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ABSTRACT

We introduce a general approach, called test-time training, for improving the per-
formance of predictive models when test and training data come from different
distributions. Test-time training turns a single unlabeled test instance into a self-
supervised learning problem, on which we update the model parameters before
making a prediction on the test sample. We show that this simple idea leads
to surprising improvements on diverse image classification benchmarks aimed at
evaluating robustness to distribution shifts. Theoretical investigations on a convex
model reveal helpful intuitions for when we can expect our approach to help.

1 INTRODUCTION

Supervised learning remains notoriously weak at out-of-distribution generalization. Unless training
data and test data are drawn from the same distribution, predictive models tend to fail easily, and
even seemingly minor natural variations in distribution turn out to defeat state-of-the-art models.
Adversarial robustness, transfer learning and domain adaptation are but a few existing paradigms
that anticipate differences of sorts between training and test distributions. In this work, we explore
a new take on the problem of out-of-distribution generalization, without any mathematical structure
or data available at training-time about the distributional differences.

We start from a simple observation. When presented with an unlabeled test instance x, this instance
itself gives us a hint about the distribution from which it was drawn. Our approach, called test-time
training, allows the model parameters θ to depend on the test case x, but not its unknown label y.
While such a sample-specific model θ(x) is powerful in principle, seizing this information-theoretic
advantage in practice raises new challenges that we begin to address in this work.

The route we take is to create a self-supervised learning problem based only on this single test
case x, which we use to update θ at test-time before we then make a prediciton on x. Self-supervised
learning uses an auxiliary task that automatically creates labels from unlabeled data. For the visual
data we work with, the task rotates an image x by a multiple of 90 degrees, and assigns the angle as
the label (Gidaris et al., 2018).

Our approach can also be easily modified to work outside the standard supervised learning setting.
If several test instances arrive in a batch, we can use the entire batch for test-time training. If test
instances arrive online sequentially, we obtain further improvements by keeping the state of the
parameters. After all, prediction is rarely a single event. The online setting can be the natural mode
of deployment in practice, and shows the strongest improvements.

We experiment with test-time training for out-of-distribution generalization in the context of object
recognition on several benchmarks. These include images with diverse types of corruption at various
levels (Hendrycks & Dietterich, 2019), video frames of moving objects (Shankar et al., 2019), and a
new test set of unknown distribution shifts collected by Recht et al. (2018). Our algorithm does not
hurt on the original distribution, but makes substantial improvements under distribution shifts.

In all our experiments, we compare with a strong baseline (labeled joint training) that uses both su-
pervised and self-supervised learning at training-time, but keeps the model fixed at test-time. Very
recent work shows that additional training-time self-supervision improves out-of-distribution gen-
eralization Hendrycks et al. (2019b). The joint training baseline we use corresponds to an improved
implementation of their work. A comprehensive review of related work follows in section 5.
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We complement the empirical results with theoretical investigations in Section 4, of when test-time
training is expected to help on a convex model, and establish an intuitive sufficient condition, which,
roughly speaking, is to have correlated gradients between the loss functions of the main task and
self-supervised task.

2 METHOD

Next we describe the algorithmic details of our method. To setup notations, consider a standard K-
layer neural network with parameters θk for layer k. The stacked parameter vector θ = (θ1, . . . , θK)
specifies the entire model for a classification task with loss function lm(x, y;θ) on the test instance
(x, y). We call this the main task, as indicated by the subscript of the loss function.

We assume to have training data (x1, y1), . . . , (xn, yn) drawn i.i.d. from a distribution P . Standard
empirical risk minimization corresponds to solving the optimization problem:

min
θ

1

n

n∑
i=1

lm(xi, yi;θ). (1)

Our method requires a self-supervised auxiliary task with loss function ls(x). In this paper, we
choose the rotation prediction task (Gidaris et al., 2018), which has been demonstrated to be simple
and effective at feature learning for neural networks. The task simply rotates x on the image plane
by one of 0, 90, 180 and 270 degrees and have the model predict the angle of rotation as a four-way
classification problem. Other self-supervised tasks in section 5 might also be used for our method.

The auxiliary task shares some of the model parameters θe = (θ1, . . . , θκ) up to a certain κ ∈
{1, . . . ,K}. We think of those κ layers as a shared feature extractor. The auxiliary task uses its
own task-specific parameters θs = (θ′κ+1, . . . , θ

′
K). We call the unshared parameters θs the self-

supervised task branch, and θm = (θκ+1, . . . , θK) the main task branch. Pictorially, the joint
architecture is a Y -structure with a shared bottom and two branches. For our experiments, the self-
supervised task branch has the exact same architecture as the main branch, except for the output
dimensionality of the last layer due to the different number of classes in the two tasks.

Training is done in the fashion of multi-task learning (Caruana, 1997); the model is trained on both
tasks on the same data drawn from P . Losses for both tasks are added together, and gradients are
taken for the collection of all parameters. The joint training problem is therefore

min
θe,θm,θs

1

n

n∑
i=1

lm(xi, yi;θm,θe) + ls(xi;θs,θe). (2)

Now we describe the standard version of test-time training on a single test input x. Simply put,
test-time training finetunes the shared feature extractor θe by minimizing the auxiliary task loss on
x. This can be formulated as

min
θe

ls(x;θs,θe). (3)

Denote θ∗e the (approximate) minimizer of Equation 3. The model then makes a prediction using the
updated parameters θ(x) = (θ∗e ,θm). Empirically, the difference is negligible between minimizing
Equation 3 over θe versus over both θe and θs. Theoretically, there exists a difference only when
optimization is done with more than one step of gradient descent.

