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ABSTRACT

In this work we introduce the DP-auto-GAN framework for synthetic data gener-
ation, which combines the low dimensional representation of autoencoders with
the flexibility of GANs. This framework can be used to take in raw sensitive
data, and privately train a model for generating synthetic data that should sat-
isfy the same statistical properties as the original data. This learned model can
be used to generate arbitrary amounts of publicly available synthetic data, which
can then be freely shared due to the post-processing guarantees of differential pri-
vacy. Our framework is applicable to unlabledmixed-type data, that may include
binary, categorical, and real-valued data. We implement this framework on both
unlabeled binary data (MIMIC-III) and unlabeled mixed-type data (ADULT). We
also introduce new metrics for evaluating the quality of synthetic mixed-type data,
particularly in unsupervised settings.

1 INTRODUCTION

As data storage and analysis are becoming more cost effective, and data become more complex and
unstructured, there is a growing need for sharing large datasets for research and learning purposes,
This is in stark contrast to the previous statistical model where a data curator would answer single
queries on their dataset. Sharing datasets allow analysts the freedom to perform their analysis in-
house with their own devices and toolkits, without having to pre-specify the analyses they wish to
perform. Often, datasets are proprietary or sensitive, and cannot be shared directly. This motivates
the need forsynthetic data generation, where a new dataset is created that shares the same statistical
properties as the original data. These data may not be of a single type: all binary, all categorial,
or all real-valued; instead they may be ofmixed-types, containing data of multiple types in a single
dataset. Finally, these data may be unlabeled, requiring techniques forunsupervised learning, which
is typically a more challenging task than supervised learning on labeled data.

However, privacy challenges naturally arise when sharing highly sensitive datasets about individuals.
Ad hoc anonymization techniques have repeatedly led to severe privacy violations when sharing
“anonymized” datasets. Notable examples include the Netflix Challenge (Narayanan & Shmatikov,
2008), the AOL Search Logs (Barbaro & Zeller, 2006), and Massachusetts State Health data (Ohm,
2010). Even deep learning model have been shown to memoize sensitive personal information such
as Social Security Numbers during training (Carlini et al., 2019).

Differential privacy (Dwork et al., 2006) (formally defined in Section2) has become the de facto gold
standard of privacy in the computer science literature. Informally, it bounds the amount the extent
to which an algorithm can depend on a single datapoint in its training set. This guarantee ensures
that any differentially privately learned models do not overfit to individuals in the database, and
therefore cannot reveal sensitive information about individuals. It is an information theoretic notion,
that does not rely on any assumptions of an adversary’s computational power or auxiliary knowledge.
It has also been shown empirically that training machine learning models with differential privacy
protects against membership inference and model inversion attacks (Triastcyn & Faltings, 2018;
Carlini et al., 2019). Differentially private algorithms have been deployed at large scale in practice
by organizations such as Apple, Google, Microsoft, Uber, and the U.S. Census Bureau.

Much of the prior work on differentially private synthetic data generation has been either theoretical
algorithms for highly structured classes of queries (Blum et al., 2008; Hardt & Rothblum, 2010) or
based on deep generative models such as Generative Adversarial Models (GANs) or autoencoders.
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These architectures have been primarily designed for either all-binary or all-real-valued datasets,
and have focused on thesupervisedsetting, where datapoints are labelled.

In this work we introduce theDP-auto-GAN framework, which combines the low dimensional rep-
resentation of autoencoders with the flexibility of GANs. This framework can be used to take in
raw sensitive data, and privately train a model for generating synthetic data that should satisfy the
same statistical properties as the original data. This learned model can be used to generate ar-
bitrary amounts of publicly available synthetic data, which can then be freely shared due to the
post-processing guarantees of differential privacy. We implement this framework on both unlabeled
binary data (for comparison with previous work) and unlabeled mixed-type data. We also introduce
new metrics for evaluating the quality of synthetic mixed-type data, particularly in unsupervised
settings.

1.1 OUR CONTRIBUTIONS

In this work, we provide three main contributions: a new algorithmic framework for privately gen-
erating synthetic data, new evaluation metrics for measuring the quality of synthetic data in unsu-
pervised settings, and empirical evaluations of our algorithmic framework using our new metrics, as
well as standard metrics.

Algorithmic Framework. We propose a new data generation architecture which combines the ver-
satility of an autoencoder (Kingma & Welling, 2013) with the recent success of GANs on complex
data. Our model extends previous autoencoder-based DP data generation (Abay et al., 2018; Chen
et al., 2018) by removing an assumption that the distribution of the latent space ought to follows a
mixture of Gaussian distribution. Instead, we incorporate GANs into the autoencoder framework so
that the generator must learn the true latent distribution against the discriminator. We describe the
composition analysis of differential privacy when the training consists of optimizing both autoen-
coders and GANs (with different noise parameters). Furthermore, in this analysis we halve the noise
injected into autoencoder from all existing works while provably maintaining the same mathematical
privacy guarantee.

Unsupervised-Learning Evaluation Metric of Synthetic Data.We define several new metrics that
evaluate the performance of synthetic data compared to the original data when the data is ofmixed-
type. Previous metrics in the literature are applicable only to all-binary or all-real-valued datasets.
Our new metrics generalize the previously used metrics (Choi et al., 2017; Xie et al., 2018) from all-
binary data to mixed-type by training various learning models to predict each feature from the rest
of the data in order to assess correlation between features. In additional, our metrics do not require a
particular feature to be specified as a label, and therefore do not assume a supervised-learning nature
of the data, as in much of the previous work does (Papernot et al., 2017; 2018; Jordon et al., 2018).

Empirical Results. We empirically comepare the performance of our algorithmic framework on
medical dataJohnson et al.(2016) and ADULT dataDua & Graff (2017) with previously used
metrics in literatureFrigerio et al.(2019); Xie et al. (2018), showing that our algorithms perform
better especially at practically meaningful values ofε ≈ 1. We evaluate our synthetic data on new
quantitiative and qualitiative matrics confirming that the performance of our algorithm remains high
even for small privacy budgetε’s. The source code is open to public for future use of research.

1.2 RELATED WORK ON DIFFERENTIALLY PRIVATE DATA GENERATION

Early work on differentially private synthetic data generation was focused primarily on theoretical
algorithms for solving thequery release problemof privately and accurately answering a large class
of pre-specified queries on a given database. It was discovered that generating synthetic data on
which the queries could be evaluated allowed for better privacy composition than simply answering
all the queries directly (Blum et al., 2008; Hardt & Rothblum, 2010; Hardt et al., 2012; Gaboardi
et al., 2014). Bayesian inference has also been used for differentially private data generation (Zhang
et al., 2017; Ping et al., 2017) by estimating the correlation between features. SeeSurendra & Mohan
(2017) for a survey of techniques used in private synthetic data generation through 2016.

In 2016,Abadi et al.(2016) introduced a framework for training deep learning models with dif-
ferential privacy. Non-convex optimization, which is required when training deep models, can be
made differentially private by adding a Gaussian noise to a clipped (norm-bounded) gradient in each
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training step.Abadi et al.(2016) also introduced themoment accountantprivacy analysis for private
stochastic gradient descent, which allowed for much tighter Gaussian-based privacy composition,
and allowed for significant improvements in accuracy over previously used composition techniques,
such as advanced compositionDwork et al.(2010). The moment account was later defined in terms
of Renyi Differential Privacy (RDP)(Mironov, 2017), which is a slight variant of differential pri-
vacy designed for easy composition, particularly for differentially private stochastic gradient descent
(DP-SGD). Much of the work that followed on private data generation used deep (neural-network-
based) generative models to generate synthetic data, and can be broadly categorized into two types:
autoencoder-based and GAN-based. Our algorithmic framework is the first to combine both DP
GANs and autoencoders into one framework.

