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ABSTRACT

Deep neural networks were shown to be vulnerable to crafted adversarial perturba-
tions, and thus bring serious safety problems. To solve this problem, we proposed
AE-GAN+sr, a framework for purifying input images by searching a closest natu-
ral reconstruction with little computation. We first build a reconstruction network
AE-GAN, which adapted auto-encoder by introducing adversarial loss to the ob-
jective function. In this way, we can enhance the generative ability of decoder and
preserve the abstraction ability of encoder to form a self-organized latent space.
In the inference time, when given an input, we will start a search process in the
latent space which aims to find the closest reconstruction to the given image on
the distribution of normal data. The encoder can provide a good start point for the
searching process, which saves much computation cost. Experiments show that
our method is robust against various attacks and can reach comparable even better
performance to similar methods with much fewer computations.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-art performances among various challeng-
ing computer vision tasks. However, they are shown to be vulnerable to adversarial attacks (Szegedy
et al., 2013; Goodfellow et al., 2014b), which add carefully crafted perturbations to a legitimate in-
put sample. The perturbations are small and not perceptible to a human, but they can significantly
mislead the target model. Moreover, adversarial examples have considerable transferability between
different models, which entertains the feasibility of black-box attacks in the real world. Therefore,
it requires attention to finding effective strategies against adversarial attacks, especially black-box
attacks.

There have been many efforts to defend against adversarial attacks by diminishing perturbations of
samples before feeding them into classifiers. Auto-encoder based methods have achieved prevalence
though (Gu & Rigazio, 2014; Meng & Chen, 2017), they are shown to be vulnerable to white-box
attacks (Samangouei et al., 2018) because the model stacked by auto-encoder and classifier can be
attacked again. Other generative models (Samangouei et al., 2018; Song et al., 2017) have been
trained to model the distribution of normal data and project back the adversarial samples to the man-
ifold of normal samples. In the process of purifying input images, they often include complicated
optimization. Therefore, they can easily resist the white-box attack but at the cost of time.

Compared to natural images, adversarial examples have much lower probability densities under the
image distribution (Song et al., 2017), which is regarded as an unknown input pattern for an auto-
encoder trained with legitimate examples. As a result, the output of the encoder can be influenced
by the crafted perturbations and lead to a top-down reconstruction far away from the input. When
humans handle unknown input patterns, we will first find a conception in our mind and correct our
conception step by step by checking the consistency between the input and the reconstruction. We
can apply this mechanism to neural networks, where the latent code for reconstruction is calculated
by a search process guided by feedback from the visual space. The same idea has been included
in Defense-GAN (Samangouei et al., 2018), where a generator is trained to model the distribution
of unperturbed images. When given an image, it uses GD minimization to find the optimum latent
code, which corresponds to the closest output without perturbations to the given image. However,
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Figure 1: Framework of the encoder assisted search process. The search process is implemented in
the latent space formed by the encoder and starts at the point given by the encoder. The discrepancy
between the input and the reconstruction can act as the feedback from the visual space to guide the
search.

Defense-GAN requires multiple random restart points and considerable iterations to guarantee the
performance, which brings a high computation cost. That’s because the GD minimization is sensitive
to the initial points, which is given randomly in Defense-GAN.