In the standard version of our method, the optimization problem in Equation 3 is always initialized
with parameters θ = (θe,θs) obtained by minimizing Equation 2 on data from P . After making
a prediction on x, θ∗e is discarded. Outside of the standard supervised learning setting, when the
test instances arrive online sequentially, the online version of test-time training solves the same
optimization problem as in Equation 3 to update the shared feature extractor θe. However, on test
input xt, θ is instead initialized with θ(xt−1) updated on the previous test input xt−1. This allows
θ(xt) to take advantage of the distributional information available in x1, . . . , xt−1 as well as xt.

Test-time training naturally benefits from standard data augmentation techniques. On each test input
x, we perform the exact same set of random transformations as used for data augmentation during
training to form a batch for test-time training.
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Figure 1: Test error (%) on CIFAR-10-C, level 5. See subsection 3.1 for details.

3 EMPIRICAL RESULTS

We experiment with both versions of our method (standard and online) on three kinds of out-of-
distribution benchmarks, presented here in the order of visually low to high-level, which is roughly
also the order of easy to hard.

Network details. Our architecture and hyper-parameters are consistent across all experiments. We
use Residual Networks (ResNets) (He et al., 2016b), which are constructed differently for CIFAR-
10 1 (26-layer) and ImageNet 2 (18-layer). ResNets on ImageNet have four groups, each containing
convolutional layers with the same number of channels and size of feature maps; our splitting point
is the end of the third group. ResNets on CIFAR-10 have three groups; our splitting point is the end
of the second group. In addition, Batch Normalization (BN), a popular module in deep networks, is
ineffective when training on small batches, for which the estimated batch statistics are less accurate
(Ioffe & Szegedy, 2015). This technicality hurts test-time training since each batch only contains
(augmented) copies of a single image. Therefore our networks instead use Group Normalization
(GN) (Wu & He, 2018), which achieves similar performance as BN on large batches without hurting
on small ones. Results with BN are shown in Appendix E for completeness.

Optimization details. For Equation 2, optimization hyper-parameters are set to the default 3 in
standard practice (Huang et al., 2016; He et al., 2016a). For Equation 3, we use stochastic gradient
descent (SGD) with the learning rate set to that of the last epoch during training, which is 0.001 in
all our experiments. Following standard practice (He et al., 2018; Liu et al., 2018) known to improve
performance when finetuning, we do not use weight decay or momentum. For the standard version,
we take ten gradient steps, using batches independently generated by the same image. For online
we take only one step. The computational aspects of our method are discussed in Appendix C.
Following standard practice, the transformations used for data augmentation are random crop with
padding and random horizontal flip for CIFAR-10 (Guo et al., 2017a; Huang et al., 2016), and
random resized crop and random horizontal flip for ImageNet (Ioffe & Szegedy, 2015; He et al.,
2016a). Specifically, these transformations do not contain information about the distribution shifts.

In all the tables and figures, baseline refers to the plain ResNet model (using GN, unless otherwise
specified); joint training refers to the model jointly trained on both the main task and the self-
supervised task, fixed at test-time as in Hendrycks et al. (2019b); test-time training refers to the
standard version described section 2; and test-time training online refers to the online version that
does not discard θ(xt) for xt arriving sequentially from the same distribution. Performance for
test-time training online is calculated, just like the others, as the average over the entire test set; we
always shuffle the test set before test-time training online to avoid ordering artifacts.

1CIFAR-10 (Krizhevsky & Hinton, 2009) is a standard object recognition dataset with 10 classes of objects
in natural scenes. The standard train / test split has 50,000 / 10,000 images, each of size 32-by-32 pixels.

2The ImageNet 2012 classification dataset (Russakovsky et al., 2015) for object recognition has images
from 1, 000 classes, 1.2 million for training and 50,000 for validation. Following standard practice (He et al.,
2016a;b; Huang et al., 2016), the validation set is used as the test set.

3Namely, we use stochastic gradient descent (SGD) with weight decay and momentum; learning rate starts
at 0.1 and is dropped by a factor of ten at two scheduled milestones, to 0.01 and 0.001.
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Figure 2: Test accuracy (%) on ImageNet-C, level 5. The lower panel shows the accuracy of the online
version as the average over a sliding window of 100 samples; test-time learning online generalizes better as
more samples are tested on, without hurting on the original distribution. We use accuracy instead of error here
because the baseline performance is very poor with most corruptions. See subsection 3.1 for details.

3.1 COMMON CORRUPTIONS

Hendrycks & Dietterich (2019) propose to benchmark robustness of neural networks on 15 types of
corruptions from four broad categories: noise, blur, weather and digital. Each corruption type comes
in five levels of severity, with level 5 the most severe (details and sample images in Appendix D).
The corruptions are algorithmically simulated to mimic real-world corruptions as much as possible
on copies of the test set for both CIFAR-10 and ImageNet. According to the authors, training should
be done on the original training set, and the diversity of corruption types should make it difficult for
any method to work well across the board if it relies too much on corruption specific knowledge.

CIFAR-10-C. Our results on the level 5 corruptions (most severe) are shown in Figure 9. Due
to space constraints, our results on levels 1-4 are shown in Appendix E. Across all five levels and
15 corruption types, both versions of test-time training always improve over the baseline by a large
margin. The standard version of test-time training always improves over joint training, and the
online version often improves very significantly (>10%) over joint training and never hurts by more
than 0.2%. Specifically, test-time training online contributes >24% on the three noise types and
38% on pixelation. For the seemly unstable setup of a learning problem that abuses a single image,
this kind of consistency is rather surprising.

The baseline ResNet-26 has error 8.9% on the original test set of CIFAR-10. The joint training
baseline actually improves performance on the original to 8.1%. Most surprisingly, unlike many
other methods that tradeoff original performance with robustness, test-time training further improves
on the original test set by 0.2% consistently over many independent trials. This indicates that our
method does not choose between specificity and generality.

