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ABSTRACT

When performing imitation learning from expert demonstrations, distribution
matching is a popular approach, in which one alternates between estimating dis-
tribution ratios and then using these ratios as rewards in a standard reinforcement
learning (RL) algorithm. Traditionally, estimation of the distribution ratio requires
on-policy data, which has caused previous work to either be exorbitantly data-
inefficient or alter the original objective in a manner that can drastically change its
optimum. In this work, we show how the original distribution ratio estimation ob-
jective may be transformed in a principled manner to yield a completely off-policy
objective. In addition to the data-efficiency that this provides, we are able to show
that this objective also renders the use of a separate RL optimization unnecessary.
Rather, an imitation policy may be learned directly from this objective without the
use of explicit rewards. We call the resulting algorithm ValueDICE and evaluate
it on a suite of popular imitation learning benchmarks, finding that it can achieve
state-of-the-art sample efficiency and performance.

1 INTRODUCTION

Reinforcement learning (RL) is typically framed as learning a behavior policy based on reward
feedback from trial-and-error experience. Accordingly, many successful demonstrations of RL often
rely on carefully handcrafted rewards with various bonuses and penalties designed to encourage
intended behavior (Nachum et al., 2019a; Andrychowicz et al., 2018). In contrast, many real-world
behaviors are easier to demonstrate rather than devise explicit rewards. This realization is at the heart
of imitation learning (Ho & Ermon, 2016; Ng et al.; Pomerleau, 1989), in which one aims to learn
a behavior policy from a set of expert demonstrations – logged experience data of a near-optimal
policy interacting with the environment – without explicit knowledge of rewards.

Distribution matching via adversarial learning, or Adversarial Imitation Learning (AIL), has recently
become a popular approach for imitation learning (Ho & Ermon, 2016; Fu et al., 2017; Ke et al.,
2019; Kostrikov et al., 2019). These methods interpret the states and actions provided in the expert
demonstrations as a finite sample from a target distribution. Imitation learning can then be framed
as learning a behavior policy which minimizes a divergence between this target distribution and the
state-action distribution induced by the behavior policy interacting with the environment. As derived
by Ho & Ermon (2016), this divergence minimization may be achieved by iteratively performing two
alternating steps, reminiscent of GAN algorithms (Goodfellow et al., 2014). First, one estimates the
density ratio of states and actions between the target distribution and the behavior policy. Then, these
density ratios are used as rewards for a standard RL algorithm, and the behavior policy is updated to
maximize these cumulative rewards (data distribution ratios).

The main limitation of current distribution matching approaches is that estimating distribution den-
sity ratios (the first step of every iteration) typically requires samples from the behavior policy dis-
tribution. This means that every iteration – every update to the behavior policy – requires new
interactions with the environment, precluding the use of these algorithms in settings where interac-
tions with the environment are expensive and limited. Several papers attempt to relax this on-policy
requirement and resolve the sample inefficiency problem by designing off-policy imitation learning
algorithms, which may take advantage of past logged data, usually in the form of a replay buffer
(Kostrikov et al., 2019; Sasaki et al., 2019). However, these methods do so by altering the original
divergence minimization objective to measure a divergence between the target expert distribution
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and the replay buffer distribution. Accordingly, there is no guarantee that the learned policy will
recover the desired target distribution.

In this work, we introduce an algorithm for imitation learning that, on the one hand, performs diver-
gence minimization as in the original AIL methods, while on the other hand, is completely off-policy.
We begin by providing a new formulation of the minimum divergence objective that avoids the use
of any explicit on-policy expectations. While this objective may be used in the traditional way to
estimate data distribution ratios that are then input to an RL algorithm, we go further to show how
the specific form of the derived objective renders the use of a separate RL optimization unneces-
sary. Rather, gradients of the minimum divergence objective with respect to behavior policy may
be computed directly. This way, an imitating behavior policy may be learned to minimize the di-
vergence without the use of explicit rewards. We call this stream-lined imitation learning algorithm
ValueDICE. In addition to being simpler than standard imitation learning methods, we show that our
proposed algorithm is able to achieve state-of-the-art performance on a suite of imitation learning
benchmarks.