Differentially Private Autoencoder-Based Models.A variational autoencoder (VaE) (Kingma &
Welling, 2013) is a generative model that compresses high-dimensional data to a smaller space called
latent space. The compression is commonly achieved through deep models and can be differentially
private trained (Chen et al., 2018; Acs et al., 2018). VaE makes the (often unrealistic) assumption
that thelatent distributionis Gaussian.Acs et al.(2018) uses Restricted Boltzmann machine (RBM)
to learn the latent Gaussian distribution, andAbay et al.(2018) uses expectation maximization
to learn a Gaussian mixture. Our work extends this line of work by additionally incorporating the
generative model GANs which have also been shown to be successful in learning latent distributions.

Differentially Private GANs. GANs are a generative model proposed byGoodfellow et al.(2014)
that have been shown success in generating several different types of data (Mogren, 2016; Saito
et al., 2017; Salimans et al., 2016; Jang et al., 2016; Kusner & Herńandez-Lobato, 2016; Wang et al.,
2018). As with other deep models, GANs can be trained privately using the aforementioned private
stochastic gradient descent. Additional related work, including variants of the DP GAN framework,
optimization techniques to improve the performance of DP GANs, and Table4 summarizing these
works can be found in AppendixD.

Differentially Private Generation of Mixed-Type Data. Next we describe the three most relevant
recent works on privately generating synthetic data of mixed type.Abay et al.(2018) consider
the problem of generating mixed-type labeled data withk possible labels. Their algorithm, DP-
SYN, partitions the dataset intok sets based on the labels and trains a DP autoencoder on each
partition. Then a DP expectation maximization (DP-EM) algorithm ofPark et al.(2017) is used
to learn the distribution in the latent space of encoded data of the given label-class. The main
workhorse, DM-EM algorithm, is designed and analyzed for Gaussian mixture models and more
general factor analysis models.Chen et al.(2018) works in the same setting, but replaces the DP
auto-encoder and DP-EM with a DP variational auto-encoders (DP-Vae). Their algorithm assumes
that the mapping from real data to the Gaussian distribution can be efficiently learned by the encoder.
Finally, Frigerio et al.(2019) used a Wasserstein GAN (WGAN) to generate differentially private
mixed-type synthetic data. This type of GAN uses a Wasserstein-distance-based loss function in
training; see AppendixD for more details. Their algorithmic framework privatized the WGAN
using DP-SGD, similar to the previous approaches for image datasets (Zhang et al., 2018; Xie et al.,
2018). The methodology ofFrigerio et al.(2019) for generating mixed-type synthetic data involved
two main ingredients: changing discrete (categorical) data to binary data using one-hot encoding,
and adding an output softmax layer to the WGAN generator for every discrete variable.

Our framework is distinct from these three approaches. We use a differentially private auto-encoder
which, unlike Vae (Chen et al., 2018), does not require mapping data to a Gaussian distribution. This
allows us to reduce the dimension of the problem handled by the WGAN, hence escaping the issues
of high-dimensionality from the one-hot encoding ofFrigerio et al.(2019). We also use DP-GAN,
replacing DP-EM inAbay et al.(2018), for learning distributions in the latent encoded space.

Evaluation Metrics for Synthetic Data. Various evaluation metrics have been considered in the
literature to quantify the quality of the synthetic data (seeCharest(2011) for a survey). The metrics
can be broadly categorized into two groups:supervisedandunsupervised. Supervised evaluation
metrics are used when there are clear distinctions between features and labels of the dataset, e.g.,
for healthcare applications, a person’s disease status is a natural label. In these settings, a predictive
model is typically trained on the synthetic data, and its accuracy is measured with respect to the
real (test) dataset. Unsupervised evaluation metrics are used when no feature of the data can be
decisively termed as a label. Recently proposed metrics includedimension-wise probabilityfor
binary data (Choi et al., 2017), which compares the marginal distribution of real and synthetic data
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on each individual feature, anddimension-wise predictionwhich measures how closely synthetic
data captures relationships between features in the real data. This metric was proposed for binary
data, and we extend it here to mixed-type data. Recently,NIST (2019) used a 3-way marginal
evaluation metric which used three random features of the real and synthetic datasets to compute the
total variation distance as a statistical score. See AppendixD for more details on both categories of
metrics, including Table1 which summarizes the metrics’ applicability to various data types.

2 PRELIMINARIES ON DIFFERENTIAL PRIVACY

In the setting of differential privacy,X is a dataset ofm individual’s sensitive information, and
two datasets are neighbors if one can be obtained from another by the addition or deletion of one
datapoint. Differential privacy requires that an algorithm produce similar outputs on neighboring
datasets, thus ensuring that the output does not overfit to its input dataset, and that the algorithm
learns from the population but not from the individuals.

Definition 1 (Differential privacy (Dwork et al., 2006)). For ε, δ > 0, an algorithmM is (ε, δ)-
differentially privateif for any pair of neighboring databasesX,X ′ and any subsetS ⊆ Range(M),

Pr[M(X) ∈ S] ≤ eε ∙ Pr[M(X ′) ∈ S] + δ.

A smaller value ofε implies stronger privacy guarantees (as the constraint above binds more tightly),
but usually corresponds with decreased accuracy, relative to non-private algorithms or the same
algorithm run with a larger value ofε. Differential privacy is typically achieved by adding random
noise that scales with thesensitivityof the computation being performed, which is the maximum
change in the output value that can be caused by changing a single entry. Differential privacy has
strongcomposition guarantees, meaning that the privacy parameters degrade gracefully as additional
algorithms are run on the same dataset. It also has apost-processingguarantee, meaning that any
function of a differentially private output will maintain the same privacy guarantees.

2.1 DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT(DP-SGD)

The DP-SGD framework (given formally in Algorithm5 in AppendixD.1) is generically applicable
for private non-convex optimization. In our proposed model, we use this framework to train the
autoencoder and GAN.

Training deep learning models reduces to minimizing some (empirical) loss functionf(X; θ) :=
1
m

∑m
i=1 f(xi; θ) on a datasetX = {xi ∈ Rn}mi=1. Typically f is a nonconvex function, and a

common method to minimizef is by iteratively performing stochastic gradient descent (SGD). To
make SGD private,Abadi et al.(2016) proposed to is to first clip the gradient of each sample to
ensure bounded̀2-norm, and then add multivariate Gaussian noise to the gradient. The clipping
reduces the scale of noise that must be added to preserve differential privacy. The noisy-clipped-
gradient is then used in the update step instead of the true gradient. Further details of this procedure
are deferred to AppendixD.1.

A variant notion of differential privacy, known asRenyi Differential Privacy (RDP)(Mironov, 2017),
that is often used to analyze privacy for DP-SGD. A randomized mechanismM is (α, ε)-RDP if for
all neighboring databasesX,X ′ that differ in at most one entry,

RDP (α) := Dα(M(X)||M(X ′)) ≤ ε,

whereDα(P ||Q) := 1
α−1 logEx∼X

(
P (x)
Q(x)

)α

is theRenyi divergenceor Renyi entropyof order

α between two distributionsP andQ. Renyi divergence is better tailored to tightly capture the
privacy loss from the Gaussian mechanism that is used in DG-SGD, and is a common analysis tool
for DP-SGD literature. To compute the final(ε, δ)-differential privacy parameters from iterative
runs of DP-SGD, one must first compute the subsampled Renyi Divergence, then compose privacy
under RDP, and then convert the RDP guarantee into DP. Further details of this process are given in
AppendixD.2.
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3 ALGORITHMIC FRAMEWORK

The overview of our algorithmic framework DP-auto-GAN is shown in Figure1, and the full details
are given in Algorithm1. The algorithm takes inm raw data points, andpre-processesthese points
into m vectorsx1, . . . , xm ∈ Rn to be read by DP-auto-GAN, where usuallyn is very large. For
example, categorical data may be pre-processed using one-hot encoding, or text may be converted
into numerical values. Similarly, the output of DP-auto-GAN can bepost-processedfrom Rn back
to the data’s original form. We assume that this pre- and post-processing can done based on public
knowledge, such as possible categories for qualitative features and reasonable bounds on quantitative
features, and therefore does not require privacy.

