
Under review as a conference paper at ICLR 2020

MONOTONIC MULTIHEAD ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Simultaneous machine translation models start generating a target sequence before
they have encoded or read the source sequence. Recent approaches for this task
either apply a fixed policy on a state-of-the art Transformer model, or a learnable
monotonic attention on a weaker recurrent neural network-based structure. In this
paper, we propose a new attention mechanism, Monotonic Multihead Attention
(MMA), which extends the monotonic attention mechanism to multihead atten-
tion. We also introduce two novel and interpretable approaches for latency con-
trol that are specifically designed for multiple attentions heads. We apply MMA to
the simultaneous machine translation task and demonstrate better latency-quality
tradeoffs compared to MILk, the previous state-of-the-art approach. We also ana-
lyze how the latency controls affect the attention span and we motivate the intro-
duction of our model by analyzing the effect of the number of decoder layers and
heads on quality and latency. Code will be released upon publication.

1 INTRODUCTION

Simultaneous machine translation adds the capability of a live interpreter to machine translation: a
simultaneous machine translation model starts generating a translation before it has finished reading
the entire source sentence. Such models are useful in any situation where translation needs to be
done in real time. For example, simultaneous models can translate live video captions or facilitate
conversations between people speaking different languages. In a usual neural machine translation
model, the encoder first reads the entire sentence, and then the decoder writes the target sentence.
On the other hand, a simultaneous neural machine translation model alternates between reading the
input and writing the output using either a fixed or learned policy.

Monotonic attention mechanisms fall into learned policy category. Recent work exploring mono-
tonic attention variants for simultaneous translation include: hard monotonic attention (Raffel et al.,
2017), monotonic chunkwise attention (MoChA) (Chiu & Raffel, 2018) and monotonic infinite look-
back attention (MILk) (Arivazhagan et al., 2019). MILk in particular has shown better quality /
latency trade-offs than fixed policy approaches, such as wait-k (Ma et al., 2019) or wait-if-* (Cho
& Esipova, 2016) policies. MILk also outperforms hard monotonic attention and MoChA; while
the other two monotonic attention mechanisms only consider a fixed reading window, MILk com-
putes a softmax attention over all previous encoder states, which may be the key to its improved
latency-quality tradeoffs. These monotonic attention approaches also provide a closed form expres-
sion for the expected alignment between source and target tokens, and avoid unstable reinforcement
learning.

However, monotonic attention-based models, including the state-of-the-art MILk, were built on top
of RNN-based models. RNN-based models have been outperformed by the recent state-of-the-art
Transformer model (Vaswani et al., 2017), which features multiple encoder-decoder attention layers
and multihead attention at each layer.

We thus propose monotonic multihead attention (MMA), which combines the strengths of multilayer
multihead attention and monotonic attention. We propose two variants, Hard MMA (MMA-H) and
Infinite Lookback MMA (MMA-IL). MMA-H is designed with streaming systems in mind where
the attention span must be limited. MMA-IL emphasizes the quality of the translation system. We
also propose two novel latency regularization methods. The first encourages the model to be faster
by directly minimizing the average latency. The second encourages the attention heads to maintain
similar positions, preventing the latency from being dominated by a single or a few heads.

1

Under review as a conference paper at ICLR 2020

The main contributions of this paper are:

1. We introduce a novel monotonic attention mechanism, monotonic multihead attention,
which enables the Transformer model to perform online decoding. This model leverages
the power of the Transformer and the efficiency of monotonic attention.

2. We demonstrate better latency-quality tradeoffs compared to the MILk model, the previous
state-of-the-art, on two standard translation benchmarks, IWSLT15 English-Vietnamese
(En-Vi) and WMT15 German-English (De-En).

3. We provide analyses on how our model is able to control the attention span and we motivate
the design of our model with an ablation study on the number of decoder layers and the
number of decoder heads.

2 MONOTONIC MULTIHEAD ATTENTION MODEL

In this section, we review the monotonic attention-based approaches in RNN-based encoder-decoder
models. We then introduce the two types of Monotonic Multihead Attention (MMA) for Transformer
models: MMA-H and MMA-IL. Finally we introduce strategies to control latency and coverage.

