
the SpectroBank-M3 has ca. 22’000 parameters, i.e. close to ten times less than initial M3. In
the case of SpectroBank-M5, mean accuracy is improved to 67.45% ± 5.48% (with a number of
trainable parameters very close to initial M5, i.e. slightly more than 500’000). We also tested the
SpectroBank-SampleCNN architecture described in section 3.3, and achieved a mean accuracy of
69.16%± 5.95%. When comparing more specifically the 10-th fold best accuracy achieved by Dai
et al. (2017) is 71% using M18 model (3.7 million parameters), while our approach reaches an
accuracy of 75.8%. Higher accuracies have been achieved on this dataset using raw audio (Li et al.,
2018), they however resort to data augmentation, which was not used in our experiments. All results
are summarized in table 2.

Table 2: UrbanSound8K mean test accuracy

Network # Trainable parameters Avg. accuracy

M3 222 k 58.94%± 3.83%
SpectroBank-M3 22.5 k 59.17%± 5.33%
M5 561 k 66.98%± 6.37%
SpectroBank-M5 513 k 67.45%± 5.48%
SpectroBank-SampleCNN 1 M 69.16%± 5.95%

The approach taken by Abdoli et al. (2019) is to perform classification on overlapping splits of initial
audio data (usually having a length of 1 second). They however also compare to a network taking a
single block of data (having a length of ca. 3 seconds). While the code was supposed to be made
available after final publication, the repository5 was still empty at the date of submission. The model
was then reimplemented and trained according to the description found in the paper, using all 4
seconds of input data instead of trimming it to 3 seconds. Instead of the mean accuracy claimed
(83%± 1.3%, from Table 2 in original paper), our tests only achieved 63.8%± 5.68%, which is a
significant difference. We have been unable so far to explain this discrepancy.

3.5 PROPERTIES OF LEARNED FILTERS

The learned parameters of the SpectroBank filters can reveal insights about the data and the learning
process. As stated in the introduction, several studies have shown a tendency governing the spacing
in frequency of their learned kernels, approximations of band-pass filters. The spacing becomes
exponentially large as the frequency increases, following what is called a Mel scale. This is in
agreement with psycho-acoustics tests on the human cochlear system. In order to go further in this
direction, we investigate 1) the frequency spacing and 2) we test the relationship between the temporal
width of the filters and their central frequency. Indeed, psycho-acoustic models (the equivalent
rectangular bandwidth (ERB) model (Glasberg & Moore, 1990) and the Bark model (Zwicker &

4https://github.com/philipperemy/very-deep-convnets-raw-waveforms
5https://github.com/sajabdoli/Environmental_sound_classification, last ac-

cessed Sep 25th 2019
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Terhardt, 1980)) provide such a relationship. This is made possible by our approach where the
temporal width as well as the filter central frequency are well defined for each filter.

Frequency spacing. The SpectroBank layer is initialized with a linear frequency spacing from 0 to
the Nyquist frequency. After the learning phase, the filter frequencies have evolved and moved away
from their initial value as can be seen on Fig. 2a. The frequency distribution is not exponential but
we can point out several interesting facts. Firstly, the final curve is flatter than the initialization in
the range 0-2kHz (more filters in this range). It shows that the network tends to favour filters with a
band-pass in this range for its discriminative process. Secondly, beyond 4kHz, the filters stay close to
their original value. This suggests that there is not enough meaningful information in this frequency
range for a correct learning. This is indeed the case for speech where the main information resides
below 4kHz (see Appendix B).

(a) Frequency distribution of the filters before
(straight line) and after training (green curve)
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(b) Bandwidth and frequency of the learned filters (black
dots) over the range 0-2kHz. The curves are the psycho-
acoustical relationships given by the ERB and Bark scales.
Black dashed line: initial bandwidth value for all filters.

Figure 2: Bandwidth and frequency of the learned Gammatone filters (B of Eq. (4) and f parameters)
using the Google Speech Commands dataset

Bandwidth and frequency. The learned filter banks can be compared to filter banks modeling the
human auditory system. Two main models can be found in the literature, the Equivalent Rectangular
Bandwidth (ERB) model (Glasberg & Moore, 1990), and the Bark model (Zwicker & Terhardt, 1980).
In these models the bandwidth B of the filter is related to its central frequency f by explicit formulas
given in Appendix D. The ERB and Bark curves are plotted on Fig. 2b, together with the learned
parameters of the Gammatone filters (black dots). We observe a very good agreement between the
ERB curve and the learned filters for frequencies below 2kHz. Ravanelli & Bengio (2018) show that
for a neural network applied to a speech dataset, the focus of the learning is situated around the pitch
frequency located at 130Hz (male) and 230Hz(female), and the first and second formants, which are
around 500Hz and 1kHz respectively. This is exactly the frequency region where our learned filters
match the ERB scale.

4 CONCLUSION

Decades of research in audio signal processing have brought us an important knowledge about sounds,
speech and audio information. This knowledge may be inserted within neural networks as a priori
information and turned into efficient inductive biases. This is what we show with the example of the
SpectroBank layer, a layer of parameterized filters adapted to the extraction of audio information.
Moreover, the trained network possesses properties than can, in turn, bring new insights about audio
data back to the audio signal processing community.

Future work in this direction and further developments of convolutions with parameterized functions
may lead to important progress both in deep learning and audio signal processing. The reduction of
the number of trainable parameters decreases the network complexity, along with the training time. It
also enables a better interpretation of the network adaptation to the data.
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A FILTER BANK PARAMETERS

In this section we provide an example of visualization of the filter functions introduced for Spec-
troBank. These functions and their parameters are recalled on Table 3. Their shape in time is
illustrated on Fig. 3, with increasing oscillating frequency (or scale for wavelet) from blue to purple
(starting from f = 0).