Within the DP-auto-GAN, there are two main components: theautoencoderand the GAN. The
autoencoder serves to reduce the dimensionality of the data before it is fed into the GAN. The GAN
consists of ageneratorthat takes in noisez sampled from distributionZ and producesGw(z) ∈ Rd,
and adiscriminatorDy(∙) : Rn → {0, 1}. Because of the autoencoder, the generator only needs to
synthesize data based on the latent distributionRd, which is a much easier task than synthesizing
in the original high-dimensional spaceRn. Both components of our architecture, as well as our
algorithm’s overall privacy guarantee, are described in the remainder of this section.

Figure 1: The summary of our algorithmic framework of DP-auto-GAN. Pre- and post-processing
(in black) are assumed to be public knowledge. Encoder and generator (in green) are trained without
noise injection, whereas decoder and discriminator (in yellow) are trained with noise. The four red
arrows indicate how data are forwarded for each training: autoencoder training, generator training,
and discriminator training. After the training, generator and decoder (but not encoder) are released
to the public to generate synthetic data.

3.1 AUTOENCODERTRAINING

The autoencoder consists of the encoderEnφ(∙) : Rn → Rd and decoderDeθ(∙) : Rd → Rn

parametrized by edge weightsφ, θ, respectively. The architecture of autoencoder assumes that
high-dimensional dataxi ∈ Rn can be represented compactly in low-dimensional spaceRd, also
called latent space. The encoderEnφ is trained to find such low-dimensional representations.
We also need the decoder,Deθ to map this pointEnφ(xi) in the latent space back toxi. A
measure of the information preserved in this process is the error between the decoder’s image
and the originalxi. Thus a good autoencoder should to minimize dist(Deθ(Enφ(xi)), xi) for
each datapointxi and the appropriate distance function dist. We use binary cross entropy loss
dist(x, y) = −

∑n
j=1 y(j) log(x(j)) −

∑n
j=1(1 − y(j)) log(1 − x(j)) (wherex(j) is thejth coordi-

nate ofx).
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This also motivates the definition of a (true) loss functionEx∼ZX
[dist(Deθ(Enφ(xi)), xi)] when

data are drawn independently from an underlying distributionZX . The corresponding empirical
loss function when we have an access to sample{xi}mi=1 is

Lauto(φ, θ) :=
∑m

i=1 dist(Deθ(Enφ(xi)), xi). (1)

The task of finding good autoencoder can be done by optimizingφ andθ to yield small empirical
loss as in equation1.

We minimize equation1 privately using DP-SGD (described in Section2.1). Our approach differs
from previous work on private training of autoencoders (Chen et al., 2018; Acs et al., 2018; Abay
et al., 2018) by not adding noise to the decoder during DP-SGD whereas previous work adds noise
to both the encoder and decoder. In this way we improve performance by reducing the noise injected
into the model by half, while maintaining the same privacy guarantee (see Proposition3). The full
description of our autoencoder training is in Algorithm2 in the appendix. In our DP-auto-GAN
framework, the autoencoder is trained first until completion, and is then fixed for the second phase
of training GAN.

3.2 GAN TRAINING

GAN consists of the generatorGw and discriminatorDy : Rn → {0, 1}, parameterized respectively
by edge weightsw andy. The aim of generatorGw is to synthesize (fake) data similar to the real
dataset, while the aim of discriminator is to determine whether an inputxi is from the generator’s
synthesized data (and assigning labelDy(xi) = 0) or is real data (and assigning labelDy(xi) = 1.
The generator is seeded with a random noise termz ∼ Z that contains no information about real
dataset, such as a multivariate Gaussian vector, and aims to generate a distributionGw(z) that is
hard forDy is distinguish. Hence, the generator wants to minimize the probability thatDy makes
a correct guess,Ez∼Z [1 −Dy(Gw(z))]. At the same time, the discriminator wants to maximize its
probability of correct guess when the data is fakeEz∼Z [1 −Dy(Gw(z))] and when the data is real
Ex∼ZX

[Dy(x)].

We generalize the output ofDy to a continuous range[0, 1], with the value indicating the confidence
that a sample is real. We use the zero-sum objectiveO(y, w) for the discriminator and generator
proposed byArjovsky et al.(2017) and motivated by the Wasserstein distance of two distributions.
Although their proposed Wasserstein objective cannot be computed exactly, it can be approximated
by optimizing the objective

miny maxw O(y, w) := Ex∼ZX
[Dy(x)]− Ez∼Z [Dy(Gw(z))]. (2)

We optimize equation2 privately using the DP-SGD framework described in Section2.1. We differ
from prior work on DP GANs in that our generatorGw(∙) outputs dataGw(z) in latent spaceRd

which needs to be encoded toEn(Gw(z)) before being fed into the discriminatorDy(z). The
gradient∇wGw is obtained by backpropagation through one more componentEn(∙). Hence, the
training of generator remains totally private because the additional componentEn(∙) is fixed and
never accesses the private data. The full description of our GAN training is given in Algorithm4 in
the appendix.

At the end of the two-phase training (including autoencoder and GAN), the noise distributionZ,
trained generatorGw(∙), and trained encoderEn(∙) are released to the public. The public can then
generate synthetic data by samplingz ∼ Z to obtain a synthesized datapointEn(Gy(z)) repeatedly
to obtain synthetic dataset of any desired size.

3.3 PRIVACY ACCOUNTING

Our autoencoder and GAN are trained privately by adding noise to the decoder and discrimina-
tor. Since the generator only accesses data through the discriminator’s (privatized) output, then the
trained parameters of generator are also private by post-processing guarantees of differential privacy.
Finally, we release privatized decoder and generator, together with generator’s noise distributionZ
and post-processing procedure, both of which are assumed to be public knowledge.

The privacy accounting is therefore required for the two parts that access real dataX: training the
autoencoder and the discriminator. In each of the training, we apply the RDP accountant (described
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in Section2.1and AppendixD.2) to analyze privacy of the DP-SGD training algorithm, to compute
final (ε, δ)-DP bound. Our application of the RDP accountant diverges from the previous literature
in two main ways.

First, we do not add noise to decoder during the autoencoder training, which is contrary to prior work
that adds noise to both the encoder and decoder. Our approach of not adding noise to decoder does
not affect the algorithms’ overall privacy guarantees. The following corollary states this formally,
and follows immediately from Propositions3 and4

Corollary 2. Suppose autoencoder in DP-auto-GAN is trained with RDP privacyRDPauto(∙) and
the discriminator in DP-auto-GAN is trained with RDP privacyRDPD(∙), then DP-auto-GAN is
RDP with valuesRDPauto(∙)+RDPD(∙).

Second, the privacy analysis must account for two phases of training, usually with different privacy
parameters (such as different batch sampling rate, noise, and number of iterations). One obvious
solution is to calculate the desired (ε, δ)-DP parameter obtained from each phase and compose them
to obtain(ε1 + ε2, δ1 + δ2)-DP. However, we can obtain a tighter privacy bound by composing
the privacy at the Renyi Divergence level before translating Renyi Divergence into(ε, δ)-DP. In
other words, we first apply Proposition4 to compute RDP(∙) of two-phase training before applying
Proposition5 to translate RDP into DP. This is the approach used in Corollary2. In practice, this
reduces the privacy parameterε by about 30%.

4 EVALUATION METRICS

In this section, we discuss the evaluation metrics that we use in the experiments (Section5) to
empirically measure the quality of the synthetic data. Some of these metrics have been used in the
literature, while many are novel contributions in this work. The evaluation metrics are summarized
in Table1; our contributions are in bold.

For the first two metrics described below, the dataset should be partitioned into a training setR ∈
Rm1×n and testing setT ∈ Rm2×n, wherem = m1 + m2 is the total number of samples the real
data, andn is the number of features in the data. After training the DP-auto-GAN, we also create a
synthetic datasetS ∈ Rm3×n, for sufficiently largem3.