2 BACKGROUND

We consider environments represented as a Markov Decision Process (MDP) (Puterman, 2014),
defined by the tuple, (S,A, p0(s), p(s′|s, a), r(s, a), γ), where S and A are the state and action
space, respectively, p0(s) is an initial state distribution, p(s′|s, a) defines environment dynamics
represented as a conditional state distribution, r(s, a) is a reward function, and γ is a return discount
factor. A behavior policy π(·|·) interacts with the environment to yield experience (st, at, rt, st+1),
for t = 0, 1, . . . , where s0 ∼ p0(·), at ∼ π(·|st), st+1 ∼ p(·|st, at), rt = r(st, at). Without loss of
generality, we consider infinite-horizon, non-terminating environments. In standard RL, one aims
to learn a behavior policy π(·|s) to maximize cumulative rewards, based on experience gained from
interacting with the environment.

In imitation learning (Pomerleau, 1989; Abbeel & Ng, 2004; Ho & Ermon, 2016), the environ-
ment reward is not observed. Rather, one has access to a set of expert demonstrations D :=
{(sk, ak, s′k}Nk=1 given by state-action-next-state transitions in the environment induced by an un-
known expert policy πexp and the goal is to learn a behavior policy π which recovers πexp. During
the learning process, in addition to the finite set of expert demonstrationsD, one may also optionally
interact with the environment (in these interactions, no rewards are observed). This setting describes
a number of real-world applications where rewards are unknown, such as Pomerleau (1989); Muller
et al. (2006); Bojarski et al. (2016).

2.1 BEHAVIORAL CLONING (BC)

Supervised behavioral cloning (BC) is a popular approach for imitation learning. Given a set of
expert demonstrations, a mapping of state observations to actions is fit using regression or density
estimation. In the simplest case, one simply trains the behavior policy π to minimize the negative
log-likelihood of the observed expert actions:

min
π
JBC(π) := −

1

N

N∑
k=1

log π(ak|sk). (1)

Unlike Inverse Reinforcement Learning (IRL) algorithms (e.g. GAIL (Ho & Ermon, 2016)), BC
does not perform any additional policy interactions with the learning environment and hence does
not suffer from the same issue of policy sample complexity. However, behavioral cloning suffers
from distributional drift (Ross et al., 2011); i.e., there is no way for π to learn how to recover if it
deviates from the expert behavior to a state s̃ not seen in the expert demonstrations.

2.2 DISTRIBUTION MATCHING

The distribution matching approach provides a family of methods that are robust to distributional
shift. Rather than considering the policy directly as a conditional distribution π(·|s) over actions,
this approach considers the state-action distribution induced by a policy. In particular, under certain
conditions (Puterman, 2014), there is a one-to-one correspondence between a policy and its state-
action distribution dπ defined as,
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dπ(s, a) = (1− γ) ·
∞∑
t=0

γtp(st = s, at = a|s0 ∼ p0(·), st ∼ p(·|st−1, at−1), at ∼ π(·|st)). (2)

By the same token, the unknown expert policy πexp also possesses a state-action distribution dexp,
and one may usually assume that the expert demonstrations D := {(sk, ak, s′k}Nk=1 are sampled as
(sk, ak) ∼ dexp, s′k ∼ p(·|sk, ak).
Accordingly, the distribution matching approach proposes to learn π to minimize the divergence
between dπ and dexp. The KL-divergence is typically used to measure the discrepancy between dπ
and dexp (Ho & Ermon, 2016; Ke et al., 2019):

−DKL (d
π||dexp) = E(s,a)∼dπ

[
log

dexp(s, a)

dπ(s, a)

]
. (3)

The use of the KL-divergence is convenient, as it may be expressed as an RL problem where rewards
are given by log distribution ratios:

−DKL (d
π||dexp) = (1− γ) · E

s0∼p0(·), at∼π(·|st)
st+1∼p(·|st,at)

[ ∞∑
t=0

γt log
dexp(st, at)

dπ(st, at)

]
. (4)

In other words, if one has access to estimates of the distribution ratios of the two policies, then
the minimum divergence problem reduces to a max-return RL problem with rewards r̃(s, a) =

log dexp(s,a)
dπ(s,a) . Any on-policy or off-policy RL algorithm can be used to maximize the corresponding

expected returns in Equation 4.