Separate from our method, it is interesting to note that joint training consistently improves over
the baseline, as discovered by Hendrycks et al. (2019b). Hendrycks & Dietterich (2019) have also
experimented with various other training methods on this benchmark, and point to Adversarial Logit
Pairing (ALP) (Kannan et al., 2018) as the most effective. Results of this additional baseline on
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Airplane Bird Car Dog Cat Horse Ship Average
Baseline 67.9 35.8 42.6 14.7 52.0 42.0 66.7 41.4

Joint training 70.2 36.7 42.6 15.5 52.0 44.0 66.7 42.4
Test-time training 70.2 39.2 42.6 21.6 54.7 46.0 77.8 45.2

TTT online 70.2 39.2 42.6 22.4 54.7 46.0 77.8 45.4

Table 1: Test accuracy (%) on our video classification dataset, adapted from Shankar et al. (2019).
We report accuracy for each class and the average over all samples. See subsection 3.2 for details.

all levels of CIFAR-10-C are shown in Appendix E, along with its implementation details. While
surprisingly robust under some of the most severe corruptions (especially the three noise types), ALP
incurs a much larger error (by a factor of two) on the original distribution and some corruptions (e.g.
all levels of contrast and fog), and hurts performance significantly when the corruptions are not
as severe (especially on levels 1-3); this kind of tradeoff is to be expected for methods based on
adversarial training, but not test-time training.

ImageNet-C. Our results on the level 5 corruptions (most severe) are shown in Figure 2. We use
accuracy instead of error for this dataset because the baseline severely underperforms with most
corruptions. The general trend is roughly the same as on CIFAR-10-C. Test-time training (standard
version) always improves over the baseline and joint training, while the online version only hurts on
the original by 0.1% over the baseline, but dramatically improves (by a factor of more than three)
on many of the corruption types.

In the lower panel of Figure 2, we visualize how the accuracy (averaged over a sliding window) of
the online version changes as more images are tested on. Due to space constraints, we show this
plot on the original test set, as well as every third corruption type, following the same order as in the
original paper. On the original test set, there is no visible change in performance after updating on
the 50,000 samples. With corruptions, accuracy has already risen significantly after 10,000 samples,
but is still rising towards the end of the 50,000 samples, indicating room for additional improvements
if more samples were available. Without looking at a single label, test-time training online behaves
as if we were training on the test set from the appearance of these plots.

3.2 VIDEO CLASSIFICATION

Method Accuracy (%)

Baseline 62.7

Joint training 63.5

Test-time training 63.8

TTT online 64.3

Table 2: Test accuracy (%) on VID. See
subsection 3.2 for details.

The ImageNet Video Classification (VID) dataset was de-
veloped by Shankar et al. (2019) from the Video Detection
dataset of ILSVRC2015 (Russakovsky et al., 2015), to
demonstrate how deep learning models for object recog-
nition trained on ImageNet (still images) fail to adapt well
to video frames 4. Without any modification for videos,
we apply our method to VID on top of the same ImageNet
model as in the previous subsection. Our results are shown
in Table 2. Again, we use accuracy instead of error be-
cause the baseline performance is poor.

In addition, we take the seven classes in VID that overlap with CIFAR-10, and rescale those video
frames to the size of CIFAR-10 images, as a new test set for the model trained on CIFAR-10 in
the previous subsection. Again, we apply our method to this dataset without any modification. Our
results are shown in Table 1, with a breakdown for each class. Noticing that test-time training does
not improve on the airplane class, we inspect some airplane samples, and observe that most of them
have black margins on the sides, which provide a trivial hint for the rotation prediction task. In
addition, for airplanes captued in the sky, it is often impossible even for humans to tell if an image
is rotated. This shows that our method requires the self-supervised task to be both well defined and
non-trivial on the new domain.

4 The VID dataset contains 1109 sets of video frames; each set forms a short video clip where all the frames
are similar to an anchor frame. Our results are reported on the anchor frames. To map the 1000 ImageNet
classes to the 30 VID classes, we use the max-conversion function in Shankar et al. (2019).
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3.3 CIFAR-10.1: A NEW TEST SET WITH UNKNOWN DISTRIBUTION SHIFTS

CIFAR-10.1 (Recht et al., 2018) is a new test set of size 2000 modeled after CIFAR-10, with the
exact same classes and image dimensionality, following the dataset creation process documented by
the original CIFAR-10 paper as closely as possible. The purpose is to investigate the distribution
shifts present between the two test sets, and the effect on object recognition. All models tested by
the authors suffer a large performance drop on CIFAR-10.1 comparing to CIFAR-10, even though
there is no human noticable difference, and both have the same human accuracy. This demonstrates
how insidious and ubiquitous distribution shifts are, even when researchers strive to minimize them.

Method Error (%)

Baseline 17.4

Joint training 16.7

Test-time training 15.9

Table 3: Test error (%) on CIFAR-
10.1. See subsection 3.3 for details.

The distribution shifts from CIFAR-10 to CIFAR-10.1 pose an
extremely difficult problem, and nobody has made a success-
ful attempt to improve the performance of an existing model
on this new test set, probably because 1) Researchers cannot
even identify the distribution shifts, let alone describe them
with mathematics. 2) The samples in CIFAR-10.1 are only
revealed at test-time; and even if revealed during training, the
distribution shifts are too subtle, and the sample size is too
small, for domain adaptation algorithms (Recht et al., 2018).

On the original CIFAR-10 test set, our baseline has error 8.9%, and with joint training 8.1%; com-
paring to the first two rows of Table 3, both suffer the typical performance drop (by a factor of two).
Test-time training yields an improvement of 0.8% (relative improvement of 4.8%) over joint train-
ing. We recognize that this improvement is still small comparing to the performance drop, but see it
as an encouraging first step for this very difficult problem.