Our approach takes the advantages of both auto-encoder and Defense-GAN. We follow the encoder-
decoder framework to build the reconstruction model but also include a search process to find the
best reconstruction. The encoder-decoder framework can help to form a self-organized latent space
and preserves the neighborhood relations (Xu, 2019), which can provide a fair start point and a
more conducive environment for the search. However, the traditional auto-encoder is trained to
form an identical mapping from the input to output instead of minimizing the distance between the
distribution of natural and generated images. Consequently, auto-encoder may find the closest image
to a given perturbed image but out of the distribution of real data, which is still hard for a classifier
to give a right prediction. To solve this problem, we add a discriminator to distinguish between
natural images and generated images and force the decoder to model the distribution of natural data.
The training for the reformer network is simple and requires no adversarial samples. Experimental
results show that the decoder can always generate natural samples when the encoder can provide
a good start point and a self-organized latent space for the search process. Besides, the encoder-
decoder framework can also act as an effective detector (Meng & Chen, 2017). In the inference
stage, when there comes a test sample, we first detect if the sample is from a normal distribution or
not. If true, we simply reconstruct the normal image to eliminate missing noise. If not, we start the
search process in the latent space, which is implemented by GD minimization, to find the closest
natural reconstruction to the given image. Compared with Defense-GAN, we have two advantages:
(1) The detecting enables us to discriminate normal samples and adversarial samples effectively, thus
we can bypass the searching stage on normal samples, which saves much time; (2) For malicious
samples, the search process starts at a good initial, thus we need no random restarts and only a few
iterations. Compared with auto-encoder, we have a strong defense against white-box attacks due to
the searching process. Experiments show that our method is robust against different attacks and can
reach comparable performance with Defense-GAN with much fewer computations.

2 RELATED WORK

ADVERSARIAL ATTACKS

Various attack models have been studied to generate adversarial examples. Szegedy et al. first intro-
duced adversarial examples against neural networks (Szegedy et al., 2013) and generated adversar-
ial perturbations using an L-BFGS method to solve an optimization problem. For better efficiency,
Goodfellow et al. proposed Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014b), an effi-
cient single-step attack where the perturbation is updated along with the sign of the gradient of the
loss w.r.t the input images. Later, Basic Iterative Method (BIM) (Kurakin et al., 2016b) is proposed
as an extension of FGSM by running a finer optimization for multiple iterations and clipped pixel
values in each iteration. After that, Moosavi-Dexfooli et al. proposed DeepFool (Moosavi-Dezfooli
et al., 2016) to find the closest distance from the normal input to the decision boundary of adversar-
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ial samples. More recently, Carli and Wagner (Carlini & Wagner, 2016) launched a powerful attack
to defeat defensive distillation (Papernot et al., 2015), which generates adversarial examples with
small perturbations. It is also possible to use generative models to generate universal adversarial
perturbations (Reddy Mopuri et al., 2018).

DEFENSE METHODS

In recent years, a variety of techniques have been proposed to defend against adversarial attacks.
Adversarial training (Kurakin et al., 2016a; Goodfellow et al., 2014b; He et al., 2017) is one of
the most popular ways which trains the classifier on the augmented training set with adversarial
samples. It improves the accuracy on adversarial samples but can not generalize well to new attacks
(He et al., 2017). Meanwhile, it is time-consuming to generate adversarial examples and retrain
the classifier. Gradient masking method (Papernot et al., 2015) has also been considered to mask
or reduce the gradients in magnitude when training the classifier, but it has been shown to give a
false sense of security in defending against attacks (Athalye et al., 2018). The two popular methods
include retraining the classifier, while the classifier may not be allowed to be modified in the physical
world.

Another way is to pre-process adversarial samples before feeding them into classifiers. Some previ-
ous work resort to traditional denoising methods (Das et al., 2017; Dziugaite et al., 2016; Osadchy
et al., 2017) to purify the adversarial examples. The main drawback of these methods is that they
can only fix small perturbations and may cause information loss. Denoising auto-encoder (Gu &
Rigazio, 2014) is firstly proposed to defend against adversarial attacks by training an auto-encoder
to map the corrupted images to clean ones. As discussed in (Samangouei et al., 2018), the stacked
network is still easy to be attacked. MagNet ensembles many auto-encoders and applies a two-step
defense mechanism where the hard adversarial attacks can be detected and soft adversarial attacks
can be reformed. However, MagNet still suffers from white-box attacks. Different from auto-
encoder, Defense-GAN (Samangouei et al., 2018) is proposed to leverage the representative power
of GAN to diminish adversarial perturbations. At the inference stage, they implement a gradient
descent minimization to find the best code corresponding to the closest reconstruction. Since the
gradient can not pass the searching process, Defense-Gan can strongly defense against white-box
attacks while the searching process is time-consuming.