Dimension-wise probability. This metric is used when the entire dataset is binary and serves as
a basic sanity check to verify whether DP-auto-GAN has learned marginal distributions in each
feature. In particular, we compare the proportion of1’s (which can be thought of as estimators of
Bernoulli success probability) in each feature of training setR and synthetic datasetS.

Dimension-wise prediction. This metric evaluates whether DP-auto-GAN has correctly learned
the relationshipsbetweenfeatures. For thek-th feature of training setR and synthetic datasetS,
we chooseyRk

∈ Rm1 andySk
∈ Rm3 as labels of a classification or regression task based on the

type of that feature. Remaining featuresR−k andS−k are used for prediction. We train either a
classification or regression model and measure their goodness of fit based on the model’s accuracy
using AUROC,F1 or R2 scores whose definitions can be found in AppendixC.

We propose following novel evaluation metrics. The details of existing metrics can be found in
Appendix.

1-way feature marginal. This metric works as a sanity check for real features. We compute his-
tograms for the feature interest of both real and synthetic data.

2-way PCA marginal. This metric generalizes the 3-way marginal score used inNIST (2019). In
particular, we compute a principle components of the original data and evaluate a projection operator
for first two principle components. Let us denoteP ∈ Rn×2 as the projection matrix suchthat
R = RP is the projection on first two principle components ofR. Then we evaluate projection of
syntheticdataS = SP and scatterplot 2-D pointsin R andS for visual evaluation. For quantitative
evaluation, we also compute Wasserstein distancebetweenR andS. We used Wasserstein distance
since we optimize for WGAN objective, however, any distributional divergence metric can be used.
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Table 1: Summary of evaluation metrics in DP synthetic data generation. We list applicability of
each metric to each of the data type. Parts inbold areour new contributions. Evaluation methods
with asterisk * are predictive-model-specific, and their applicability therefore depends on types of
data that the chosen predictive model is appropriate for. Methods with asterisks ** are equipped
with any any distributional distance of choice such as Wasserstein distance.

TYPES EVALUATION METHODS DATA TYPES
Binary Categorical Regression

Supervised Label prediction* (Chen et al., 2018;
Abay et al., 2018; Frigerio et al.,
2019)

Yes Yes Yes

Predictive model ranking* (Jordon
et al., 2018)

Yes Yes Yes

Unsupervised,
prediction-based

Dimension-wise prediction plot* Yes (Choi et al.
(2017), ours)

Yes Yes

Unsupervised,
distributional-
distance-based

Dimension-wise probability plot
(Choi et al., 2017)

Yes No No

3-way feature marginal, total varia-
tion distance (NIST, 2019)

Yes Yes Yes

k-way feature marginal** Yes Yes Yes
k-way PCA marginal** Yes Yes Yes
Distributional distance** Yes Yes Yes

Unsupervised,
qualitative

1-way feature marginal (histogram) Yes Yes Yes
2-way PCA marginal (data visual-
ization)

Yes Yes Yes

Distributional distance. In this metric, we compute Wasserstein distanceW2(R,S) between entire
real and synthetic datasetsR,S. Wasserstein score is then defined as

Wscore(R,S) := 1− W2(R,S)
maxx,y∈X ||x−y||22

(3)

by normalizing the distance by the maximum distance possible of two datapoints in data universe
X . To compute Wasserstein score onk-way marginal PCA projectionP , we normalize the score
with additional term

√
v, wherev is the explained variance ofP :

Wscore(R̄, S̄, P ) := 1− W2(R̄,S̄)√
v maxx,y∈X ||x−y||22

(4)

For more details about implementation of these new evaluation metrics, their generalizations and
relationships among them, we refer the reader to AppendixD.5.

5 EXPERIMENTS

In this section we present details of our datasets and show empirical results of our experiments.
Throughout our experiments, we fixδ = 10−5 for training DP-auto-GAN and show results for
different values ofε including ε = ∞, i.e., non-private GAN, which serves as a benchmark. We
also compare our results with the existing works in the literature where relevant. Details of hyper-
parameters and architecture can be found in the appendix. The code of our implementation is avail-
able athttps://github.com/DPautoGAN/DPautoGAN .

5.1 BINARY DATA

First, we consider the MIMIC-III datasetJohnson et al.(2016) which is a publicly available dataset
consisting of medical records of 46K intensive care unit (ICU) patients over 11 years old. This is a
binary dataset with 1071 features.
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Even though our DP-auto-GAN framework can handle mixed-type data, we first evaluate it on the
MIMIC-III dataset, which is all binary. We do this since our framework matches withChoi et al.
(2017) and this dataset is used in their paper as well as other works such as DP-GANXie et al.
(2018). We also use the evaluation metrics used in these papers. First we plot dimension-wise
probability for this dataset.

(a) ε = ∞ (b) ε = 3.11865 (c) ε = 1.27655 (d) ε = 0.94145

Figure 2: Dimension-wise probability scatterplots for different values ofε. For each point in the plot
represents one of 1071 features in MIMIC-III dataset.x andy coordinates of a point are proportion
of 1 in real and synthetic datasets of a feature, respectively.

As one can see in Figure2, proportion of 1 in the marginal distribution for real and synthetic dataset
is close to the liney = x for ε = ∞ andε = 3.11865. The performance of DP-GAN is affected
marginally forε = 1.27655 which can be noticed by increased variance of points along liney = x.
However, forε = 0.94145, DP-GAN is unable to capture marginal distribution as most of the
features in synthetic dataset have much higher proportion of 0’s. This trend in the performance is
expected for smaller values ofε. However, we would like to mention that our results are much
stronger than the ones obtained inXie et al. (2018) in the sense that we can show good results for
much smaller values ofε. See more details on MIMIC dataset and explanation of dimension-wise
prediction in the appendix.

(a) ε = ∞ (b) ε = 3.11865 (c) ε = 1.27655 (d) ε = 0.94145

Figure 3: Dimension-wise prediction scatterplot for different values ofε. Each point represents one
of 1071 features in MIMIC-III dataset. For each point,x andy coordinate represents AUROC score
of logistic regression classifier trained on real and synthetic datasets, respectively.

5.2 MIXED DATA

Second, we consider ADULT datasetDua & Graff (2017) which is an extract of the US census and
contains information about working adults. This dataset has 14 features out of which 10 features are
categorical and rest are real-valued. Figure4 shows the dimension-wise prediction plot. Here, for
blue points and single green point (i.e., categorical features) we use random forest classifier in order
to compare our result withFrigerio et al.(2019). For red points (i.e., real-valued feature), we used
lasso regression model. Green point represent the salary feature which is used as label inFrigerio
et al. (2019). Similar to mimic dataset, we see that for large values ofε points are scattered close
to y = x line and asε gets smaller, points gradually shift downward implying thatF1 score for
synthetic data deceases. We choose to evaluateF1 score instead of AUROC score for this dataset
since many features are non-binary in nature for which AUROC score is not used.

Green points in Figure4 show theF1 score of real and synthetic dataset while treating the salary
columns as binary label (based on condition> $50k). For this specific feature, we also compute
accuracy scores for comparison withFrigerio et al.(2019). In Table2, we report the accuracy of
each synthetic dataset as well as benchmark accuracy.
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(a) ε = ∞ (b) ε = 1.5 (c) ε = 1 (d) ε = 0.8

Figure 4: Dimension-wise prediction scatterplot for different values ofε. Each point represents
one of 10 categorical features in ADULT dataset. Blue points and single green point are plotted
according toF1 score and for red points, we plotR2 score. For each point,x andy coordinate
represents relevant score evaluated on real and synthetic datasets, respectively.

Table 2: Accuracy scores of prediction on salary feature evaluated on differentε values.