4 TOWARDS UNDERSTANDING TEST-TIME TRAINING

This section contains our preliminary study of when and why test-time training is expected to work.
For convex models, we prove that positive gradient correlation between the loss functions leads to
better performance on the main task after test-time training. Equipped with this insight, we then
empirically demonstrate that gradient correlation governs the success of test-time training on the
deep learning model discussed in Section 3.

Before stating our main theoretical result, we first illustrate the general intuition with a toy model.
Consider a regression problem where x ∈ Rd denotes the input, y1 ∈ R denotes the label, and the
objective is the square loss (ŷ − y1)2/2 for a prediction ŷ. Consider a two layer linear network
parametrized byA ∈ Rh×d and v ∈ Rh (where h stands for the hidden dimension). The prediction
according to this model is ŷ = v>Ax, and the main task loss is

lm(x, y1;A,v) =
1

2

(
y1 − v>Ax

)2
. (4)

In addition, consider a self-supervised regression task that also uses the square loss and automatically
generates a label ys for x. Let the self-supervised head be parameterized byw ∈ Rh. Then the self-
supervised task loss is

ls(x, y2;A,w) =
1

2

(
y2 −w>Ax

)2
. (5)

Now we apply test-time training to update the shared feature extractor A by one step of gradient
descent on ls, which we can compute with y2 known. This gives us

A′ ← A− η
(
y2 −w>Ax

) (
−wx>

)
, (6)

whereA′ is the updated matrix and η is the learning rate. If we set η = η∗ where

η∗ =
y1 − v>Ax

(y2 −w>Ax)v>wx>x
, (7)

then with some simple algebra, it is easy to see that the main task loss lm(x, y1;A′,v) = 0. Con-
cretely, test-time training drives the main task loss down to zero with a single gradient step for a
carefully chosen learning rate. In practice, this learning rate is unknown since it depends on the
unknown y1. However, since our model is convex, as long as η∗ is positive, it suffices to set η to
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Figure 3: Scatter plot of the inner product between the gradients (on the shared feature extractor θe) of the
main task lm and the self-supervised task le, and the improvement in test error (%) from test-time training, for
the standard (left) and online (right) version. Each point is the average over a test set, and each scatter plot has
75 test sets, from all 15 types of corruptions over five levels as described in subsection 3.1. The blue lines and
bands are the best linear fits and the 99% confidence intervals. The linear correlation coefficients are 0.93 and
0.89 respectively, indicating strong positive correlation between the two quantities, as suggested by Theorem 1.

be a small positive constant (see Lemma 1). If x 6= 0, one sufficient condition for η∗ to be positive
(when neither loss is zero) is to have

sign
(
y1 − v>Ax

)
= sign

(
y2 −w>Ax

)
and v>w > 0 . (8)

For our toy model, both parts in Equation 8 have an intuition interpretation. The first part says that
the mistakes should be correlated, in the sense that predictions from both tasks are mistaken in the
same direction. The second part, v>w > 0, says that the decision boundaries on the feature space
should be correlated. In fact, these two parts hold iff 〈∇lm(A),∇ls(A)〉 > 0 (see Lemma 2). To
summarize, if the gradients have positive correlation, test-time training is guaranteed to reduce the
main task loss. Our main theoretical result extends this to general smooth and convex loss functions.
Theorem 1. Let lm(x, y;θ) denote the main task loss on test instance x, y with parameters θ, and
ls(x;θ) the self-supervised task loss that only depends on x 5. Assume that for all x, y, lm(x, y;θ)
is differentiable, convex and β-smooth in θ, and both ‖∇lm(x, y;θ)‖ , ‖∇ls(x,θ)‖ ≤ G for all θ.
With a fixed learning rate η = ε

βG2 , for every x, y such that

〈∇lm(x, y;θ),∇ls(x;θ)〉 > ε, (9)

we have

lm(x, y;θ) > lm(x, y;θ(x)), (10)

where θ(x) = θ − η∇ls(x;θ) i.e. test-time training with one step of gradient descent.

The proof is in Appendix B.2. Theorem 1 reveals gradient correlation as a determining factor of
the success of test-time training in the smooth and convex case. In Figure 3, we empirically show
that our insight also holds for non-convex loss functions, on the deep learning model and across
the diverse set of corruptions considered in Section 3; stronger gradient correlation clearly indicates
higher performance improvements over the baseline.

5 RELATED WORK

Our work has been influenced by the successes and limitations of many related fields 6.

Learning on test instances. Our idea is inspired by Glasner et al. (2009); Shocher et al. (2018),
which learns to perform super-resolution only on a single image, by learning to recover the original
image itself from its downsampled version. In addition, Jain & Learned-Miller (2011) improves
viola-jones for face detection, by using instances of faces with high confidence in an image to boot-
strap the more difficult ones in the same image. The online version of our algorithm is inspired by

5Because the main task branch and the self-supervised branch are kept fixed at test-time, we do not explicitly
describe their parameters, and include them implicitly in the loss functions.

6 Each of these fields containss maybe hundreds of interesting works, which we unfortunately do not have
enough time and space to acknowledge in this draft. We apologize for the omissions and are happy to include
additional citations upon request.
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Mullapudi et al. (2018), which makes video segmentation more efficient by using a student model
that learns online from a teacher model. The idea of online updates has also been used in Kalal et al.
(2011) for tracking and detection. Zhu et al. (2019), a concurrent work in echocardiography, im-
proves the deep learning model that tracks myocardial motion and cardiac blood flow with sequential
updates. Lastly, we share the philosophy of transductive learning (Vapnik, 2013; Gammerman et al.,
1998), but have little in common with their classical algorithms e.g. nearest neighbors.