Capitalizing on this observation, Ho & Ermon (2016); Ke et al. (2019) propose algorithms (e.g.,
GAIL) in which the distribution ratio is estimated using a GAN-like objective:

max
h:S×A→(0,1)

JGAIL(h) := E(s,a)∼dexp [log h(s, a)] + E(s,a)∼dπ [log(1− h(s, a))]. (5)

In this objective, the function h acts as a discriminator, discriminating between samples (s, a) from
dexp and dπ . The optimal discriminator satisfies,

log h∗(s, a)− log(1− h∗(s, a)) = log
dexp(s, a)

dπ(s, a)
, (6)

and so the distribution matching rewards may be computed as r̃(s, a) = log h∗(s, a) − log(1 −
h∗(s, a)). In practice, the discriminator is not fully optimized, and instead gradient updates to the
discriminator and policy are alternated.

These prior distribution matching approaches possess two limitations which we will resolve with
our proposed ValueDICE algorithm:

• On-policy. Arguably the main limitation of these prior approaches is that they require access to
on-policy samples from dπ . While off-policy RL can be used for learning π, optimizing the dis-
criminator h necessitates having on-policy samples (the second expectation in Equation 5). Thus,
in practice, GAIL requires a prohibitively large number of environment interactions, making it un-
feasible for use in many real-world applications. Attempts to remedy this, such as Discriminator-
Actor-Critic (DAC) (Kostrikov et al., 2019), often do so via ad-hoc methods; for example, chang-
ing the on-policy expectation E(s,a)∼dπ [log(1−h(s, a))] in Equation 5 to an expectation over the
replay buffer E(s,a)∼dRB [log(1 − h(s, a))]. While DAC achieves good empirical results, it does
not guarantee distribution matching of π to πexp, especially when dRB is far from dπ .

• Separate RL optimization. Prior approaches require iteratively taking alternating steps: first
estimate the data distribution ratios using the GAN-like objective, then input these into an RL
optimization and repeat. The use of a separate RL algorithm introduces complexity to any im-
plementation of these approaches, with many additional design choices that need to be made and
more function approximators to learn (e.g., value functions). Our introduced ValueDICE will be
shown to not need a separate RL optimization.

3 OFF-POLICY FORMULATION OF THE KL-DIVERGENCE

As is standard in distribution matching, we begin with the KL-divergence between the policy state-
action occupancies and the expert. However, in contrast to the form used in Equation 4 or 5, we use
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the Donsker-Varadhan representation (Donsker & Varadhan, 1983) given by,

−DKL (d
π||dexp) = min

x:S×A→R
logE(s,a)∼dexp [e

x(s,a)]− E(s,a)∼dπ [x(s, a)]. (7)

Similar to Equation 5, this dual representation of the KL has a property that is important for imitation
learning. The optimal x∗ is equal to the log distribution ratio (plus a constant):1

x∗(s, a) = log
dπ(s, a)

dexp(s, a)
+ C. (8)

In our considered infinite-horizon setting, the constant does not affect optimality and so we will
ignore it (take C = 0). If one were to take a GAIL-like approach, they could use this form of the
KL to estimate distribution matching rewards given by r̃(s, a) = −x∗(s, a), and these could then
be maximized by any standard RL algorithm. However, there is no clear advantage of this objective
over GAIL since it still relies on an expectation with respect to on-policy samples from dπ .

To make this objective practical for off-policy learning, we take inspiration from derivations used in
DualDICE (Nachum et al., 2019b), and perform the following change of variables:2

x(s, a) = ν(s, a)− Bπν(s, a), (9)

where Bπ is the expected Bellman operator with respect to policy π and zero reward:

Bπν(s, a) = γEs′∼p(·|s,a),a′∼π(·|s′)[ν(s′, a′)]. (10)

This change of variables is explicitly chosen to take advantage of the linearity of the second expec-
tation in Equation 7. Specifically, the representation becomes,

−DKL (d
π||dexp) = min

ν:S×A→R
log E

(s,a)∼dexp
[eν(s,a)−B

πν(s,a)]− E
(s,a)∼dπ

[ν(s, a)−Bπν(s, a)], (11)

where the second expectation conveniently telescopes and reduces to an expectation over initial
states (see Nachum et al. (2019b) for details):

min
ν:S×A→R

JDICE(ν) := log E
(s,a)∼dexp

[eν(s,a)−B
πν(s,a)]− (1− γ) · E

s0∼p0(·),
a0∼π(·|s0)

[ν(s0, a0)]. (12)

Thus we achieve our ValueDICE3 objective. It allows us to express the KL-divergence between dπ
and dexp in terms of an objective over a ‘value-function’ ν expressed in an off-policy manner, with
expectations over expert demonstrations dexp and initial state distribution p0(·).
It is clear that the derived objective in Equation 12 possesses two key characteristics missing from
prior distribution matching algorithms: First, the objective does not rely on access to samples from
the on-policy distribution dπ , and so may be used in more realistic, off-policy settings. Second, the
objective describes a proper divergence between dπ and dexp, as opposed to estimating a divergence
between dRB and dexp, and thus avoids poor behavior when dRB is far from dπ . In the following
section, we will go further to show how the objective in Equation 12 also renders the use of a separate
RL optimization unnecessary.