3 APPROACH

3.1 THREAT MODEL

We consider the following types of adversarial attacks, according to the level of how much informa-
tion is available to the attackers:

• Black-box attacks: no details about the classifier and defense mechanism are accessible. A sub-
stitute network is trained to mimic the classifier and then is used to generate adversarial examples.

• White-box attacks: complete access to all the information about the classifier and the defense
strategy.

• Gray-box attacks: complete access to the classifier but no access to defense strategy.

3.2 METHOD OVERVIEW

Let fθ(x) : Rd → N be a classifier parameterized by θ, where Rd is the image space and N is the set
of natural numbers denoting class labels. Given a clean image x, an adversary can perturb the clean
image with small perturbation η but confuse f :

fθ(x+ η) 6= fθ(x), ‖η‖ < εattack (1)

where ‖·‖ is a measurement and εattack is the perturbation scale which sets the maximum perturba-
tion allowed for each pixel and often set to a small number to get almost imperceptible difference
between xadv = x+ η and x.

We want to improve robustness by learning a transformation T (.), such that the predicted la-
bel of the transformed image does not change when the image corrupted with perturbations, i.e.,
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(a) (b) (c)

Figure 2: Purified images on (a) MNIST and (b) F-MNIST dataset, under FGSM (ε = 0.3) gray-box
attack, as well as (c) Half-Masked attack on F-MNIST. First row: the corrupted images; Second
row: purified image by AE+s; Third row: purified image by A.G.+s; Last row: ground truth.

fθ(T (xadv)) = fθ(T (x)). The basic idea of our method is to purify input images by searching
the closest reconstruction in the training distribution within little computation cost. To achieve this,
we build a reconstruction network based on the encoder-decoder framework, which is denoted as
AE-GAN and will be described in detail in Section 3.3. After training, the encoder of AE-GAN
can provide a good representation for most inputs, and the decoder can always generate samples of
normal distribution during the search.

In the inference time, when given an input, we first detect if the sample is from a normal distribution
or not. If true, we simply reconstruct the normal image to diminish missing noises. If not, we start
a search process in the latent coding space to find the best code, which corresponds to the closest
reconstruction without perturbations. The search process starts at the output of the encoder and
implemented by GD minimization, which will be described in Section 3.4.

3.3 ARCHITECTURE OF AE-GAN

An auto-encoder (AE) is composed of two components: the encoder F and the decoder G. Let
X be the visual space and Z be the latent space. The mapping F : X → Z performs image
abstraction, which encode the image x ∈ X into a code z ∈ Z . The mapping Z → X performs
image generation, which generates image x ∈ X from the output of encoder z ∈ Z . Formally, we
denote the distribution of training images as pdata. The loss function of AE is defined as:

Ex∼pdata
‖G(F (x))− x‖ (2)

As shown in Equation 2, traditional AE minimizes the euclidean distance between input and output.
Thus, it is trained to form an identical mapping from the input to output instead of minimizing the
distance between the distribution of natural images pdata and generated images pg . Consequently,
when we search for the best code z in the latent space, AE may find a close image G(z) but out of
Pdata, as shown in Figure 2, which is a meaningless purification because the accuracy of classifier on
these images is not ideal. To solve this problem, we adapt the auto-encoder by introducing the min-
max loss in GANs (Goodfellow et al., 2014a). GANs consists of two neural networks, a generator
G and a discriminator D. G maps a low-dimensional latent space Z to the high dimensional sample
space X . D is a binary neural network classifier. While G learns to generate samples that similar to
the real data x, D learns to distinguish between “real” samples x and “fake” samples G(z). D and
G are trained in an alternating fashion to minimize the following min-max loss (Goodfellow et al.,
2014a):

min
G

max
D

V (D,G) =Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z))] (3)

To preserve the advantages of AE, we still keep the mean square error to drive the abstraction
mapping and self-organising in the latent space. Meanwhile, we add a discriminator learning to
distinguish between the samples generated by the decoder and real samples. Thus, our final objective
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Figure 3: Architecture of AE-GAN

is to minimize the following min-max loss:

min
F,G

max
D

V (D,F,G) =Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))]+

Ex∼pdata
‖G(F (x))− x‖

(4)