Adversarial robustness studies the robust risk: RP,∆(θ) = Ex,y∼P maxδ∈∆ l(x+δ, y; θ) where
l is some loss function, and ∆ is the set of perturbations; one popular choice of ∆ is the Lp ball, for
p ∈ {1, 2,∞}. Works in this area rely heavily on the mathematical structure of ∆, which might not
be realistic models of perturbations in the real world. The most popular algorithms use either robust
optimization (Sinha et al., 2017; Raghunathan et al., 2018; Wong & Kolter, 2017; Croce et al., 2018),
or input transformations (Guo et al., 2017b; Song et al., 2017), both can be seen as smoothing the
decision boundary. This establishes a theoretical tradeoff between accuracy and robustness (Zhang
et al., 2019); intuitively, the more diverse ∆ is, the less effective this one-boundary-fits-all approach
can be for a particular subset of ∆. Kang et al. (2019) show that empirically, robustness for one ∆
might not transfer to another, and training on the L∞ ball actually hurts robustness on the L1 ball.

Non-adversarial robustness studies the effect of corruptions, perturbations, out-of-distribution
examples, and real-world distribution shifts (Hendrycks et al., 2019a;b; 2018; Hendrycks & Gimpel,
2016). Geirhos et al. (2018) show that training on images corrupted by Gaussian noise makes deep
learning models recover super-human performance on this particular noise type, but cannot improve
performance on another those corrupted by another noise type e.g. salt-and-pepper noise.

Unsupervised domain adaptation (a.k.a. transfer learning) studies the problem of distribution
shift (from P to Q), when unlabled data from Q is available at training-time (Tzeng et al., 2017;
Ganin et al., 2016; Gong et al., 2012; Long et al., 2016; Chen et al., 2018; 2011; Hoffman et al.,
2017; Csurka, 2017; Long et al., 2015). We are inspired by this very active and successful com-
munity, especially (Sun et al., 2019), and believe that progress in this community can motivate new
algorithms in the framework of test-time learning. Our update rule can be viewed as performing
one-sample unsupervised domain adaptation on the fly 7. On the other hand, test-time learning
comes from realizing the limitations of the unsupervised domain adaptation setting, that outside
of the specific target distribution where data is available for training, generalization is still elusive.
Previous works make the source and target distributions broader with multiple and evolving sources
and targets without fundamentally address this problem (Hoffman et al., 2018; 2012; 2014).

Self-supervised learning studies how to create labels from the data, by designing ingenious tasks
that contain semantic information without human annotations, such as context prediction (Doersch
et al., 2015), solving jigsaw puzzles (Noroozi & Favaro, 2016), colorization (Larsson et al., 2017;
Zhang et al., 2016), noise prediction (Bojanowski & Joulin, 2017), and feature clustering (Caron
et al., 2018). Hendrycks et al. (2019b) proposes that jointly training a main task and a self-supervised
task (our joint training baseline in section 3) can improve robustness of the main task. The same
idea is used in few-shot learning (Su et al., 2019), and domain generalization (Carlucci et al., 2019).

Domain generalization studies when a meta distribution generates multiple environment distribu-
tions, some of which are available during training (source), while others are used for testing (target)
(Li et al., 2018; Shankar et al., 2018; Muandet et al., 2013; Balaji et al., 2018; Ghifary et al., 2015;
Motiian et al., 2017; Li et al., 2017a; Gan et al., 2016). With only a few environments, information
on the meta distribution is often too scarce to be helpful, and with many environments, we are back
to the i.i.d. setting where each environment can be seen as a sample, and a strong baseline is to sim-
ply train on all the environments (Li et al., 2019). The setting of domain generalization is limited
by the inherent tradeoff between specificity and generality of a fixed decision boundary, and the fact
that generalization is again elusive outside of the meta distribution i.e. the actual P .

7Note that typical unsupervised domain adaptation algorithms,such as those based on distributional discrep-
ancy, adversarial learning, co-training and generative modeling, might not work in our framework because the
concept of a target distribution, which has been so deeply rooted and heavily relied on, becomes ill-defined
when there is only one sample from the target domain.

8
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Continual learning (a.k.a. learning without forgetting) studies when a model is made to learn a
sequence of tasks, and not forget about the task at the beginning (Li & Hoiem, 2017; Lopez-Paz
& Ranzato, 2017; Kirkpatrick et al., 2017; Santoro et al., 2016). In comparison, test-time learn-
ing does not care at all about forgetting (and might even encourage it). Few (one)-shot learning
studies extremely small training sets (maybe for some categories) (Snell et al., 2017; Vinyals et al.,
2016; Fei-Fei et al., 2006; Ravi & Larochelle, 2016; Li et al., 2017b; Finn et al., 2017; Gidaris &
Komodakis, 2018). Our update rule can be viewed as performing one-shot self-supervised learning
and can potentially be improved by progress in few-shot learning.

Online learning (a.k.a. online optimization) is a well-studied area of learning theory (Shalev-
Shwartz et al., 2012; Hazan et al., 2016). The basic setting repeats the following: receive xt, predict
ŷt, receive yt from a worst-case oracle and learn. Final performance is evaluated using the regret,
colloquially how much worse than the best fixed model in hindsight. It is easy to see how our setting
differs, even for the online version. We learn before predicting ŷt, but never receive any yt that is
evaluated on, thus do not need to consider the worst-case orcale or the regret.
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A A THEORETICAL DISCUSSION ON OUR VARIABLE DECISION BOUNDARY

In ??, we claim that in traditional supervised learning θ gives a fixed decision boundary, while our
θ gives a variable decision boundary. Here we explain this claim from a theoretical perspective.