ε value Realdataset ∞ 1.5 1 0.8
Accuracy 86.63% 79.18% 77.86% 76.92% 77.7%

Note that in ADULT dataset, we have four real-valued features but we plot fewer red point in Figure
3. In fact, we plot the red point related to the age feature consistently across values ofε but we mostly
neglect other features. The reasoning behind is that we can not get good fit (verified byR2 value) for
these features in terms of the rest of the features for even the real dataset. We verified this starting
with simple regression models such as lasso to as complex as neural networks. To check whether
we learn the distribution correctly for these features, we plot 1-way feature marginal histogram on
each of them. Please look into Figure7 in AppendixC. It can be seen that DP-auto-GAN identifies
the distribution in those features.

In order to understand combined performance of all features, we use two metrics. First, we show
the qualitative results from 2-way PCA marginal score in Figure5 A close qualitative inspection

(a) Real data (b) ε = ∞ (c) ε = 1.5 (d) ε = 1 (e) ε = 0.8

Figure 5: Scatterplot of projection of given dataset on first two principle component of the real
dataset

of plots clearly shows the similarities of trends between the plots for real dataset and for different
values ofε, as low asε = 1. Finally we also evaluate Wasserstein distributional distance between
synthetic and real data, shown in Table3.
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A A LGORITHM DESCRIPTION ANDPSEUDOCODE OFDP-AUTO-GAN

We provided the pseudocode of our proposed DP-auto-GAN in Algorithm1. The Algorithm is spec-
ified by the architecture and training parameters of encoder, decoder, generator, and discriminator.
After pre-processing, DPTRAINAUTO trains autoencoder fully specified in Algorithm2. As noted
earlier, the decoder is trained privately by clipping gradient norm and injecting Gaussian noise in
order to obtain the gradient of decodergθ, while the gradient of encodergφ can be used directly as
encoder can be trained non-privately.

The second phase is to train GAN. As suggested byGoodfellow et al.(2014), discriminator trained
for several iterations per one iteration of generator training. When discriminator is trained, generator
is fixed, and vice-versa. Discriminator and generator training is described in Algorithms3 and4. As
the discriminator receives real data sample in their training, the training is made private by clipping
the norm and adding Gaussian noise to the gradientg. The training of generator does not use any
private dataX and hence can be train without any need to clip gradient norm or to inject noise to
the gradient.

Finally, the privacy analysis is via RDP accountant for each training, and composing at the RDP
level (as a function ofα) as described in Corollary2. After the sum of RDP (as a function ofα) is
obtained, for any given fixedδ, we optimizeα to get the bestε by Proposition5. Because the value
of ε(α) obtained from Proposition5 as a function ofα is convex overα (Van Erven & Harremos
(2014) and noted byWang et al.(2019)), we implement ternary search to efficiently optimize forα.

Proposition 3. DP-auto-GAN trained with differentially private algorithmsM1 on the decoder and
M2 on the discriminator (and possibly a non-private algorithm on the encoder) achieves differential
privacy guarantee equivalent to that of the composition ofM1,M2.

Proof. DP-auto-GAN needs to release only generator and decoder as an output. Releasing the de-
coder incurs cost of privacy equal to that ofM1. The generator accesses the data only through a
discriminator, which is differentially private by mechanismM2, so releasing the generator has the
same privacy loss asM2 from post-processing. Therefore, releasing both decoder and generator
incurs privacy loss of composition ofM1 andM2.

Proposition3 is stated more formally using the RDP notion of privacy (where the privacy parameters
are a function ofα) in Corollary 2 in the main body. That corollary follows immediately from
Propositions3 and4.

B MORE DETAILS ON METRIC EVALUATION

We recall the notations from the main body. We explain the scoring used more specifically.

Dimension-wise prediction. We describe the model’s accuracy using the following well known
metrics:
1. Area under the ROC curve (AUROC) score andF1 score for classification: TheF1 score of a
classifier is defined asF1 := 2×precision×recall

precision+recall , where precision is ratio of true positives to true and
false positives, and recall is ratio of true positives to total positives. AUROC score is graphical
measure capturing area under ROC (receiver operating characteristic) curve. Both metrics take
values in interval[0, 1] with larger values implying good fit.
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Algorithm 1 DPAUTOGAN (full procedure)

1: architecture input: Private datasetD ∈ Xm whereX is the set of (raw) data universe, pre-
processed data dimensionn, latent space dimensiond, preprocessing functionPre : X → Rn,
post-processing functionPost : Rn → X , encoder architectureEnφ : Rn → Rd parameterized
by φ, decoder architectureDeθ : Rd → Rn parameterized byθ, generator’s noise distribution
Z on sample spaceΩ(Z), generator architectureGw : Ω(Z) → Rd parameterized byw, dis-
criminator architectureDy : Rn → {0, 1}.

2: autoencoder training parameters: Learning rateη1, number of iteration rounds (or optimiza-
tion steps)T1, loss functionLauto, optimization method optimauto batch sampling rateq1 (for the
batch expectation sizeb1 = q1m), clipping normC1, noise multiplierψ1, microbatch sizer1

3: generator training parameters: Learning rateη2, batch sizeb2, loss functionLG, optimization
method optimG, number of generator iteration rounds (or optimization steps)T2

4: discriminator training parameters : Learning rateη3, number of discriminator iterations per
generator steptD, loss functionLD, optimization method optimD, batch sampling rateq3 (for
the batch expectation sizeb3 = q3m), clipping normC3, noise multiplierψ3, microbatch size
r3

5: privacy parameter δ > 0
6: procedure DPAUTOGAN
7: X ← Pre(D)
8: Initialize φ, θ, w, y for Enφ, Deθ, Gw, Dy

. Phase 1: autoencoder training
9: for t = 1 . . . T1 do

10: DPTRAINAUTO(X, En, De, autoencoder training parameters)
. Phase 2: GAN training

11: for t = 1 . . . T2 do
12: for j = 1 . . . tD do . (privately) trainDy for tD iterations
13: DPTRAINDISCRIMINATOR(X, Z, G,De, D, discriminator training parameters)
14: TRAINGENERATOR(Z,G,De,D, generator training parameters)

. Privacy accounting
15: RDPauto(∙)← RDP-ACCOUNT(T1, q1, ψ1, r1)
16: RDPD(∙)← RDP-ACCOUNT(T2 ∙ tD, q3, ψ3, r3)
17: ε←GET-EPS(RDPauto(∙) + RDPD(∙))
18: return model(Gw, Deθ), privacy(ε, δ)

Algorithm 2 DPTRAINAUTO(X, Enφ, Deθ, training parameters)

1: training parameter input : Learning rateη1, number of iteration rounds (or optimization steps)
T1, loss functionLauto, optimization method optimauto batch sampling rateq1 (for the batch
expectation sizeb1 = q1m), clipping normC1, noise multiplierψ1, microbatch sizer1

2: goal: train one step of autoencoder(Enφ, Deθ)
3: procedure DPTRAINAUTO

4: B ← SAMPLEBATCH(X, q1)
5: PartitionB into B1, . . . , Bk each of sizer (ignoring the dividend)
6: k̂ ← q1m

r . an estimate ofk
7: for j = 1 . . . k do

. Bothgj
φ, gj

θ can be computed in one backpropagation

8: gj
φ, gj

θ ← ∇φ(Lauto(Deθ(Enφ(Bj)), Bj)),∇θ(Lauto(Deθ(Enφ(Bj)), Bj)

9: gφ ← 1
k̂

∑k
j=1 gj

φ

10: gθ ← 1
k̂

((∑k
j=1 CLIP(gj

φ, C1)
)

+N (0, C2
1ψ2

1I)
)

11: (φ, θ)← optimauto(φ, θ, gφ, gθ, η1)
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Algorithm 3 DPTRAINDISCRIMINATOR(X, Z, Gw, Deθ, Dy, training parameters)

1: training parameter input : Learning rateη3, number of discriminator iterations per generator
steptD, loss functionLD, optimization method optimD, batch sampling rateq3 (for the batch
expectation sizeb3 = q3m), clipping normC3, noise multiplierψ3, microbatch sizer3