2.1 MONOTONIC ATTENTION

The hard monotonic attention mechanism (Raffel et al., 2017) was first introduced in order to achieve
online linear time decoding for RNN-based encoder-decoder models. We denote the input sequence
as x = {x1, ..., xT }, and the corresponding encoder states as m = {m1, ...,mT }, with T being the
length of the source sequence. The model generates a target sequence y = {y1, ..., yU}withU being
the length of the target sequence. At the i-th decoding step, the decoder only attends to one encoder
state mti with ti = j. When generating a new target token yi, the decoder chooses whether to move
one step forward or to stay at the current position based on a Bernoulli selection probability pi,j , so
that ti ≥ ti−1. Denoting the decoder state at the i-th, starting from j = ti−1, ti−1 + 1, ti−1 + 2, ...,
this process can be calculated as follows: 1

ei,j = MonotonicEnergy(si−1,mj) (1)
pi,j = Sigmoid (ei,j) (2)
zi,j ∼ Bernoulli(pi,j) (3)

When zi,j = 1, we set ti = j and start generating a target token yi; otherwise, we set ti = j + 1
and repeat the process. During training, an expected alignment α is introduced in order to replace
the softmax attention. It can be calculated in a recurrent manner, shown in Equation 4:

αi,j = pi,j

j∑
k=1

(
αi−1,k

j−1∏
l=k

(1− pi,l)

)

= pi,j

(
(1− pi,j−1)

αi,j−1
pi,j−1

+ αi−1,j

) (4)

Raffel et al. (2017) also introduce a closed-form parallel solution for the recurrence relation in
Equation 5:

αi,: = pi,:cumprod(1− pi,:)cumsum
(

αi−1,:
cumprod(1− pi,:)

)
(5)

where cumprod(x) = [1, x1, x1x2, ...,
∏|x|−1
i=1 xi] and cumsum(x) = [x1, x1 + x2, ...,

∑|x|
i=1 xi].

In practice, the denominator in Equation 5 is clamped into a range of (ε, 1] to avoid numerical in-
stabilities introduced by cumprod. Although this monotonic attention mechanism achieves online
linear time decoding, the decoder can only attend to one encoder state. This limitation can diminish
translation quality because there may be insufficient information for reordering.

Moreover, the model lacks a mechanism to adjust latency based on different requirements at decod-
ing time. To address these issues, Chiu & Raffel (2018) introduce Monotonic Chunkwise Attention

1Notice that during training, to encourage discreteness, Raffel et al. (2017) added a zero mean, unit variance
pre-sigmoid noise to ei,j .

2

Under review as a conference paper at ICLR 2020

(MoChA), which allows the decoder to apply softmax attention over a chunk (subsequence of en-
coder positions). Alternatively, Arivazhagan et al. (2019) introduce Monotonic Infinite Lookback
Attention (MILk) which allows the decoder to access encoder states from the beginning of the source
sequence. The expected attention for the MILk model is defined in Equation 6.

βi,j =

|x|∑
k=j

(
αi,k exp(ui,j)∑k
l=1 exp(ui,l)

)
(6)

2.2 MONOTONIC MULTIHEAD ATTENTION

Previous monotonic attention approaches are based on RNN encoder-decoder models with a single
attention and haven’t explored the power of the Transformer model. 2 The Transformer architec-
ture (Vaswani et al., 2017) has recently become the state-of-the-art for machine translation (Barrault
et al., 2019). An important feature of the Transformer is the use of a separate multihead attention
module at each layer. Thus, we propose a new approach, Monotonic Multihead Attention (MMA),
which combines the expressive power of multihead attention and the low latency of monotonic at-
tention.

Multihead attention allows each decoder layer to have multiple heads, where each head can com-
pute a different attention distribution. Given queries Q, keys K and values V , multihead attention
MultiHead(Q,K, V) is defined in Equation 7.

MultiHead(Q,K, V) = Concat(head1, ..., headH)WO

where headh = Attention
(
QWQ

h ,KW
K
h , V W

V
h ,
) (7)

The attention function is the scaled dot-product attention, defined in Equation 8:

Attention(Q,K, V) = Softmax
(
QKT

√
dk

)
V (8)

There are three applications of multihead attention in the Transformer model:

1. The Encoder contains self-attention layers where all of the queries, keys and values come
from previous layers.

2. The Decoder contains self-attention layers that allow each position in the decoder to attend
to all positions in the decoder up to and including that position.