As the start point of the search process, the output of the encoder is expected to be close to the
optim code and thus assist the search to converge fastly. Since AE-GAN is trained with normal
images, the encoder F may suffer from the covariate shift when the input is corrupted with large
perturbations. To solve this, when calculating the reconstruction error, the clean image is perturbated
with random Gaussian noise before feeding into the encoder. Adding noise in the input layer acts
as a regularization (Bishop, 1995), thus we denote the method as noise regularization (+r) in this
paper and the final objective function of AE-GAN+r can be written as Equation 5.

min
F,G

max
D

V (D,F,G) =Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))]+

Ex∼pdata
‖G(F (x+ η))− x‖

(5)

where η ∼ N(0, σ), σ follows the uniform distribution on a given region.

Bidirectional Generative Adversarial Networks (BiGANs) (Donahue et al., 2016) also includes
encoder-decoder mapping. In addition to the generator from the standard GAN framework, BiGAN
includes an encoder to map the input data into the latent representation. The discriminator in Bi-
GAN discriminates jointly data x and latent code E(X) (tuples (x,E(x)) versus (G(z), z)), where
the latent code is either an encoder output (for real samples) or a generator input z (for generated
samples).

3.4 ENCODER ASSITED SEARCH PROCESS

Although AE-GAN+r has been trained with noise regularization, the added noise is simple while the
adversarial noise is carefully crafted, the distribution between them is different. Moreover, when
the input x∗ is seriously corrupted, e.g., a large region of the image is masked, the code derived
from encoder F (x∗) can hardly represent the original image x. Therefore, a correction for F (x∗) is
required when the input pattern is significantly different from the training data. Meanwhile, the end-
to-end encoder-decoder framework can not perform well against white-box attacks (Samangouei
et al., 2018). Therefore, we include a search (denoted as +s) process in the latent space.

As shown in Figure 1, the core idea is that for every input sample x, AE-GAN+s will process a
search process in the latent space to find the best code for an input, which can lead the decoder to
generate the closest reconstruction. For a given input x, we define the objective function J of the
search process as:

J(z) = L(x,G(z)), for z ∈ Z (6)
where G(.) denotes the decoder, L(.) is a measurement of the discrepancy between x and G(z). We
aims to find the optimim code z∗ such that

z∗ = arg min
z∈Z

J(z) (7)

Since our latent space is designed to be continuous, thus the direction and step size can be calculated
by Gradient Decent (GD) method. Therefore, the search process is converted to a GD minimization
to minimize the discrepancy between the input and the reconstruction. Here we simply use euclidean
distance on the pixel level to measure the dicrepancy.
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In our framework, the encoder forms a self-organized latent space which preserves neighbourhood
relations and provides a good start point. Both of them can assist the search process in converging.
In Defense-GAN (Samangouei et al., 2018), the latent space follows a single Gaussian distribution
while the gradient descent method is sensitive to initial values. Therefore, it requires multiple ran-
dom restart points and considerable iterations to guarantee the performance, which brings a high
computation cost.

4 EXPERIMENTS

4.1 SETTINGS

In this section, we carry out our experiments on two image datasets: the MNIST (LeCun et al.,
1998) and F-MNIST (Xiao et al., 2017) dataset. Both of them contain 60, 000 training images and
10, 000 testing images. We split the original training set by 20:1 for training and validation, and
keep the original testing set as our testing set. Besides, we randomly choose 2000 samples from
the testing set as a development dataset, shortly dev-set, on which we conduct some exploratory
experiments. For the architecture and training of the target classifier A, we follow the settings in
Defense-GAN(Samangouei et al., 2018) and the details are described in Appendix B. After training,
we get an accuracy of 99.6% and 91.8% on MNIST and F-MNIST respectively, which near state of
the art. For the architecture and training details of AE-GAN, we adopt the settings in Defense-GAN
(Samangouei et al., 2018) and restate them in Appendix B with a detailed description.