2: goal: train one step of discriminatorDy

3: procedure DPTRAINDISCRIMINATOR

4: B ← SAMPLEBATCH(X, q3)
5: PartitionB into B1, . . . , Bk each of sizer (ignoring the dividend)
6: k̂ ← q1m

r . an estimate ofk
7: for j = 1 . . . k do
8: {zi}ri=1 ∼ Zr

9: B′ ← {De(Gw(zi))}ri=1
10: gj ← ∇y(LD(Bj , B

′, Dy))
. In the case of WGAN,

LD(Bj , B
′, Dy) :=

1
r

∑

b∈Bj

Dy(b)−
1
r

∑

b′∈B′

Dy(b′)

11: g ← 1
k̂

((∑k
j=1 CLIP(gj , C3)

)
+N (0, C2

3ψ2
3I)
)

12: y ← optimD(y, g, η3)

Algorithm 4 TRAINGENERATOR(Z,Gw, Deθ, Dy, generator training parameters)

1: training parameter input : Learning rateη2, batch sizeb2, loss functionLG, optimization
method optimG, number of generator iteration rounds (or optimization steps)T2

2: goal: train one step of generatorGw

3: procedure TRAINGENERATOR

4: {zi}
b2
i=1 ∼ Zb2

5: B′ ← {De(Gw(zi))}
b2
i=1

6: g ← ∇w(LG(B′, Dy))
. In the case of WGAN,

LG(B′, Dy) := −
1
b2

∑

b′∈B′

Dy(b′)

7: w ← optimG(w, g, η2)
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2. R2 score for regression:R2 score is defined as1 −
∑

(yi − ŷi)2∑
(yi − y)2

, whereyi is the true label,̂yi

is the predicted labelandy is the mean of the true labels. This is a popular metric used to measure
goodness of fit as well as future prediction accuracy for regression.

C EXPERIMENTAL DETAILS

Figure3 shows dimension-wise prediction plot for different values ofε. As one can see, forε =∞,
many points are concentrated along the lower side of liney = x which is the ideal performance.
This shows that AUROC score of the real dataset is marginally higher than that of synthetic dataset.
For ε = 3.11865 andε = 1.27655, there is a gradual shift downwards compared to liney = x
with larger variance in the plotted points. This means that AUROC scores of real and synthetic
data shows more difference for smaller values ofε. For ε = 0.94145, which shows the same trend,
one can also see that number of datapoints plotted have reduced significantly. This is since many
features in synthetic data have very high proportion of0, so logistic regression classifier trained
on these features uniformly outputs0 on the hold-out test datasetT . In such cases, AUROC score
outputs1/2 by default and as such, does not have any meaning. Hence we drop those features from
the plot.

Below we show the full plots of dimension-wise prediction for MIMIC-III dataset.

(a) ε = ∞ (b) ε = 3.11865 (c) ε = 1.27655 (d) ε = 0.94145

Figure 6: Full plots of dimension-wise prediction for mimic dataset

Below we provide 1-way histogram for ADULT dataset. As one can see, DP-auto-GAN identifies
the marginal distribution of capital gain and capital loss quite well and it does reasonably well on
hours-per-week feature.

Below we provide comprehensive details of our experiments for ADULT dataset:

The autoencoder was trained via Adam with Beta 1 = 0.9, Beta 2 = 0.999, and a learning rate of
0.005 for 20,000 minibatches of size 64 and a microbatch size of 1. The L2 clipping norm was
selected to be the median L2 norm observed in a non-private training loop, equal to 0.012. The
noise multiplier was then calibrated to achieve the desired privacy guarantee.

The GAN was composed of two neural networks, the generator and the discriminator. The generator
used a ResNet architecture, adding the output of each block to the output of the following block. It
was trained via RMSProp with alpha = 0.99 with a learning rate of 0.005. The discriminator was a
simple feed-forward neural network with LeakyReLU hidden activation functions, also trained via
RMSProp with alpha = 0.99. The L2 clipping norm of the discriminator was set to 0.022. The
pair was trained on 15,000 minibatches of size 128 and a microbatch size of 1, with 15 updates to
the discriminator per 1 update to the generator. Again, the noise multiplier was then calibrated to
achieve the desired privacy guarantee.

A serialization of the model architectures used in the experiment can be found below.

Autoencoder(
(encoder): Sequential(
0: Linear(in-features=106, out-feature=60, bias=True)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=60, out-feature=15, bias=True)
(3): LeakyReLU(negative-slope=0.2)
)
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(a) Capital gain,ε = ∞ (b) ε = 0.8 (c) ε = 1.5 (d) ε = 1

(e) Capital loss,ε = ∞ (f) ε = 0.8 (g) ε = 1.5 (h) ε = 1

(i) Hours per week,ε = ∞ (j) ε = 0.8 (k) ε = 1.5 (l) ε = 1

Figure 7: 1-way histogram for different values ofε. Three rows correspond to capital gain, capital
loss and weekly work-hours

(decoder): Sequential(
(0): Linear(in-feature=15, out-feature=60, bias=True)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=60, out-feature=106, bias=True)
(3): Sigmoid()
)
)

Generator(
(block-0): Sequential(
(0): Linear(in-feature=64, out-feature=64, bias=False)
(1): BatchNorm1d()
(2): LeakyReLU(negative-slope=0.2)
)
(block-1): Sequential(
(0): Linear(in-feature=64, out-feature=64, bias=False)
(1): BatchNorm1d()
(2): LeakyReLU(negative-slope=0.2)
)
(block-2): Sequential(
(0): Linear(in-feature=64, out-feature=15, bias=False)
(1): BatchNorm1d()
(2): LeakyReLU(negative-slope=0.2)
)
)

Discriminator(
(model): Sequential(
(0): Linear(in-feature=106, out-feature=70, bias=True)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=70, out-feature=35, bias=True)
(3): LeakyReLU(negative-slope=0.2)
(4): Linear(in-feature=35, out-feature=1, bias=True) )
)
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D ADDITIONAL BACKGROUND AND RELATED WORK

D.1 DETAILS OF DP-SGD

The DP-SGD framework (given formally in Algorithm5) is generically applicable to private non-
convex optimization.

Algorithm 5 DP-SGD (one iteration step)

1: parameter input: DataX = {xi}mi=1, deep learning model parameterθ, learning rateη, loss
functionf , optimization method OPTIM, batch sampling rateq (for the batch expectation size
b = qm), clipping normC, noise multiplierψ, microbatch sizer

2: goal: differentially privately train one step of the model parametrized byθ with optim
3: procedure DP-SGD
4: procedure SAMPLEBATCH(X, q)
5: B ← {}
6: for i = 1 . . . n do
7: Add xi toB with probabilityq

return B
8: PartitionB into B1, . . . , Bk each of sizer (ignoring the dividend)
9: k̂ ← qm

r . an estimate ofk

10: g ← 1
k

(∑k
i=1 CLIP(∇θf(XBi , θ), C) +N (0, C2ψ2I)

)

11: θ ← OPTIM(θ, g, η)

Performance improvements.In general, the descent step can be performed using other optimiza-
tion methods—such as Adam or RMSProp—in a private manner, by replacing the gradient value
with g in each step. Also, one does not need to clip the individual gradients, but can instead clip
the gradient of a group of datapoints, called amicrobatch(McMahan & Andrew, 2018). Mathe-
matically, the batchB is partitioned into microbatchesB1, . . . , Bk each of sizer, and the gradient
clipping is performed on the average of each microbatch:

g ←
1
k

(∑k
i=1 CLIP(∇θf(XBi

, θ), C) +N (0, C2ψ2I)
)

Standard DP-SGD corresponds to settingr = 1, but setting higher values ofr (while holding|B|
fixed) significantly decreases the runtime and reduces the accuracy, and does not impact privacy
significantly for large dataset. Other clipping strategies have also been suggested. We refer readers
to McMahan & Andrew(2018) for more details of clipping and other optimization strategies.