3. The Decoder-encoder attention contains multihead attention layers where queries come
from the previous decoder layer and the keys and values come from the output of the en-
coder. Every decoder layer has an decoder-encoder attention.

For MMA, we assign each head to operate as a separate monotonic attention in decoder-encoder
attention.

For a transformer with L decoder layers and H attention heads per layer, we define the selection
process of the h-th head decoder-encoder attention in the l-th decoder layer as

el,hi,j =

(
mjW

K
l,h(si−1W

Q
l,h)T

√
dk

)
i,j

(9)

pl,hi,j = Sigmoid(ei,j) (10)

zl,hi,j ∼ Bernoulli(pi,j) (11)

where Wl,h is the input projection matrix, dk is the dimension of the attention head. We make
the selection process independent for each head in each layer. We then investigate two types of

2MILk was based on a strengthened RNN-based model called RNMT+. The original RNMT+ model (Chen
et al., 2018) uses multihead attention, computes attention only once, and then concatenates that single attention
layer to the output of each decoder layer block. However, the RNMT+ model used for MILk in Arivazhagan
et al. (2019) only uses a single head.

3

Under review as a conference paper at ICLR 2020

Figure 1: Monotonic Attention (Left) versus Monotonic Multihead Attention (Right). At each de-
coding step, MMA still has access to various encoder states.

MMA, MMA-H(ard) and MMA-IL(infinite lookback). For MMA-H, we use Equation 4 in order to
calculate the expected alignment for each layer each head, given pl,hi,j . For MMA-IL, we calculate
the softmax energy for each head as follows:

ul,hi,j = SoftEnergy =

(
mjŴ

K
l,h(si−1Ŵ

Q
l,h)T

√
dk

)
i,j

(12)

and then use Equation 6 to calculate the expected attention. Each attention head in MMA-H hard-
attends to one encoder state. On the other hand, each attention head in MMA-IL can attend to all
previous encoder states. Thus, MMA-IL allows the model to leverage more information for transla-
tion, but MMA-H may be better suited for streaming systems with stricter efficiency requirements.

At inference time, our decoding strategy is shown in Algorithm 1. For each l, h, at decoding step i,
we apply the sampling processes discussed in subsection 2.1 individually and set the encoder step
at tl,hi . Then a hard alignment or partial softmax attention from encoder states, shown in Equation
13, will be retrieved to feed into the decoder to generate the i-th token. The model will write a new
target token only after all the attentions have decided to write – the heads that have decided to write
must wait until the others have finished reading.

cli = Concat(cl,1i , c
l,2
i , ..., c

l,H
i)

where cl,hi = fcontext(h, t
l,h
i) =

mtl,hi

MMA-H∑tl,hi
j=1 exp

(
ul,hi,j

)
mj∑tl,hi

j=1 exp
(
ul,hi,j

) MMA-IL

(13)

Figure 1 illustrates a comparison between our model and the monotonic model with one attention
head. Compared with the monotonic model, the MMA model is able to set attention to different
positions so that it can still attend to previous states while reading each new token. Each head can
adjust its speed on-the-fly. Some heads read new inputs, while the others can stay in the past to
retain the source history information. Even with the hard alignment variant (MMA-H), the model
is still able to preserve the history information by setting heads to past states. In contrast, the hard
monotonic model, which only has one head, loses the previous information at the attention layer.