Denote the input spaceX and output spaceY . A decision boundary is simply a mapping f : X → Y .
Let Θ be a model class e.g Rd. Now consider a family of parametrized functions gθ : X → Y ,
where θ ∈ Θ. In the context of deep learning, g is the neural network architecture and θ contains
the parameters. We say that f is a fixed decision boundary w.r.t. g and Θ if there exists θ ∈ Θ s.t.
f(x) = gθ(x) for every x ∈ X , and a variable decision boundary if for every x ∈ X , there exists
θ ∈ Θ s.t. f(x) = gθ(x). Note how selection of θ can depend on x for a variable decision boundary,
and cannot for a fixed one. It is then trivial to verify that our claim is true under those definitions.

A critical reader might say that with an arbitrarily large model class, can’t every decision boundary
be fixed? Yes, but this is not the end of the story. Let d = dim(X ) × dim(Y), and consider the
enormous model class Θ′ = Rd which is capable of representing all possible mappings between X
and Y . Let g′θ′ simply be the mapping represented by θ′ ∈ Θ′. A variable decision boundary w.r.t. g
and Θ then indeed must be a fixed decision boundary w.r.t. g′ and Θ′, but we would like to note two
things. First, without any prior knowledge, generalization in Θ′ is impossible with any finite amount
of training data; reasoning about g′ and Θ′ is most likely not productive from an algorithmic point of
view, and the concept of a variable decision boundary is to avoid such reasoning. Second,selecting
θ based on x for a variable decision boundary can be thought of as “training” on all points x ∈ Rd;
however, “training” only happens when necessary, for the x that it actually encounters.

Altogether, the concept of a variable decison boundary is different from what can be described by
traditional learning theory. A more in depth discussion is beyond the scope of this paper.

B PROOFS

Here we prove the theoretical results covered in Section 4.

B.1 PROOFS FOR THE TOY PROBLEM

The following setting applies to the two lemmas; this is simply the setting of our toy problem,
reproduced here for ease of reference. Consider a two layer linear network parametrized by A ∈
Rh×d (shared) and v,w ∈ Rh (fixed) for the two heads, respectively. Denote x ∈ Rd the input and
y1, y2 ∈ R the labels for the two tasks, respectively. For the main task loss

lm(A;v) =
1

2

(
y1 − v>Ax

)2
, (11)

and the self-supervised task loss

ls(A;w) =
1

2

(
y2 −w>Ax

)2
, (12)

test-time learning yields an updated matrix

A′ ← A− η
(
y2 −w>Ax

) (
−wx>

)
, (13)

where η is the learning rate.
Lemma 1. Following the exposition of section 4, denote

η∗ =
(y1 − v>Ax)

(y2 − w>Ax)v>wx>x
. (14)

Assume η∗ ∈ [ε,∞) for some ε > 0. Then for any η ∈ (0, ε], we are guaranteed an improvement on
the main loss i.e. lm(A′) < lm(A).

Proof. From the exposition of section 4, we know that

lm(A− η∗∇lsA)) = 0,
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which can also be derived from simple algebra. Then by convexity, we have

lm (A+ η∇ls(A)) = lm

((
1− η

η∗

)
A+

η

η∗
(A− η∗∇ls(A))

)
(15)

≤
(

1− η

η∗

)
lm(A) + 0 (16)

≤
(

1− η

ε

)
lm(A) (17)

< lm(A), (18)
where the last inequality uses the assumption that lm(A) > 0, which holds because η∗ > 0.

Lemma 2. Define 〈U ,V 〉 = vec (U)
> vec (V ) i.e. the Frobenious inner product, then

sign (η∗) = sign (〈∇lm(A),∇ls(A)〉) . (19)

Proof. By simple algebra,
〈∇lm(A),∇ls(A)〉 = 〈

(
y1 − v>Ax

) (
−vx>

)
,
(
y2 −w>Ax

) (
−wx>

)
〉 (20)

=
(
y1 − v>Ax

) (
y2 −w>Ax

)
Tr
(
xv>wx>

)
(21)

=
(
y1 − v>Ax

) (
y2 −w>Ax

)
v>wx>x, (22)

which has the same sign as η∗.

B.2 PROOF OF THEOREM 1

For any η, by smoothness and convexity,
lm(x, y;θ(x)) = lm(x, y;θ − η∇ls(x;θ)) (23)

≤ lm(x, y;θ) + η〈∇lm(x, y;θ),∇ls(x,θ)〉+
η2β

2
‖∇ls(x;θ)‖2 . (24)

Denote

η∗ =
〈∇lm(x, y;θ),∇ls(x,θ)〉

β ‖∇ls(x;θ)‖2
.

Then Equation 23 becomes

lm(x, y;θ − η∗∇ls(x;θ)) ≤ lm(x, y;θ)− 〈∇lm(x, y;θ),∇ls(x,θ)〉2

2β ‖∇ls(x;θ)‖2
. (25)

And by our assumptions on the gradient norm and gradient inner product,

lm(x, y;θ)− lm(x, y;θ − η∗∇ls(x;θ)) ≥ ε2

2βG2
. (26)

Because we cannot observe η∗ in practice, we instead use a fixed learning rate η = ε
βG2 , as stated in

Theorem 1. Now we argue that this fixed learning rate still improves performance on the main task.