The improved privacy analysis byAbadi et al.(2016) (which has been implemented inGoogle
(2018) and is widely used in practice) obtains a tighter privacy bound when data are subsampled, as
in SGD. This analysis requires independently sampling each datapoint with a fixed probabilityq in
each step.

D.2 CONVERTING RENYI DP TO DP

To compute the final(ε, δ)-differential privacy parameters from iterative runs of DP-SGD, there are
three key steps.

Step 1: Subsampled Renyi Divergence.Given sampling rateq and noise multiplierψ, one can
obtain RDP(∙) values as a function ofα ≥ 1 for one run of DP-SGD (Mironov, 2017). We denote
this function by RDPT=1(∙), which will depend onq andψ.

Step 2: Composition of RDP.When DP-SGD is run iteratively, we can compose the Renyi privacy
parameter across all runs using the following proposition.

Proposition 4 ((Mironov, 2017)). If M1,M2 respectively satisfy(α, ε1), (α, ε2)-RDP forα ≥ 1,
then the composition of two mechanismsM2(M1(X)) satisfies(α, ε1 + ε2)-RDP.

Hence, we can compute RDP(∙) values forT iterations of DP-SGD as RDP-ACCOUNT(T, q,ψ) :=
T ∙ RDPT=1(∙).
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Step 3: Conversion to(ε, δ)-DP. After obtaining the final RDP(∙) function, any(α, ε)-RDP guar-
antee can be converted into(ε, δ)-DP.

Proposition 5 ((Mironov, 2017)). If M satisfies(α, ε)-RDP for α > 1, then for all δ > 0, M
satisfies(ε + log 1/δ

α−1 , δ)-DP.

Since theε privacy parameter of RDP is also a function ofα, this last step involves optimizing for
theα that achieves smallest privacy parameter in Proposition5.

D.3 DIFFERENTIALLY PRIVATE GAN ARCHITECTURES

Training deep learning models reduces to minimizing some (empirical) loss functionf(X; θ) :=
1
m

∑m
i=1 f(xi; θ) on a datasetX = {xi ∈ Rn}mi=1. Typically f is a nonconvex function, and a

common method to minimizef is by iteratively performing stochastic gradient descent (SGD):

B ← BATCHSAMPLE(X) (5)

θ ← θ − η ∙ 1
|B|

∑
i∈B ∇θf(xi, θ) (6)

The size ofB is typically fixed as a moderate number to ensure quick computation of gradient, while
maintaining that 1

|B|

∑
i∈B ∇f(xi, θ) is a good estimate of true gradient∇θf(X; θ).

In the setting of differential privacy,X is a dataset ofm individual’s sensitive information, and
two datasets are neighbors if one can be obtained from another by the addition or deletion of one
datapoint. To make SGD private, a standard method proposed byAbadi et al.(2016) is to first clip
the gradient of each sample to ensure the`2-norm is at mostC:

CLIP(x,C) := x ∙min (1, C/||x||2) .

Then a multivariate Gaussian noise parametrized by noise multiplierψ is added before taking an
average across the batch, leading to noisy-clipped-averaged gradient estimateg:

g ← 1
|B|

(∑
i∈B CLIP(∇θf(xi, θ), C) +N (0, C2ψ2I)

)

The quantityg is now private and can be used for the descent stepθ ← θ−η ∙g in place of equation6.

Variants of DP GANs have been used for synthetic data generation, including the Wasserstein GAN
(WGAN) (Arjovsky et al., 2017; Gulrajani et al., 2017) and DP-WGAN (Alzantot & Srivastava,
2019; Triastcyn & Faltings, 2018) that use a Wasserstein-distance-based loss function in training
(Arjovsky et al., 2017; Gulrajani et al., 2017; Alzantot & Srivastava, 2019; Triastcyn & Faltings,
2018); the conditional GAN (CGAN) (Mirza & Osindero, 2014) and DP-CGAN (Torkzadehmahani
et al., 2019) that operate in a supervised (labeled) setting and use labels as auxiliary information
in training; and Private Aggregation of Teacher Ensembles (PATE) (Papernot et al., 2017; 2018)
for the semi-supervised setting of multi-label classification when some unlabelled public data are
available (or PATEGAN (Jordon et al., 2018) when no public data are available). Our work focuses
on unsupervised setting where data are unlabeled, and no (relevant) labeled public data are available.

Existing works in differentially private synthetic data generation can be summarized in Table4.

D.4 DIFFERENTIALLY PRIVATE TRAINING OF DEEPMODELS

There are numerous works on optimizing the performance of differentially private GANs, including
data partitioning (either by class of labels in supervised setting or a private algorithm) (Yu et al.,
2019; Papernot et al., 2017; 2018; Jordon et al., 2018; Abay et al., 2018; Acs et al., 2018; Chen
et al., 2018); reducing the number of parameters in deep models (McMahan et al., 2017); changing
the norm clipping for the gradient in DP-SGD during training (McMahan et al., 2017; van der Veen
et al., 2018; Thakkar et al., 2019); changing parameters of the Gaussian noise used during training
(Yu et al., 2019); and using publicly available data to pre-train the private model with a warm start
(Zhang et al., 2018; McMahan et al., 2017). Clipping gradients per-layer of models (McMahan &
Andrew, 2018; McMahan et al., 2017) and per-dynamic parameter grouping (Zhang et al., 2018) are
also proposed. Additional details for some of these optimization approaches are given below.
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Table 4: Algorithmic frameworks for differentially private synthetic data generation.Our new
algorithmic framework (in bold) is the first to combine both DPGAN and autoencoder into one
framework by using GAN to learn generative model in latent space.

Types Algorithmic framew ork
Main architectur e Variants

Deep
generative
models

DPGAN
(Abadi et al.,
2016)

PATEGAN (Jordon et al., 2018)
DP Wasserstein GAN (Alzantot & Srivastava,
2019)
DP Conditional GAN (Torkzadehmahani et al.,
2019)
Gumbel-softmax for categorical data (Frigerio
et al., 2019)

Autoencoder
DP-VaE (Chen et al., 2018; Acs et al., 2018)
RBM generative models in latent space (Acs et al.,
2018)
Mixture of Gaussian model in latent space (Abay
et al., 2018)

Autoencoder and DPGAN(ours)
Other
models

SmallDB (?), PMW (Hardt & Rothblum, 2010), MWEM Hardt et al.
(2012), DualQueryGaboardi et al.(2014), DataSynthesizer (Ping et al.,
2017), PriBayes (Zhang et al., 2017)

Batch Sampling Three ways are known to sample a batch from data in each optimization step.
The three methods are described inMcMahan & Andrew(2018). We also summarize here for the
completeness of DP-SGD background.

The first is to sample each individual’s data with a fixed probability independently. This sampling
procedure is one used in analysis of subsampled moment account inAbadi et al.(2016); McMahan
& Andrew (2018) and subsampled RDP composition inMironov (2017). This RDP composition
is publicly available at Tensorflow Privacy (Google, 2018). We implement this sampling procedure
and use Tensorflow Privacy to account Renyi Divergence during the training.

Another sampling policy is to sample uniformly at random a subset of fixed size of all datapoints.
This achieves a different RDP guarantee from the first one, but the analysis of this sampling has
been done inWang et al.(2019).

Finally, a common subsampling procedure is to shuffle the data at random, and take a fixed-size
batch in the order of the shuffling without replacement. The process is repeated after a pass over
all datapoints (an epoch). Though this batch sampling is most common in practice, no subsampled
privacy composition is known in this case.

Hyperparameter Tuning Training a deep learning models involves hyperparameter tuning to find
good architecture and optimization parameters. This process is private and privacy budget must be
accounted for.Abadi et al.(2016) accounts for hyperparameter search using the work ofGupta
et al.(2010). Beaulieu-Jones et al.(2019) uses Report Noisy MaxDwork & Roth (2014) to private
select a model with top performance when a model evaluation metric is known. Some works are
done to account for selecting high-performance models without losing much privacy (Chaudhuri &
Vinterbo, 2013; Liu & Talwar, 2019). In our experimental work, we omit the privacy accounting
of hyperparameter search as this is not the focus fof our contribution (new algorithmic framework
using RDP subsampled composition for privacy analysis), following most literatures in differentially
private synthetic data generation.