2.3 LATENCY CONTROL

Effective simultaneous machine translation must balance quality and latency. At a high level, latency
measures how many source tokens the model has to read until a translation is generated. The model
we have introduced in subsection 2.2 is not able to control latency on its own. While MMA allows
simultaneous translation by having a read or write schedule for each head, the overall latency is
determined by the fastest head, i.e. the head that reads the most. It is possible that a head always
reads new input without producing output, which would result in the maximum possible latency.
Note that the attention behaviors in MMA-H and MMA-IL can be different. In MMA-IL, a head
reaching the end of the sentence will provide the model with maximum information about the source
sentence. On the other hand, in the case of MMA-H, reaching the end of sentence for a head only
gives a hard alignment to the end-of-sentence token, which provides very little information to the
decoder. Furthermore, it is possible that an MMA-H attention head stays at the beginning of sentence

4

Under review as a conference paper at ICLR 2020

Algorithm 1 MMA monotonic decoding. Because each head is independent, we compute line 3 to
10 in parallel

Input: Memory h of length T , i = 1, j = 1, tl,h0 = 1, y0 = StartOfSequence.
1: while yi−1 6= EndOfSequence do
2: for l← 1 to L do
3: for h← 1 to H do
4: for j ← tl,hi−1 to T do
5: pl,hi,j = Sigmoid

(
MonotonicEnergy(si−1,mj

)
)

6: if pl,hi,j > 0.5 then
7: cl,hi = fcontext(h, t

l,h
i)

8: tl,hi = j
9: Break

10: cli = Concat(cl,1i , c
l,2
i , ..., c

l,H
i)

11: sli = DecoderLayerl(sl1:i−1, s
l−1
1:i−1, c

l
i)

12: yi = Output(sLi)
13: i = i+ 1

without moving forward. Such a head would not cause latency issues but would degrade the model
quality since the decoder would not have any information about the input. In addition, this behavior
is not suited for streaming systems.

To address these issues, we introduce two latency control methods. The first one is weighted average
latency, shown in Equation 14:

gWi =
exp(gl,hi)∑L

l=1

∑H
h=1 exp(gl,hi)

gl,hi (14)

where gl,hi =
∑|x|
j=1 jαi,j . Then we calculate the latency loss with a differentiable latency metric C.

Lavg = C
(
gW
)

(15)

Like Arivazhagan et al. (2019), we use the Differentiable Average Lagging. It is noticeable that,
different from original latency augmented training in Arivazhagan et al. (2019), Equation 15 is not
the expected latency metric given C, but weighted average C on all the attentions. The real expected
latency is ĝ = maxl,h

(
gl,h

)
instead of ḡ, but using this directly would only affect the speed of the

fastest head. Equation 15, however, can control every head — the regularization has a much greater
effect on the fast heads but also inhibits the slow heads from getting faster. However, for MMA
models, we found that the latency of are mainly due to outliers that skip almost every token. The
weighted average latency loss is not sufficient to control the outliers. We therefore introduce the
head divergence loss, the average variance of expected delays at each step, defined in Equation 16:

Lvar =
1

LH

L∑
l=1

H∑
h=1

(
gl,hi − ḡi

)2
(16)

where ḡi = 1
LH

∑
gi The final objective function is presented in Equation 17:

L(θ) = − log(y | x; θ) + λavgLavg + λvarLvar (17)

where λavg , λvar are hyperparameters that control both losses. Intuitively, while λavg controls the
overall speed, λvar controls the divergence of the heads. Combining these two losses, we are able to
dynamically control the range of attention heads so that we can control the latency and the reading
buffer. For MMA-IL model, we used both loss terms; for MMA-H we only use Lvar.

5

Under review as a conference paper at ICLR 2020

3 EXPERIMENTAL SETUP

3.1 EVALUATION METRICS

We evaluate our model using quality and latency. For translation quality, we use tokenized BLEU 3

for IWSLT15 En-Vi and detokenized BLEU with SacreBLEU (Post, 2018) for WMT15 De-En. For
latency, we use three different recent metrics, Average Proportion (AP) (Cho & Esipova, 2016),
Average Lagging (AL) (Ma et al., 2019) and Differentiable Average Lagging (DAL) (Arivazhagan
et al., 2019) 4. We remind the reader of the metric definitions in Appendix A.2.

3.2 DATASETS

Dataset Train Validation Test

IWSLT15 En-Vi 133k 1268 1553
WMT15 De-En 4.5M 3000 2169

Table 1: Number of sentences in each split.

Dataset RNN Transformer

IWSLT15 En-Vi 25.6 5 28.70
WMT15 De-En 28.4 (Arivazhagan et al., 2019) 32.3

Table 2: Offline model performance with unidirectional encoder and greedy decoding.