Specifically, we consider the white-box and gray-box attacks by FGSM (Goodfellow et al., 2014b),
PGD (Madry et al., 2017) and Carlini-Wagner (CW) attack with `2 norm (Carlini & Wagner, 2016),
and black-box attacks by FGSM. The training procedure of the substitute model in black-box attacks
is the same as the setting in (Papernot et al., 2017). We split the testing set into a small hold-out set
of 150 samples for training the substitute model and the remaining 9850 samples for testing different
defense strategies. For all the attack methods, we use the implementation in Cleverhans (Papernot
et al., 2018), a python library to benchmark machine learning systems’ vulnerability to adversarial
examples, and enforce the image to remain within [0, 1]H×W by clipping.

4.2 RESULTS ON ADVERSARIAL ATTACKS

We compare our method to adversarial training (Szegedy et al., 2013; Goodfellow et al., 2014b),
MagNet(Meng & Chen, 2017), Defense-Gan(Samangouei et al., 2018), Bi-GAN(Donahue et al.,
2016) under the FGSM, PGD and CW(with l2 norm) white-box and gray-box attacks, as well as
the FGSM black-box attack. Our reported method is AE-GAN+sr, i.e., AE-GAN with nosie regu-
larization and search process, where the number of iterations L = 15. We also assist Bi-GAN with
the search process for fair comparisons, which is denoted as Bi-GAN+s. Reported Defense-GAN
follows the original settings where iterarions L = 200 and restart points R = 10. All experimental
results are summarized in Table 1.

From Table 1, we can observe that adversarial training successfully defends against the FGSM
attack, but can not generalize to other attacks, that is because adversarial training requires adversarial
samples to re-train the classifier. As discussed in Section 3.3, on small scale perturbations like CW
the performance of MagNet and AE-GAN+sr is close, because the code derived from the encoder is
robust to small perturbations. However, on large scale perturbations like FGSM (ε = 0.3) and PGD
(ε = 0.3), the reported AE-GAN+sr can achieve about 20% ∼ 30% improvements than MagNet.

As shown in Table 1, adversarial training and MagNet can only perform well under specific situa-
tions, while Defense-GAN and our method can defense against various attacks. Attack-agnostic is
important for a defense strategy because we have no information about the attacker in the physical
world. While our method reaches comparable performance with Defense-GAN under white-box
and black-box attacks, we significantly reduce the computation complexity to 15/2000 of Defense-
GAN. Another observation is that when the performance both decreases on the F-MNIST dataset
due to the large perturbations, our method performs much better than Defense-GAN on gray-box
attacks. The possible reason is that images in F-MNIST are more complex and require more details,
which raises the difficulty of searching the best code in the latent space from random points. For
white-box attacks, the performance of our method has a slight drop from Defense-GAN. However,
it has been studied in (Samangouei et al., 2018) that more iterations can increase the robustness
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Table 1: Classification accuracies of classifier A using various defense strategies on the MNIST (top)
and F-MNIST (bottom) dataset, under FGSM (ε = 0.3), PGD (ε = 0.3) and CW (with L2norm)
white-box attacks, gray-box attacks, and FGSM black-box attacks. Here the corresponding iterations
of GD minimization are: 15 for our method, 60 for BiGAN, and 200 for Defense-GAN. (Adv.Tr.:
adversarial training with FGSM (ε = 0.3))

Attack Method None Our Adv. Tr. MagNet Bi-GAN+s Defense-Gan

White
FGSM 0.144 0.984 0.651 0.293 0.912 0.981
PGD 0.007 0.982 0.059 0.012 0.924 0.989
CW 0.008 0.979 0.007 0.013 0.905 0.981

Gray
FGSM 0.144 0.882 - 0.561 0.731 0.880
PGD 0.007 0.910 - 0.673 0.739 0.913
CW 0.008 0.915 - 0.881 0.805 0.918

Black A/B 0.701 0.935 0.951 0.464 0.701 0.928
A/E 0.813 0.933 0.963 0.590 0.632 0.922