4 VALUEDICE: IMITATION LEARNING WITH IMPLICIT REWARDS

Although it is standard in distribution matching to have separate optimizations for estimating the
distribution ratios and learning a policy, in our case this can be mitigated. Indeed, looking at our
formulation of the KL in Equation 12, we see that gradients of this objective with respect to π may
be easily computed. Specifically, we may express the distribution matching objective for π as a
max-min optimization:
max
π

min
ν:S×A→R

JDICE(π, ν) := log E
(s,a)∼dexp

[eν(s,a)−B
πν(s,a)]−(1−γ)· E

s0∼p0(·),
a0∼π(·|s0)

[ν(s0, a0)]. (13)

1This result is easy to derive by setting the gradient of the Donsker-Varadhan representation to zero and
solving for x∗.

2This change of variables is valid when one assumes log dπ(s, a)/dexp(s, a) ∈ K for all s ∈ S, a ∈ A,
where K is some bounded subset of R, and x is restricted to the family of functions S ×A → K.

3DICE (Nachum et al., 2019b) is an abbreviation for discounted distribution correction estimation.
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If the inner objective over ν is sufficiently optimized, the gradients of π may be computed di-
rectly (Bertsekas, 1999), noting that,

∂

∂π
eν(s,a)−B

πν(s,a) = −γ · eν(s,a)−B
πν(s,a) · Es′∼T (s,a),a′∼π(s′)[ν(s

′, a′)∇ log π(a′|s′)], (14)

∂

∂π
Es0∼p0(·),a0∼π(·|s0)[ν(s0, a0)] = Es0∼p0(·),a0∼π(·|s0)[ν(s0, a0)∇ log π(a0|s0)]. (15)

In continuous control environments when π is parameterized by a Gaussian and ν is a neural net-
work, one may use the re-parameterization trick (Haarnoja et al., 2018) to compute gradients of the
ν-values with respect to policy mean and variance directly as opposed to computing ∇ log π(a|s).
Please see the appendix for a full pseudocode implementation of ValueDICE. We note that in prac-
tice, as in GAIL, we do not train ν until optimality but rather alternate ν and π updates.

The mechanics of learning π according to the ValueDICE objective are straightforward, but what
is the underlying reason for this more streamlined policy learning? How does it relate the standard
protocol of alternating data distribution estimation with RL optimization? To better understand this,
we consider the form of ν when it is completely optimized. If we consider the original change of
variables (Equation 9) and optimality characterization (Equation 8) we have,

ν∗(s, a)− Bπν∗(s, a) = x∗(s, a) = log
dπ(s, a)

dexp(s, a)
. (16)

From this characterization of ν∗, we realize that ν∗ is a sort of Q-value function: ν∗(s, a) is the
future discounted sum of rewards r̃(s, a) := log dπ(s,a)

dexp(s,a) when acting according to π. The gradients
for π then encourage the policy to choose actions which minimize ν∗(s, a), i.e., maximize future
discounted log ratios log dexp(s,a)

dπ(s,a) . Thus we realize that the objective for π in ValueDICE performs
exactly the RL optimization suggested by Equation 4. The streamlined nature of ValueDICE comes
from the fact that the value function ν (which would traditionally need to be learned as a critic in
a separate actor-critic RL algorithm) is learned directly from the same objective as that used for
distribution matching.

Thus, in addition to estimating a proper divergence between dπ and dexp in an off-policy manner,
ValueDICE also greatly simplifies the implementation of distribution matching algorithms. There is
no longer a need to use a separate RL algorithm for learning π, and moreover, the use of ν as a value
function removes any use of explicit rewards. Instead, the objective and implementation are only in
terms of policy π and function ν.

5 SOME PRACTICAL CONSIDERATIONS

In order to make use of the ValueDICE objective (Equation 13) in practical scenarios, where one
does not have access to dexp or p0(·) but rather only limited finite samples, we perform several
modifications.