By our assumptions, η∗ ≥ ε
βG2 , so η ∈ (0, η∗]. Denote g = ∇ls(x;θ), then by convexity of lm,

lm(x, y;θ(x)) = lm(x, y;θ − ηg) (27)

= lm

(
x, y;

(
1− η

η∗

)
θ +

η

η∗
(θ − η∗g)

)
(28)

≤
(

1− η

η∗

)
lm(x, y;θ) +

η

η∗
lm(x, y;θ − η∗g) (29)

Combining with Equation 26, we have

lm(x, y;θ(x)) ≤
(

1− η

η∗

)
lm(x, y;θ) +

η

η∗

(
lm(x, y;θ)− ε2

2βG2

)
(30)

= lm(x, y;θ)− η

η∗
ε2

2βG2
(31)

Since η/η∗ > 0, we have shown that
lm(x, y;θ)− lm(x, y;θ(x)) > 0. (32)
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C COMPUTATIONAL ASPECTS OF OUR METHOD

At test-time, our method is 2×batch size×number of iterations times slower than regu-
lar testing, which only performs a single forward pass for each sample. As the first work on test-time
learning, this paper is not as concerned about computational efficiency as improving robustness, but
here we provide two potential solutions that might be useful, but have not been thoroughly verified.
The first is to use the thresholding trick on ls, introduced as a solution for the small batches problem
in section 2. For the models considered in our experiments, roughly 80% of the test instances fall
below the threshold, so test-time learning can only be performed on the other 20% without much
effect on performance, because those 20% contain most of the samples with wrong predictions. The
second is to reduce the number of iterations of test-time updates. For the online version,
the number of iterations is already 1, so there is nothing to do. For the standard version, we
have done some preliminary experiments setting number of iterations to 1 (instead of 10)
and learning rate to 0.01 (instead of 0.001), and observing results almost as good as the standard
hyper-parameter setting. A more in depth discussion on efficiency is left for future works, which
might, during training, explicitly make the model amenable to fast updates.

D SAMPLE IMAGES FROM THE COMMON CORRUPTIONS BENCHMARK

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 4: Sample images from the Common Corruptions Benchmark, taken from the original paper
by Hendrycks & Dietterich (2019).

E ADDITIONAL RESULTS ON THE COMMON CORRUPTIONS DATASET

For table aethetics, we use the following abbreviations: B for baseline, JT for joint training, TTT for
test-time training standard version, and TTTO for test-time training online version.

We have also abbreviated the names of the corruptions. The full names are, in order: original test set,
Gaussian noise, shot noise, impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow,
frost, fog, brightness, contrast, elastic transformation, pixelation, and JPEG compression.

E.1 RESULTS USING BATCH NORMALIZATION

As discussed in section 3, Batch Normalization (BN) is ineffective for small batches, which are
the inputs for test-time training (both standard and online version) since there is only one sample
available when forming each batch; therefore, our main results are based on a ResNet using Group
Normalization (GN). Here we provide results of our method on CIFAR-10-C level 5, with a ResNet
using Batch Normalization (BN). These results are meant to be merely a point of reference for the
curious readers, instead of our technical contributions.
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In the early stage of this project, we have experimented with two potential solutions to the small
batches problem with BN. The naive solution is to fix the BN layers during test-time training. but
this diminishes the performance gains since there are fewer shared parameters. The better solution,
adopted for the results below, is hard example mining: instead of updating on all inputs, we only
update on inputs that incur large self-supervised task loss ls, where the large improvements might
counter the negative effects of inaccurate statistics.
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Figure 5: Test error (%) on CIFAR-10-C, level 5, ResNet-26 with Batch Normalization.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 7.9 63.9 58.8 64.3 46.3 54.6 41.6 45.9 31.9 44.0 37.5 13.0 69.2 33.8 61.4 31.7
JT 7.5 70.7 65.6 67.2 43.1 55.4 40.9 42.7 30.3 44.5 42.5 12.7 58.6 30.7 62.6 31.9

TTT 7.9 47.9 45.2 54.8 27.6 50.4 31.5 30.9 28.7 34.3 26.9 12.6 35.2 30.6 51.2 31.3

Table 4: Test error (%) on CIFAR-10-C, level 5, ResNet-26 with Batch Normalization.

Test-time training (standard version) is still very effective with BN. In fact, some of the improve-
ments are quite dramatic, such as on contrast (34%), defocus blue (18%) and Gaussian noise (22%
comparing to joint-training, and 16% comparing to the baseline). Performance on the original dis-
tribution is still almost the same, and the original error with BN is in fact slightly lower than with
GN, and takes half as many epochs to converge.

We did not further experiment with BN because of two reasons: 1) The online version does not work
with BN, because the problem with inaccurate batch statistics is exacerbated when training online
for many (e.g. 10000) steps. 2) The baseline error for almost every corruption type is significantly
higher with BN than with GN. Although unrelated to the main idea of our paper, we make the
interesting note that GN significantly improves model robustness.

E.2 ADDITIONAL BASELINE: ADVERSARIAL LOGIT PAIRING

As discussed in subsection 3.1, Hendrycks & Dietterich (2019) point to Adversarial Logit Pairing
(ALP) (Kannan et al., 2018) as an effective method for improving model robustness to corruptions
and perturbations, even though it was designed to defend against adversarial attacks. We take ALP
as an additional baseline on all benchmarks based on CIFAR-10 (using GN), following the training
procedure in Kannan et al. (2018) and their recommended hyper-parameters. The implementation
of the adversarial attack comes from the codebase of Ding et al. (2019). We did not run ALP on
ImageNet because the two papers we reference for this method, Kannan et al. (2018) and Hendrycks
& Dietterich (2019), did not run on ImageNet or make any claim or recommendation.
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E.3 RESULTS ON CIFAR-10-C AND IMAGENET-C, LEVEL 5

The following two tables correspond to the bar plots in section 3.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 8.9 50.5 47.2 56.1 23.7 51.7 24.3 26.3 25.6 34.4 28.1 13.5 25.0 27.4 55.8 29.8
JT 8.1 49.4 45.3 53.4 24.2 48.5 24.8 26.4 25.0 32.5 27.5 12.6 25.3 24.0 51.6 28.7