Attack Method None Our Adv. Tr. MagNet Bi-GAN+s Defense-Gan

White
FGSM 0.073 0.804 0.797 0.199 0.613 0.814
PGD 0.028 0.816 0.150 0.071 0.653 0.852
CW 0.062 0.767 0.157 0.084 0.601 0.810

Gray
FGSM 0.073 0.607 - 0.304 0.570 0.389
PGD 0.028 0.736 - 0.427 0.605 0.491
CW 0.062 0.719 - 0.646 0.608 0.435

Black A/B 0.227 0.603 0.769 0.308 0.398 0.602
A/E 0.295 0.507 0.694 0.267 0.348 0.461

for Defense-GAN against GD-based white-box attacks. When we decline L from 200 to 15 for
Defense-GAN, the performance drops by 8% decline.

4.3 TRADE-OFF BETWEEN COMPUTATION AND PERFORMANCE

We further investigate the trade-off between computation cost and performance in Defense-GAN
and our method. Tabel 2 shows the robustness of Defense-GAN and AE-GAN+sr when changing
the number of restart points R and iterations L. It can be seen that with less restart points, the
performance of Defense-GAN decreases a lot after a certain L value, which means that the effect of
varying R is extremely pronounced. This is due to the non-convex nature of MSE and increasing
R enables Defense-GAN to sample different local minimum (Samangouei et al., 2018). However,
in our framework, taking the output of the encoder as the initial start point can enable the search
process to reach a reasonable local minimum in a few iterations. When we decrease L from 60
to 10, there is 6% − 10% drop for the accuracy of Defense-GAN, while there is little change on
the performance of AE-GAN+sr. Therefore, compared with Defense-GAN, our method requires less
computation than Defense-GAN when they reach comparable performance. The performance of our
is robust to the computation.

4.4 ATTACK DETECTION

AE-GAN+r can well reconstruct natural images without searching. From this observation, we pro-
pose to introduce the detection mechanism to bypass the searching process for clean images. In
AE-GAN+r, the decoder is trained to produce images which resemble the legitimate data. Thus,
the adversarial examples usually have a high reconstruction error. Therefore, we can choose the
reconstruction error as our indicator to decide whether or not the image is adversarial. The setting
for the threshold is important for the detection. A larger threshold can tolerant more perturbations
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Table 2: Classification accuracy of classifier A using different defense strategy on test set of
MNIST (left) and F-MNIST (right), under FGSM (ε = 0.3) attack, with different GD iterations
L = 10, 60, 200 and various numbers of restart points R = 1, 10.

Attack Method R = 1 R = 10
L = 10 L = 60 L = 10 L = 60

Clean Our 0.982\0.837 0.985\0.841 - -
Defense-Gan 0.545\0.405 0.693 \0.530 0.909 \ 0.696 0.967\ 0.788

White Our 0.984\0.799 0.985\0.804 - -
Defense-Gan 0.537\ 0.403 0.688\0.527 0.905\0.697 0.964\0.787

Gray Our 0.880 \0.604 0.884\0.595 - -
Defense-Gan 0.398\0.296 0.570 \0.325 0.769\ 0.441 0.863\0.432

and enhance efficiency but is more unsafety. Here we propose some effective methods for calculat-
ing a proper θ according to demand using the statistical information from the normal images. For
example,

θ1 = arg min
θ∈Θ90

(x−G(F (x))2) = 0.025, θ2 = Ex∼pdata
(x−G(F (x)))2 = 0.015

where Θα = {θ : (x−G(F (x)))2 < θ holds for more than α% samples}. Using θ1 as the threshold
means that the detector can filter most normal samples and tolerant for small perturbations, while
θ2, i.e., the average reconstruction error on the training dataset, is more strict.

In Figure 4, we visualize the detection performance of different thresholds. The three dotted lines are
the changing of detection accuracies w.r.t the strength of attacks using different thresholds. Their
intersections with the performance line of AE-GAN+r (the solid black line) are the conservative
performances of corresponding defence strategies. We can also observe that, for small perturbations
missing detection, AE-GAN+r can successfully eliminate them. For large perturbations, they will
be detected, and the search process will start. Actually, the three thresholds correspond to three
strategies: high accuracy (orange), high efficiency (blue), and the medium (red). This enables the
framework flexible to different demand.