5.1 EMPIRICAL EXPECTATIONS

The objective in Equation 13 contains three expectations:

1. An expectation over dexp (the first term of the objective). Note that this expectation has a
logarithm outside of it, which would make any mini-batch approximations of the gradient
of this expectation biased.

2. An expectation over p0(·) (the second term of the objective). This term is linear, and so is
very amenable to mini-batch optimization.

3. An expectation over the environment transition p(·|s, a) used to compute Bπν(s, a). This
expectation has a log-expected-exponent applied to it, so its mini-batch approximated gra-
dient would be biased in general.

For the first expectation, previous works have suggested a number of remedies to reduce the bias
of mini-batch gradients, such as maintaining moving averages of various quantities (Belghazi et al.,
2018). In the setting we considered, we found this to have a negligible effect on performance. In
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fact, simply using the biased mini-batched gradients was sufficient for good performance, and so we
used this for our experiments.

For the second expectation, we use standard mini-batch gradients, which are unbiased. Although
initial state distributions are usually not used in imitation learning, it is easy to record initial states as
they are observed, and thus have access to an empirical sample from p0. Furthermore, as detailed in
Section 5.3, it is possible to modify the initial state distribution used in the objective without adverse
effects.

Finally, for the third expectation, previous works have suggested the use of Fenchel conjugates to
remove the bias (Nachum et al., 2019b). In our case, we found this unnecessary and instead use
a biased estimate based on the single sample s′ ∼ p(·|s, a). This naive approach was enough to
achieve good performance on the benchmark domains we considered.

In summary, the empirical form of the objective is given by,
ĴDICE(π, ν) =

E
batch(D)∼D,
batch(p0)∼p̂0

[
log E

s,a,s′∼batch(D),
a′∼π(·|s′)

[
eν(s,a)−γν(s

′,a′)
]
− (1− γ) · E

s0∼batch(p0),
a0∼π(·|s0)

[ν(s0, a0)]

]
, (17)

where batch(D) is a mini-batch from D and batch(p0) is a mini-batch from the recorded initial
states p̂0.

5.2 REPLAY BUFFER REGULARIZATION

The original ValueDICE objective uses only expert samples and the initial state distribution. In
practice, the number of expert samples may be small and lack diversity, hampering learning. In
order to increase the diversity of samples used for training, we consider an alternative objective,
with a controllable regularization based on experience in the replay buffer:
Jmix
DICE(π, ν) := log E

(s,a)∼dmix
[eν(s,a)−B

πν(s,a)]− (1− α)(1− γ) · E
s0∼p0(·),
a0∼π(·|s0)

[ν(s0, a0)]

− α E
(s,a)∼dRB

[ν(s, a)− Bπν(s, a)], (18)

where dmix(s, a) = (1− α)dexp(s, a) + αdRB(s, a).
The main advantage of this formulation is that it introduces ν-values into the objective on samples
that are outside the given expert demonstrations. Thus, if π deviates from the expert trajectory,
we will still be able to learn optimal actions that return the policy back to the expert behavior. At
the same time, one can verify that in this formulation the optimal π still matches πexp, unlike other
proposals for incorporating a replay buffer distribution (Kostrikov et al., 2019). Indeed, the objective
in Equation 18 corresponds to the Donsker-Varadhan representation,
−DKL((1− α)dπ + αdRB || (1− α)dexp + αdRB) =

min
x:S×A→R

logE(s,a)∼dmix [ex(s,a)]− (1− α) · E(s,a)∼dπ [x(s, a)]− α · E(s,a)∼dRB [x(s, a)] , (19)

and so the optimal values of ν∗ satisfy,

ν∗(s, a)− Bπν∗(s, a) = x∗(s, a) = log
αdπ(s, a) + (1− α)dRB(s, a)

αdexp(s, a) + (1− α)dRB(s, a)
. (20)

Therefore, the global optimality of π = πexp is unaffected by any choice of α < 1. We note that in
practice we use a small value α = 0.1 for regularization.