We evaluate our method on two standard machine translation datasets, IWSLT14 En-Vi and WMT15
De-En. Statistics of the datasets can be found in Table 1. For each dataset, we apply tokenization
with the Moses (Koehn et al., 2007) tokenizer and preserve casing.

IWSLT15 English-Vietnamese TED talks from IWSLT 2015 Evaluation Campaign (Cettolo et al.,
2016). We follow the same settings from Luong & Manning (2015) and Raffel et al. (2017). We
replace words with frequency less than 5 by <unk>. We use tst2012 as a validation set tst2013 as a
test set.

WMT15 German-English We follow the setting from Arivazhagan et al. (2019). We apply byte
pair encoding (BPE) (Sennrich et al., 2016) jointly on the source and target to construct a shared
vocabulary with 32K symbols. We use newstest2013 as validation set and newstest2015 as test set.

3.3 MODELS

We evaluate MMA-H and MMA-IL models on both datasets. The MILK model we evaluate on
IWSLT15 En-Vi is based on Luong et al. (2015) rather than RNMT+ (Chen et al., 2018). All our
offline models use unidirectional encoders: the encoder self-attention can only attend to previous
states. Offline model performance can be found in Table 2. For MMA models, we replace the
encoder-decoder layers with MMA and keep other hyperparameter settings the same as the offline
model. Detailed hyperparameter settings can be found in subsection A.1. We use the Fairseq li-
brary (Ott et al., 2019) 6 for our implementation. Code will be released upon publication.

3We acquire the data from https://nlp.stanford.edu/projects/nmt/, which is tokenized. We do not have the
tokenizer which processed this data, thus we report tokenized BLEU for IWSLT15

4Latency metrics are computed on BPE tokens for WMT15 De-En – consistent with Arivazhagan et al.
(2019) – and on word tokens for IWSLT15 En-Vi.

5 Luong & Manning (2015) report a BLEU score of 23.0 but they didn’t mention what type of BLEU score
they used. This score is from our implementation on the data aquired from https://nlp.stanford.edu/projects/nmt/

6https://github.com/pytorch/fairseq

6

Under review as a conference paper at ICLR 2020

0.6 0.8 1
20

25

30

35
B

L
E

U

0 5 10 15 20
20

25

30

35

IWSLT15 English-Vietnamese

0 10 20 30
20

25

30

35
MILk

MMA-H
MMA-IL

0.6 0.8 1
20

25

30

35

Average Proportion

B
L

E
U

0 10 20 30
20

25

30

35

Average Lagging

WMT15 German-English

10 20 30
20

25

30

35

Differentiable Average Lagging

Figure 2: Latency-quality tradeoffs for MILk and MMA on IWSLT15 En-Vi and WMT15 De-En.

4 RESULTS

In this section, we present the main results of our model in terms of latency-quality tradeoffs and
two ablation studies. In the first one, we analyze the effect of the variance loss on the attention span.
Then, we study the effect of the number of decoder layers and decoder heads on quality and latency.

4.1 LATENCY-QUALITY TRADEOFFS

We plot the quality-latency curves for MMA-H and MMA-IL in Figure 2. The BLEU and latency
scores on the test sets were generated by setting a latency range and selecting the checkpoint with
best BLEU score on the validation set. We use differentiable average lagging (Arivazhagan et al.,
2019) when setting the latency range. We found that for a given latency, our models obtain a better
translation quality. It is interesting to observe that even MMA-H has a better latency-quality tradeoff
than MILk even though each head only attends to only one state. Although MMA-H is not quite yet
streaming capable since both the encoder and decoder self-attention have an infinite lookback, that
model represents a good step in that direction.

4.2 ATTENTION SPAN

In subsection 2.3, we introduced the attention variance loss to MMA-H in order to prevent out-
lier attention heads from increasing the latency or increasing the attention span. We have already
evaluated the effectiveness of this method on latency in subsection 4.1. We also want to measure
the difference between the fastest and slowest heads at each decoding step. We define the average
attention span in Equation 18:

S̄ =
1

|y|

 |y|∑
i

max
l,h

tl,hi −min
l,h

tl,hi

 (18)

7

Under review as a conference paper at ICLR 2020

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Lvar

S̄

IWSLT15 En-Vi

0 0.5 1 1.5 2
5

10

15

20

Lvar

WMT15 De-En

Figure 3: Effect of Lvar on the average attention span. The variance loss works as intended by
reducing the span with higher weights.