Figure 4: Defense performance on different strength of FGSM attacks on MNIST dataset. Dotted
lines are detection performance, where the performance is measured as the percentage of adversarial
examples are detected by the detector. The solid black line is the accuracy of classifier A on the
image purifed by AE-GAN+r.
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Table 3: Classification accuracies of classifier A using various defense strategies on the MNIST dev-
set, under FGSM (ε = 0.3), CW (with l2 norm) gray-box attack and Half-Masked (H.M.) attack.
(A.G.: AE-GAN; B.G.: Bi-GAN; +s: includes search process; +r: with noise regularization.)

D AE AE+s B.G. B.G.+s A.G. A.G.+s A.G.+r A.G.+sr

FGSM 0.515 0.678 0.428 0.688 0.502 0.781 0.806 0.832
CW 0.861 0.852 0.477 0.749 0.868 0.887 0.870 0.889
H.M 0.552 0.672 0.408 0.590 0.494 0.807 0.570 0.776

4.5 ABLATION STUDY

To investigate the effect of each module in our method, we compare the performance of different
models under the FGSM gray-box attack and half-masked attack (half of the input image is blocked,
as shown in Figure 2(c)). Table 3 shows the classification performance of the different models on
different image corruptions visualized in Figure 2, where the number of iterations L is set to be 20
for models with search process.

Firstly, by comparing the performance of AE-GAN and AE-GAN+r, we can observe that noise
regularization has an expected effect of forming an accurate latent code for the corrupted input.
Secondly, the accuracies of AE+s and AE-GAN+s as well as the qualitative results in Figure 2 reveals
that the introduced discriminator and adversarial loss improve the generative ability of the decoder.
Thirdly, we also look at the consistency between input and output of Bi-GAN. As illustrated in Table
3, the accuracy of Bi-GAN is not ideal which indicates that the output of the encoder is sometimes
inconsistent with the original images, thus the start point can not assist the searching process in
Bi-GAN+s to reach a local minimum within a certain number of steps.

5 CONCLUSION

We proposed AE-GAN+sr, a framework to effectively defense against various adversarial attacks.
Our method takes the advantages of both auto-encoder and GANs and avoids their drawbacks. We
build a reconstruction network following the encoder-decoder framework, as well as introduce the
search process in the latent space to find the closet reconstruction without perturbations to the given
image. Compared with auto-encoder based methods, we can strongly defend against white-box
attacks. Compared with GANs method, which requires multiple random restart points and consid-
erable iterations to purify a sample, the encoder in our framework can form a self-organised latent
space and provide a good start point for the search process, which enables the search converge fastly.
We empirically show that we significantly reduce the computation cost while we reach comparable
even better performance compared with the GANs method. The training for our network requires no
adversarial examples. Meanwhile, our detection mechanism can bypass the search process for clean
images, which can further improve efficiency.
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A IMPLEMENTATIONS

For adversarial training, we follow the settings in Defense-GAN(Samangouei et al., 2018). We
obtain adversarial examples from FGSM with ε = 0.3, which is consistent with the strength in the
inference stage.

For Defense-GAN, we adopt the implementation of original work (Samangouei et al., 2018).

For Bi-GAN, the original implementation (Donahue et al., 2016) is based on the fully-connected
network. For fair comparisons, we adopt the convolutional architecture in another similar work
(Dumoulin et al., 2016). We slightly adapt the architecture on CIFAR-10(Krizhevsky et al., 2009)
by changing the input channel from 3 to 1. As shown in Figure 5, the model we trained reach a fair
performance on generating samples.

(a) (b)

Figure 5: Generated samples by Bi-GAN trained on MNIST (left) and F-MNIST (right).

For MagNet, we follow the implementation in Defense-GAN (Samangouei et al., 2018) and restate
the details in Table 6, which shares the same architecture with AE-GAN. However, we find that the
latent space dimension 128 is too large for MagNet to eliminate strong perturbations. Because the
details of noise are also encoded and can be reconstructed. Thus, we also take the latent dimension
as 20 for comparisons. The results in Table 8 show that the change can enhance the performance on
the gray-box attack.