5.3 INITIAL STATE SAMPLING

Recall that dexp, dπ traditionally refer to discounted state-action distributions. That is, sampling
from them is equivalent to first sampling a trajectory (s0, a0, s1, a1, . . . , sT ) and then sampling a
time index t from a geometric distribution Geom(1 − γ) (appropriately handling samples that are
beyond T ). This means that samples far into the trajectory do not contribute much to the objec-
tive. To remedy this, we propose treating every state in a trajectory as an ‘initial state.’ That is,
we consider a single environment trajectory (s0, a0, s1, a1, . . . , sT ) as T distinct virtual trajectories
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Figure 1: Results of ValueDICE on a simple Ring MDP. Left: The expert data is sparse and only
covers states 0, 1, and 2. Nevertheless, ValueDICE is able to learn a policy on all states to best match
the observed expert state-action occupancies (the policy learns to always go to states 1 and 2). Right:
The expert is stochastic. ValueDICE is able to learn a policy which successfully minimizes the true
KL computed between dπ and dexp.

{(st, at, st+1, at+1, . . . , sT )}T−1t=0 . We apply this to both dexp and dπ , so that not only does it in-
crease the diversity of samples from dexp, but it also expands the initial state distribution p0(·) to
encompass every state in a trajectory. We note that this does not affect the optimality of the objective
with respect to π, since in Markovian environments an expert policy should be expert regardless of
the state at which it starts (Puterman, 2014).

6 RELATED WORK

In recent years, the development of Adversarial Imitation Learning has been mostly focused on
on-policy algorithms. After Ho & Ermon (2016) proposed GAIL to perform imitation learning via
adversarial training, a number of extensions has been introduced. Many of these applications of the
AIL framework (Li et al., 2017; Hausman et al., 2017; Fu et al., 2017) maintain the same form of
distribution ratio estimation as GAIL which necessitates on-policy samples. In contrast, our work
presents an off-policy formulation of the same objective.

Although several works have attempted to apply the AIL framework to off-policy settings, these
previous approaches are markedly different from our own. For example, Kostrikov et al. (2019)
proposed to train the discriminator in the GAN-like AIL objective using samples from a replay
buffer instead of samples from a policy. This changes the distribution ratio estimation to measure
a divergence between the expert and the replay. Although we introduce a controllable parameter α
for incorporating samples from the replay buffer into the data distribution objective, we note that
in practice we use a very small α = 0.1. Furthermore, by using samples from the replay buffer in
both terms of the objective as opposed to just one, the global optimality of the expert policy is not
affected.

The off-policy formulation of the KL-divergence we derive is motivated by similar techniques in
DualDICE (Nachum et al., 2019b). Still, our use of these techniques provides several novelties.
First, Nachum et al. (2019b) only use the divergence formulation for data distribution estimation
(which is used for off-policy evaluation), assuming a fixed policy. We use the formulation for
learning a policy to minimize the divergence directly. Moreover, previous works have only ap-
plied these derivations to the f -divergence form of the KL-divergence, while we are the first to
utilize the Donsker-Varadhan form. Anecdotally in our initial experiments, we found that using the
f -divergence form leads to poor performance.

7 EXPERIMENTS

We evaluate ValueDICE in a variety of settings, starting with a simple synthetic task before contin-
uing to an evaluation on a suite of MuJoCo benchmarks.

7.1 RING MDP

We begin by analyzing the behavior of ValueDICE on a simple synthetic MDP (Figure 1). The
states of the MDP are organized in a ring. At each state, two actions are possible: move clockwise
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Figure 2: Comparison of algorithms given 1 expert trajectory.
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Figure 3: Comparison of algorithms given 10 expert trajectories. ValueDICE outperforms other
methods. However, given this amount of data, BC can recover the expert policy as well.

or counter-clockwise. We first look at the performance of ValueDICE in a situation where the expert
data is sparse and does not cover all states and actions. Specifically, we provide expert demonstra-
tions which cover only states 0, 1, and 2 (see Figure 1 left). While the problem of recovering the true
(unknown) expert is ill-defined, it is still possible to find a policy which recovers close to the same
occupancies. Indeed, this is the policy found by ValueDICE, which chooses the appropriate actions
at each state to optimally reach states 1 and 2 (and alternating between states 1 and 2 when at these
states). In many practical scenarios, this is the desired outcome – if the imitating policy somehow
encounters a situation which deviates from the expert demonstrations, we would like it to return to
the expert behavior as fast as possible. Notably, a technique like behavioral cloning would fail to
learn this optimal policy, since its learning is only based on observed expert data.

We also analyzed the behavior of ValueDICE with a stochastic expert (Figure 1 right). By using a
synthetic MDP, we are able to measure the divergence DKL(d

π||dexp) during training. As expected,
we find that this divergence decreases during ValueDICE training.