D.5 EVALUATION METRICS FORSYNTHETIC DATA

Now we review the evaluation schemes for measuring quality of synthetic data. Various evaluation
metrics have been considered in the literature to quantify the quality of the synthetic data (Charest,
2011). Broadly, evaluation metrics can be divided into two major categories: supervised and un-
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supervised. Unsupervised metrics can then be divided into three broad types: prediction-based,
distributional-distance-based, and qualitative- (or visualization-) based. Metrics in previous work
and our proposed metrics are summarized in Table1.

Supervised evaluation metrics. These metrics are used when clear distinctions exist between
feature and labels of the dataset, e.g., for healthcare applications, whether a person has a disease or
not could be a label. The main aim of generating synthetic data is to best understand the relationship
between features and labels. A popular metric for such cases is to train a machine learning model
on the synthetic data and report its accuracy on the real test data (Xie et al., 2018). Zhang et al.
(2018) used inception scores on the image data with classification tasks. Inception scores were
proposed inSalimans et al.(2016) for images which measure quality as well as diversity of the
generated samples. Another metric used inJordon et al.(2018) reports whether the accuracy ranking
of different machine learning models trained on the real data is preserved when the same machine
learning model is trained on the synthetic data. All the evaluation metrics focus on understanding
relationship between labels and features of the data and hence we call them supervised evaluation
metrics. Also, in the literature, these metrics are used for classification setting but can be generalized
to regression setting easily.

The disadvantage of supervised metric is that in some application, it is not clear if any feature can
appropriately be a label. For example, the data analyst who wants to learn a pattern from synthetic
data may not know what specific prediction tasks to perform, but rather wants to explore the data by
several ways including by a unsupervised algorithm such as Principle Component Analysis (PCA).
As a result, we now turn our focus tounsupervised evaluation metric– a metric when no feature of
the data can be decisively termed as a label. We list all three types of evaluation metrics below.

Unsupervised evaluation metric, prediction-based. One metric of this type is proposed byChoi
et al. (2017) for binary data. Instead of measuring accuracy score of one particular feature in
supervised-setting, one can predicteverysingle feature by using the rest of features. The predic-
tion score is therefore created for each single feature, creating a list of dimension- (or feature-) wise
prediction scores. A good synthetic data should resemble dimension-wise prediction score of that of
real data. Intuitively, similar dimension-wise prediction shows that synthetic data correctly captures
inter-feature relationships in the real data.

Though this was proposed for binary data, we extend this to mixed type data by allowing varieties
of predictive models appropriate for each data type present in the dataset. For each feature, we try
predictive models on the real dataset in order of increasing complexity until a good accuracy score
is achieved. For example, to predict real-valued feature, we use linear classifier and then neural
network predictor. This ensures that a choice of predictive model is first appropriate to the feature.
Synthetic data is then evaluated by measuring the accuracy of the same trained predictive model,
but on the synthetic data. A high accuracy score of the model on synthetic data close to original
accuracy score on real data indicates that synthetic data resembles real data well.

Zhang et al.(2018) also provides a Jensen-Shannon score metric which measures the Jensen-
Shannon divergence between output of a discriminating neural network on the real and synthetic
dataset, and a Bernoulli random variable with0.5 probability. This metric differs from dimension-
wise prediction in that the predictive model (discriminator) is trained over the whole dataset at once,
rather than dimension-wise, to obtain a score.

Unsupervised evaluation metric, distributional-distance-based. Instead of computing
dimension-wise prediction score, one can also compute the dimension-wise probability distribution,
also proposed inChoi et al.(2017) for binary data. This metric compares the marginal distribution
of real and synthetic data on each individual feature.

3-way marginal: Recently,NIST (2019) challenge used a 3-way marginal evaluation metric in which
random three feature of the real and synthetic dataR,S are used to compute the total variation
distance as a statistical score. This process is repeated a few times and finally, average score is
returned. In particular, values of each of the three features are partitioned in 100 disjoint bins as
follows:

Bi
R,k =

⌊
(Ri

k −Rk,min) ∗ 100
Rk,max −Rk,min

⌋

andBi
S,k =

⌊
(Si

k −Rk,min) ∗ 100
Rk,max −Rk,min

,

⌋
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whereRi
k, Si

k is the value ofi-th datapoint’sk-th feature in datasetsR andS. Rk,min, Rk,max are
respectively the minimum and maximum value of thek-th feature inR. For example, ifk = 1, 2, 3
are the selected features theni-th data points ofR andS are put into bins identified by a 3-tuple,
(Bi

R,1, B
i
R,2, B

i
R,3) and(Bi

S,1, B
i
S,2, B

i
S,3), respectively.

LetBR,BS be the set of all 3-tuple bins in datasetsR andS, and let|B| denote number of datapoints
in 3-tuple binB, normalized by total number of data points. Then, the 3-way marginal metric reports
the`1-norm of the bin-wise difference ofBR andBS as follows:
∑

B1∈BR

∑

B2∈BS

I{B1∈BS}I{B2=B1}

∣
∣|B1|−|B2|

∣
∣+

∑

B1∈BR

(1−I{B1∈BS})|B1|+
∑

B2∈BS

(1−I{B2∈BR})|B2|.

Both aforementioned metrics involve two steps. First, a projection (or a selection of features) of data
is specified, and second some statistical distance or visualization of synthetic and real data in the
projected space is computed. Dimension-wise probability for binary data corresponds to projecting
data into each single dimension, and visualize synthetic and real distributions in projected space
by histograms (for binary data, histogram can be specified by one single number, i.e. probability of
feature being 1). 3-way marginal first selects a three-dimensional space specified by three features as
a space to project data to, discretize the synthetic and real distributions on that space, then compute
a total variation distance between discretized distributions. Our proposed metric generalizes both
steps of designing the metric as follow(s).

Generalization of Data Projection:One can generalize selection of3 features (3-way marginal) to
anyk features (k-way marginal). However, one can also selectk principle componentsinstead ofk
features. We distinguish this ask-way featuremarginal (projection onto a space spanned by feature
dimensions) andk-wayPCAmarginal (projection onto a space spanned by principle components of
original datasets). Intuitively,k-way PCA marginal best compress information of real data in small
k-dimension space, and hence is a better candidate for comparing projected distributions.

Generalization of Distributional Distance:Total variation distance can be misleading as it does not
encode any information on distance of support of two distributions. In general, one can define any
metric of choice (optionally with discretization) on two projected distributions, such as Wasserstein
distance which also depends on distance of supports of two distributions.

Finally, we defineDistributional Distancemetric without any data projection. Computing statistical
score on full-dimensional and big data is likely computationally hard. However, we can subsam-
ple uniformly at random points from two distributions to compute the score more efficiently, then
average this distance over many iterations.

Unsupervised evaluation metric, qualitative. As mentioned earlier, dimension-wise probability
is a specific application of comparing histogram under binary data. One can hence plot histogram of
each feature (1-way feature marginal) for inspection. In practice, histogram visualization is particu-
larly helpful when a feature is strongly skewed, sparse (majority is zero), and/or hard to be predicted
well by predictive models. An example of this is when predictive models do not have meaningful
predictive accuracy on certain features of ADULT dataset, making prediction-based metric inap-
propriate, but an inspection of histograms of those features on synthetic and real data indicate that
synthetic data replicates those features well.

In addition,2-way PCA marginal is a visual representation of data that explains as much variance as
possible in a plane, a good trade-off between ease of visualization and information on two datasets.
As mentioned earlier, a distributional distance of choice can be defined on two distributions on these
two spaces to get a quantitative metric.
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