B NEURAL NETWORK ARCHITECURES AND TRAINING SETTINGS

For fair comparisons, we compare different strategies through this paper on the same classifier A,
and we take two substitute classifiers for balck-box attacks, B for convolutional structure and E
for fully connected structure. The training settings and architectures almost follow the settings in
Defense-GAN(Samangouei et al., 2018). For clarification, here we restate their architectures and
training settings in Table 5 and Table 7 respectively.

The architecture of our model and MagNet is described in Table 6, which make a slight modification
on the MagNet structure given in (Samangouei et al., 2018)

Table 4: Training parameters for AE-GAN and MagNet
Parameters MNIST, F-MNIST

Epochs 60
Learning Rate 0.0002

Optimization Method Adam
Batch Size 100
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Table 5: Neural architectures used for classifiers and substitute models
A B C

Conv(64, 5× 5, 1) Conv(64, 8× 8, 2)
ReLU ReLU FC(200)

Conv(64, 5× 5, 2) Conv(128, 6× 6, 2) ReLU
ReLU ReLU Dropout(0.5)

Dropout(0.25) Conv(128, 5× 5, 1) FC(200)
FC(128) ReLU ReLU
ReLU Drpupout(0.5) Dropout(0.5)

Drpupout(0.5) FC(10)+Softmax FC(10)+Softmax
FC(10)+Softmax

Table 6: Neural architectures used for AE-GAN and MagNet
Encoder Decoder Discriminator

Conv(1, 64, 5× 5, 2) FC(1024) & ReLU Conv(1, 64, 5× 5, 2)
LeakyReLU(0.2) ConvT(256, 128, 5× 5, 2) LeakyReLU(0.2)

Conv(64, 128, 5× 5, 2) BatchNorm & ReLU Conv(64, 128, 5× 5, 2)
BatchNorm & LeakyReLU ConvT(128, 64, 5× 5, 2) BatchNorm & LeakyReLU
Conv(128, 256, 5× 5, 2) BatchNorm & ReLU Conv(128, 256, 5× 5, 2)

BatchNorm & LeakyReLU ConvT(64, 1, 5× 5, 2) BatchNorm & LeakyReLU
FC(128)+tanh Sigmoid FC(1)+Sigmoid

Table 7: Training parameters for classifiers
Parameters MNIST, F-MNIST

Epochs 10
Learning Rate 0.001

Optimization Method Adam
Batch Size 100

C ADDITIONAL RESULTS ON VARIOUS LATETN DIMENTION

Table 8: Classification accuracy of A using MagNet and AE-GAN on MNIST with various latent
space dimension. D: the dimension of latent space. the number of iterations is set to 15 for

Attack Attack None D=20 D=128
MagNet AE-GAN+sr MagNet AE-GAN+sr

White
FGSM 0.144 0.298 0.972 0.293 0.984
PGD 0.007 0.012 0.975 0.006 0.982
CW 0.008 0.013 0.970 0.008 0.979

Gray
FGSM 0.144 0.561 0.875 0.316 0.882
PGD 0.007 0.673 0.911 0.145 0.910
CW 0.008 0.881 0.907 0.345 0.915

D QUALITATIVE EXAMPLES
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(a)

(b)

(c)

Figure 6: Example results of our method on MNIST. The left part shows adversarial examples
generated by different attacks: FGSM attack with ε = 0.3 (a), PGD attack with ε = 3 (b) and
CW with l2 norm (c), while the right part shows purified images by AE-GAN+sr. The number of
iterations for guided search is set to 15.
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(a)

(b)

(c)

Figure 7: Example results of our method on F-MNIST. The left part shows adversarial examples
generated by different attacks: FGSM attack with ε = 0.3 (a), PGD attack with ε = 3 (b) and
CW with l2 norm (c), while the right part shows purified images by AE-GAN+sr. The number of
iterations for guided search is set to 15.
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