Table 3: Description of the filter bank types and the parameters used during training. In most of our
experiments, γ is fixed to 4.

Filter Type # of parameters Parameters

Wavelet 1 s - scaling
Gaussian 2 f - frequency σ - width
Gammatone 3 f - frequency, b - bandwidth, γ - order
Gammachirp 3 f - frequency, b - bandwidth, c - chirp trend

Figure 3: Examples of filter banks in time domain. From left to right: Wavelet filters, Gaussian filters
(cosine modulation), Gammatone filters (envelope, cosine and sine modulations) and Gammachirp
filters, for fixed bandwidth and different frequencies.

B DATASETS

The overall statistics for all the datasets used in the experiments is given in Table 4. In addition the
distribution of spectral energy per class is provided on Fig. 4. Most of the speech energy is located in
the 0-1.5kHz band.
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(a) AudioMNIST - digit label (b) AudioMNIST - gender label

(c) GoogleSpeechCommands (d) UrbanSound8K

Figure 4: Dataset energy distribution per class and corresponding labels.

Table 4: Class statistics over different datasets.

Database # of samples # of classes largest class size smallest class size

AudioMNIST 30000 10 3000 3000
GoogleSpeechCommands 105829 35 4052 1557
UrbanSound8K 9732 10 1000 374

C NETWORK ARCHITECTURES

Detailed architecture for SpectroBank-enabled networks used in the experiments are given in this
section. All convolutional and dense layers use ReLU activation, except for the output layer using
softmax.
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Table 5: SpectroBank custom architecture for AudioMNIST.

Layer Output size

Input 8000× 1
SpectroBank (32 filters, size 80, stride 20) 400× 32
Convolution (32 filters, size 32, stride 2) 200× 32
MaxPooling (stride 4) 50× 32
Convolution (64 filters, size 16, stride 2) 25× 64
Convolution (128 filters, size 8, stride 2) 13× 128
Convolution (256 filters, size 4, stride 2) 7× 256
MaxPooling (stride 4) 1× 256
Dense (128) 128
Dropout 0.5 128
Dense (64) 64
Dropout 0.5 64
Dense 10 10

Table 6: M3-SpectroBank custom architecture for UrbanSound8K.

Layer Output size

Input 32000× 1
SpectroBank (24 filters, size 80, stride 20) 1600× 24
Batch Normalization 1600× 24
MaxPooling (stride 4) 400× 24
Convolution (256 filters, size 3, stride 1) 400× 256
MaxPooling (stride 4) 100× 256
Global Average Pooling 256
Dense 10 10

Table 7: M5-SpectroBank custom architecture for UrbanSound8K.

Layer Output size

Input 32000× 1
SpectroBank (24 filters, size 80, stride 20) 1600× 24
Batch Normalization 1600× 24
MaxPooling (stride 4) 400× 24
Convolution (128 filters, size 3, stride 1) 400× 128
Batch Normalization 400× 128
MaxPooling (stride 4) 100× 128
Convolution (256 filters, size 3, stride 1) 100× 256
Batch Normalization 100× 256
MaxPooling (stride 4) 25× 256
Convolution (512 filters, size 3, stride 1) 25× 512
Batch Normalization 25× 512
MaxPooling (stride 4) 6× 512
Global Average Pooling 512
Dense 10 10
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Table 8: SampleCNN-SpectroBank basic block. Choice of k is detailed in Kim et al. (2019)

Layer Output size

Input N × d
Convolution (k filters, size 4, stride 1) N × k
Batch Normalization N × k
MaxPooling (stride 2) N

2 × k

Table 9: SampleCNN-SpectroBank architecture for Google Speech Commands (n = 35) or Urban-
sound8K (n = 10). BB stands for ’Basic Block’, and GMP for ’Global Max Pooling’

Layer Output size

Input 16000× 1
SpectroBank (80 filters, size 160, stride 40) 200× 80
Batch Normalization 200× 80
BB 0 (k = 80) 100× 80
BB 1 (k = 80) 50× 80
BB 2 (k = 160) 25× 160
BB 3 (k = 160) 12× 160
BB 4 (k = 160) 6× 160
BB 5 (k = 160) 3× 160
BB 6 (k = 320) 1× 320
Concatenate (GMP(BB 4), GMP(BB 5), GMP(BB 6)) 640
Dense 640
Batch Normalization 640
Dropout (0.25) 640
Dense n n

D ERB AND BARK SCALES

Two main models of auditory filter bank system provide the expression of a filter bandwidth B with
respect to its frequency f . In the Bark model (Zwicker & Terhardt, 1980) the expression is the
following:

Bb(f) = 25 + 75[1 + 1.4

(
f

1000

)2

]0.69, (6)

and in the ERB scale (Glasberg & Moore, 1990):

BERB(f) = 24.7(4.37f + 1). (7)

These expression are the ones used in the present work.

In addition, these auditory models provide expressions for the frequency spacing between consecutive
filters, that follow a logarithmic law. For a given filter number k in the set of filters, its frequency can
be obtained by using the following formula: f = 228.846

(
ekERB/9.265 − 1

)
. This relationship is

more often expressed in terms of k as a function of the frequency:

kERB = 9.265 log

(
1 +

f

228.846

)
, (8)

The Bark model has a similar expression:

kb = 13 arctan

(
0.76

f

1000

)
+ 3.5 arctan

(
f

7500

)2

. (9)
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One can also compare with the Mel-scale. Sampling linearly on the Mel-scale m leads to logarithmic
frequency sampling:

m = 1127 ln

(
1 +

f

700

)
. (10)
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