2 4 8 16
22

24

26

28

30

32

B
L

E
U

1 decoder layer
3 decoder layers
6 decoder layers

2 4 8 16
22

24

26

28

30

32

heads

1 decoder layer
3 decoder layers
6 decoder layers

2 4 8 16
0

2

4

6

8

10

D
A

L

1 decoder layer
3 decoder layers
6 decoder layers

Figure 4: Effect of the number of decoder attention heads and the number of decoder attention
layers on quality and latency, reported on the WMT13 validation set. For both the baseline and the
proposed model, quality generally improves with the number of heads and the number of layers,
which motivates the proposed model.

It estimates the reading buffer we need for streaming translation. We show the relation between the
average attention span (averaged over the IWSLT and WMT test sets) versus Lvar in Figure 3. As
expected, the average attention span is reduced as we increase Lvar.

4.3 EFFECT ON NUMBER OF LAYERS AND NUMBER OF HEADS

One motivation to introduce MMA is to adapt the Transformer, which is the current state-of-the-art
model for machine translation, to online decoding. Important features of the Transformer architec-
ture include having a separate attention layer for each decoder layer block and multihead attention.
In this section, we test the effect of these two components on both the offline baseline and MMA-H
from a quality and latency perspective. We report quality as measure by detokenized BLEU and
latency as measured by DAL on the WMT13 validation set in Figure 4. We set λavg = 0 and
λvar = 0.2. We can see that quality generally tends to improve with more layers and more heads
for both the offline baseline and MMA-H, which motivates extending monotonic attention to the
multilayer/multihead setting. We also note that latency increases accordingly. This is due to having
fixed loss weights: when more heads are involved, we should increase λvar to better control latency.

5 RELATED WORK

Recent work on simultaneous machine translation falls into three categories. In the first one, mod-
els use a rule-based policy for reading input and writing output. Cho & Esipova (2016) propose a
Wait-If-* policy to enable an offline model to decode simultaneously. Ma et al. (2019) propose a

8

Under review as a conference paper at ICLR 2020

wait-k policy where the model first reads k tokens, then alternates reads and writes. Dalvi et al.
(2018) propose an incremental decoding method, also based on a rule-based schedule. In the second
category, models learn the policy with reinforcement learning. Grissom II et al. (2014) introduce
a Markov chain to phrase-based machine translation models for simultaneous machine translation,
in which they apply reinforcement learning to learn the read-write policy based on states. Gu et al.
(2017) introduce an agent which learns to make decisions on when to translate from the interaction
with a pre-trained neural machine translation model. Alinejad et al. (2018) propose a new operation
PREDICT which predicts future source tokens to improve quality and minimize latency. Models
from the last category leverage monotonic attention and replace the softmax attention with an ex-
pected attention calculated from a stepwise Bernoulli selection probability. Raffel et al. (2017) first
introduce the concept of monotonic attention for online linear time decoding, where the attention
only attends to one encoder state at a time. Chiu & Raffel (2018) extended that work to let the
model attend to a chunk of encoder state. Arivazhagan et al. (2019) also make use of the monotonic
attention but introduce an infinite lookback to improve the translation quality.

6 CONCLUSION

In this paper, we propose two variants of the monotonic multihead attention model for simultaneous
machine translation. By introducing two new targeted loss terms which allow us to control both
latency and attention span, we are able to leverage the power of the Transformer architecture to
achieve better quality-latency trade-offs than the previous state-of-the-art model. We also present
detailed ablation studies demonstrating the efficacy and rationale of our approach. By introducing
these stronger simultaneous sequence-to-sequence models, we hope to facilitate important applica-
tions, such as high-quality real-time interpretation between human speakers.

REFERENCES

Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar. Prediction improves simultaneous neural
machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 3022–3027, 2018.

Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-
ing Pang, Wei Li, and Colin Raffel. Monotonic infinite lookback attention for simultaneous
machine translation. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 1313–1323, Florence, Italy, July 2019. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P19-1126.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz,
Mathias Müller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 con-
ference on machine translation (WMT19). In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers, Day 1), pp. 1–61, Florence, Italy, Au-
gust 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5301. URL
https://www.aclweb.org/anthology/W19-5301.

Mauro Cettolo, Niehues Jan, Stüker Sebastian, Luisa Bentivogli, Roldano Cattoni, and Marcello
Federico. The iwslt 2016 evaluation campaign. In International Workshop on Spoken Language
Translation, 2016.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster,
Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, et al. The best of both worlds: Combin-
ing recent advances in neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 76–86, 2018.

Chung-Cheng Chiu and Colin Raffel. Monotonic chunkwise attention. 2018. URL https://
openreview.net/pdf?id=Hko85plCW.

Kyunghyun Cho and Masha Esipova. Can neural machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012, 2016.

9

https://www.aclweb.org/anthology/P19-1126
https://www.aclweb.org/anthology/W19-5301
https://openreview.net/pdf?id=Hko85plCW
https://openreview.net/pdf?id=Hko85plCW

Under review as a conference paper at ICLR 2020

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan Vogel. Incremental decoding and train-
ing methods for simultaneous translation in neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), pp. 493–499, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2079.
URL https://www.aclweb.org/anthology/N18-2079.

Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan, and Hal Daumé III. Dont until the
final verb wait: Reinforcement learning for simultaneous machine translation. In Proceedings of
the 2014 Conference on empirical methods in natural language processing (EMNLP), pp. 1342–
1352, 2014.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor OK Li. Learning to translate in real-time
with neural machine translation. In 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, EACL 2017, pp. 1053–1062. Association for Computational
Linguistics (ACL), 2017.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bo-
jar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp.
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P07-2045.

Minh-Thang Luong and Christopher D Manning. Stanford neural machine translation systems for
spoken language domains. 2015.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang
Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. STACL: Simultaneous
translation with implicit anticipation and controllable latency using prefix-to-prefix framework.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 3025–3036, Florence, Italy, July 2019. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P19-1289.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pp. 186–191, Belgium, Brussels, October 2018. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
W18-6319.

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J Weiss, and Douglas Eck. Online and linear-time
attention by enforcing monotonic alignments. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pp. 2837–2846. JMLR. org, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

10

https://www.aclweb.org/anthology/N18-2079
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P19-1289
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 HYPERPARAMETERS

The hyperparameters we used for offline and monotonic transformer models are defined in Table 3.

Hyperparameter WMT15 German-English IWSLT English-Vietnamese

encoder embed dim 1024 512
encoder ffn embed dim 4096 1024
encoder attention heads 16 4
encoder layers 6
decoder embed dim 1024 512
decoder ffn embed dim 4096 1024
decoder attention heads 16 4
decoder layers 6
dropout 0.3
optimizer adam
adam-β (0.9, 0.98)
clip-norm 0.0
lr 0.0005
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-07
label-smoothing 0.1
max tokens 3584× 8× 8× 2 16000

Table 3: Offline and monotonic models hyperparameters.

A.2 LATENCY METRICS DEFINITIONS

Given the delays g = {g1, g2, ..., g|y|} of generating each target token, AP, AL and DAL are defined
in Table 4.

Latency Metric Calculation

Average Proportion
1

|x||y|

|y|∑
i=1

gi

Average Lagging
1

τ

τ∑
i=1

gi −
i− 1

|y|/|x|
where τ = arg maxi(gi = |x|)

Differentiable Average Lagging

1

|y|

|y|∑
i=1

g′i −
i− 1

|y|/|x|

where g′i =

gi i = 0

max(gi, g
′
i−1 +

|y|
|x|

) i < 0

Table 4: The calculation of latency metrics, given source x, target y and delays g

11

	Introduction
	Monotonic Multihead Attention Model
	Monotonic Attention
	Monotonic Multihead Attention
	Latency Control

	Experimental Setup
	Evaluation Metrics
	Datasets
	Models

	Results
	Latency-Quality Tradeoffs
	Attention Span
	Effect on number of layers and number of heads

	Related Work
	Conclusion
	Appendix
	Hyperparameters
	Latency Metrics Definitions