7.2 MUJOCO BENCHMARKS

We compare ValueDICE against Discriminator-Actor-Critic (DAC) (Kostrikov et al., 2019), which
is the state-of-the-art in sample-efficient adversarial imitation learning, as well as GAIL (Ho &
Ermon, 2016). We evaluate the algorithms on the standard MuJoCo environments using expert
demonstrations from Ho & Ermon (2016). We plot the average returns for the learned policies
(using a mean action for sampling) every 1000 environment steps using 10 episodes. We perform
this procedure for 10 different seeds and compute means and standard deviations (see Fig. 2 and 3,
we visualize a half of standard deviation on these plots).

We present the extremely low-data regime first. In Figure 2 we present the results of the imitation
learning algorithms given only a single expert trajectory. We find that ValueDICE performs similar
or better than DAC an all tasks, with the exception of Walker2d where it converges to a slightly worse
policy. Notably, in this low-data regime, behavioral cloning (BC) usually cannot recover the expert
policy. We also present the results of these algorithms on a larger number of expert demonstrations
(Figure 3). We continue to observe strong performance of ValueDICE as well as faster convergence
on all tasks. It is worth mentioning that in this large-data regime, Behavior Cloning can recover the
expert performance as well. In all of these scenarios, GAIL is too sample-inefficient to make any
progress.
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8 CONCLUSION

We introduced ValueDICE, an algorithm for imitation learning that outperforms the state-of-the-art
on standard MuJoCo tasks. In contrast to other algorithms for off-policy imitation learning, the al-
gorithm introduced in this paper performs robust divergence minimization in a principled off-policy
manner and a strong theoretical framework. To the best of our knowledge, this is also the first
algorithm for adversarial imitation learning that omits learning or defining rewards explicitly and di-
rectly learns a Q-function in the distribution ratio objective directly. We demonstrate the robustness
of ValueDICE in a challenging synthetic tabular MDP environment, as well as on standard MuJoCo
continuous control benchmark environments, and we show increased performance over baselines in
both the low and high data regimes.
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A IMPLEMENTATION DETAILS

All algorithms use networks with an MLP architecture with 2 hidden layers and 256 hidden units.
For discriminators, critic, ν we use Adam optimizer with learning rate 10−3 while for the actors
we use the learning rate of 10−5. For the Q-value-based version of the algorithm, we learn the
temperature similarly to SAC. For the discriminator, ν and x networks we use gradient penalties
from Gulrajani et al. (2017). We also regularize the actor network with the orthogonal regularization
(Brock et al., 2018) with a coefficient 10−4. Also we perform 4 updates per 1 environment step. We
handle absorbing states of the environments similarly to Kostrikov et al. (2019).

B ALGORITHMS

In this section, we present pseudocode for the imitation learning algorithms based on DualDICE.

Algorithm 1 ValueDICE
Input: expert replay bufferRE

Initialize replay bufferR ← ∅
for n = 1, . . . , do

Sample (s, a, s′) with πθ
Add (s, a, s′) to the replay bufferR
{(s(i), a(i), s′(i))}Bi=1 ∼ R . Geometric sampling
{(s(i)0 , s

(i)
E , a

(i)
E , s

′(i)
E )}Bi=1 ∼ RE . Geometric sampling, s(i)0 is a starting episode state for

s
(i)
E

a
(i)
0 ∼ πθ(·|s

(i)
0 ), for i = 1, . . . , B

a′(i) ∼ πθ(·|s′(i)), for i = 1, . . . , B

a
′(i)
E ∼ πθ(·|s′(i)E ), for i = 1, . . . , B

Compute loss on expert data:
ĴRE = log( 1

B

∑B
i=1 e

νψ(s
(i)
E ,a

(i)
E )−γνψ(s′(i)E ,a

′(i)
E ))− (1− γ) 1

B

∑B
i=1 νψ(s

(i)
0 , a

(i)
0 )

Compute loss on the replay buffer:
ĴR = log( 1

B

∑B
i=1 e

νψ(s
(i),a(i))−γνψ(s′(i),a′(i)))− 1

B

∑B
i=1(νψ(s

(i), a(i))− γνψ(s′(i), a′(i)))
Update ψ ← ψ − ην∇ψ((1− α)ĴRE + αĴR)

Update θ ← ψ + ηπ∇θ((1− α)ĴRE + αĴR)
end for
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