TTT 7.9 45.6 41.8 50.0 21.8 46.1 23.0 23.9 23.9 30.0 25.1 12.2 23.9 22.6 47.2 27.2
TTTO 8.2 25.8 22.6 30.6 14.6 34.4 18.3 17.1 20.0 18.0 16.9 11.2 15.6 21.6 18.1 21.2
ALP 16.5 22.7 22.9 28.3 25.0 25.6 27.4 23.1 25.2 27.2 64.8 21.7 73.6 23.0 20.2 18.9

Table 5: Test error (%) on CIFAR-10-C, level 5, ResNet-26.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 68.9 1.3 2.0 1.3 7.5 6.6 11.8 16.2 15.7 14.9 15.3 43.9 9.7 16.5 15.3 23.4
JT 69.1 2.1 3.1 2.1 8.7 6.7 12.3 16.0 15.3 15.8 17.0 45.3 11.0 18.4 19.7 22.9

TTT 69.0 3.1 4.5 3.5 10.1 6.8 13.5 18.5 17.1 17.9 20.0 47.0 14.4 20.9 22.8 25.3
TTTO 68.8 26.3 28.6 26.9 23.7 6.6 28.7 33.4 35.6 18.7 47.6 58.3 35.3 44.3 47.8 44.3

Table 6: Test accuracy (%) on ImageNet-C, level 5, ResNet-18.

E.4 RESULTS ON CIFAR-10-C, LEVELS 1-4

The following bar plots and tables are on levels 1-4 of CIFAR-10-C. The original distribution is the
same for all levels, so are our results on the original distribution.
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Figure 6: Test error (%) on CIFAR-10-C, level 4. See subsection 3.1 for details.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 8.9 46.4 39.2 44.8 15.3 52.5 19.1 20.5 21.3 26.9 13.3 10.5 13.7 20.8 35.3 26.9
JT 8.1 45.0 38.3 42.2 16.4 50.2 20.7 20.5 21.1 25.4 14.1 10.0 14.7 19.0 33.2 25.1

TTT 7.9 41.5 35.4 39.8 15.0 47.8 19.1 18.4 20.1 24.0 13.5 10.0 14.1 17.7 29.4 24.5
TTTO 8.2 22.9 20.0 23.9 11.2 35.1 15.6 13.8 18.6 15.9 12.3 9.7 11.9 16.7 13.6 19.8
ALP 16.5 21.3 20.5 24.5 20.7 25.9 23.7 21.4 24.2 23.9 42.2 17.5 53.7 22.1 19.1 18.5

Table 7: Test error (%) on CIFAR-10-C, level 4, ResNet-26.
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Figure 7: Test error (%) on CIFAR-10-C, level 3. See subsection 3.1 for details.
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orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 8.9 42.2 35.1 30.7 12.2 41.7 18.6 17.5 19.0 25.3 10.8 9.7 11.6 15.3 21.7 24.6
JT 8.1 40.2 34.4 29.9 12.2 37.9 20.8 17.3 18.4 25.0 11.4 9.2 12.0 15.2 20.8 22.8

TTT 7.9 37.2 31.6 28.6 11.5 35.8 19.1 15.8 17.8 23.3 11.0 9.1 11.6 14.3 18.9 22.3
TTTO 8.2 21.3 17.7 17.9 9.0 23.4 15.3 12.5 16.4 15.8 10.9 9.0 10.7 12.8 12.2 18.7
ALP 16.5 20.0 19.3 20.5 19.2 21.2 24.0 20.5 20.9 24.2 30.1 16.6 39.6 20.9 17.8 18.0

Table 8: Test error (%) on CIFAR-10-C, level 3, ResNet-26.
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Figure 8: Test error (%) on CIFAR-10-C, level 2. See subsection 3.1 for details.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 8.9 31.7 22.6 24.3 9.9 42.6 14.9 14.7 21.7 18.4 9.8 9.1 10.0 13.1 17.1 22.4
JT 8.1 31.0 22.6 23.4 9.1 39.2 16.4 14.2 21.2 17.5 9.4 8.3 10.6 12.8 15.9 20.5

TTT 7.9 28.8 20.7 23.0 9.0 36.6 15.4 13.1 20.2 16.9 9.2 8.3 10.2 12.5 14.8 19.7
TTTO 8.2 16.8 13.8 15.5 8.5 23.4 13.3 11.5 16.8 12.7 9.4 8.4 9.7 12.4 11.5 17.0
ALP 16.5 18.0 17.2 19.0 17.8 20.7 21.2 19.3 19.0 20.1 22.4 16.3 29.2 20.3 17.4 17.8

Table 9: Test error (%) on CIFAR-10-C, level 2, ResNet-26.
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Figure 9: Test error (%) on CIFAR-10-C, level 1. See subsection 3.1 for details.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg
B 8.9 21.7 17.1 17.0 9.0 44.0 12.1 13.9 14.3 13.4 9.2 8.9 9.0 13.2 12.0 17.3
JT 8.1 20.4 16.6 16.9 8.2 40.5 12.2 13.0 13.1 12.3 8.4 8.1 8.5 12.9 11.3 15.9

TTT 7.9 19.1 15.8 16.5 8.0 37.9 11.7 12.2 12.8 11.9 8.2 8.0 8.3 12.6 11.1 15.5
TTTO 8.2 13.8 11.9 12.2 8.5 24.4 10.5 11.5 12.4 10.7 8.5 8.3 8.6 12.4 10.7 14.4
ALP 17.0 16.8 17.6 16.8 20.9 18.7 19.0 17.3 17.5 17.4 16.1 18.4 20.4 17.0 17.2

Table 10: Test error (%) on CIFAR-10-C, level 1, ResNet-26.
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Figure 10: Sample Images from the VID dataset in Section 3.2 adapted to CIFAR-10. Each row
shows eight sample images from one class. The seven classes shown are, in order: airplane, bird,
car, dog, cat, horse, ship.
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