Under review as a conference paper at IR0

DIFFERENTIALLY PRIVATE MIXED-TYPE DATA
GENERATION FOR UNSUPERVISEDL EARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we introduce the DP-auto-GAN framework for synthetic data gener-
ation, which combines the low dimensional representation of autoencoders with
the flexibility of GANs. This framework can be used to take in raw sensitive
data, and privately train a model for generating synthetic data that should sat-
isfy the same statistical properties as the original data. This learned model can
be used to generate arbitrary amounts of publicly available synthetic data, which
can then be freely shared due to the post-processing guarantees of differential pri-
vacy. Our framework is applicable to unlabletxed-type datathat may include
binary, categorical, and real-valued data. We implement this framework on both
unlabeled binary data (MIMIC-III) and unlabeled mixed-type data (ADULT). We
also introduce new metrics for evaluating the quality of synthetic mixed-type data,
particularly in unsupervised settings.

1 INTRODUCTION

As data storage and analysis are becoming more cost effective, and data become more complex and
unstructured, there is a growing need for sharing large datasets for research and learning purposes,
This is in stark contrast to the previous statistical model where a data curator would answer single
gueries on their dataset. Sharing datasets allow analysts the freedom to perform their analysis in-
house with their own devices and toolkits, without having to pre-specify the analyses they wish to
perform. Often, datasets are proprietary or sensitive, and cannot be shared directly. This motivates
the need fosynthetic data generatiomwhere a new dataset is created that shares the same statistical
properties as the original data. These data may not be of a single type: all binary, all categorial,
or all real-valued; instead they may berixed-typescontaining data of multiple types in a single
dataset. Finally, these data may be unlabeled, requiring techniquessigpervised learningvhich

is typically a more challenging task than supervised learning on labeled data.

However, privacy challenges naturally arise when sharing highly sensitive datasets about individuals.
Ad hoc anonymization techniques have repeatedly led to severe privacy violations when sharing
“anonymized” datasets. Notable examples include the Netflix Challédamyanan & Shmafikiv

2008, the AOL Search LogsHarbaro & Zelley 2006, and Massachusetts State Health deriart,

?010). Even deep learning model have been shown to memoize sensitive personal information such
as Social Security Numbers during trainifigaflini et al, 20T9).

Differential privacy Dwork et al, 2006 (formally defined in SectioB) has become the de facto gold
standard of privacy in the computer science literature. Informally, it bounds the amount the extent
to which an algorithm can depend on a single datapoint in its training set. This guarantee ensures
that any differentially privately learned models do not overfit to individuals in the database, and
therefore cannot reveal sensitive information about individuals. It is an information theoretic notion,
that does not rely on any assumptions of an adversary’s computational power or auxiliary knowledge.
It has also been shown empirically that training machine learning models with differential privacy
protects against membership inference and model inversion attanksi¢yn & Falfings P0T8
Carlinief al, P0TY. Differentially private algorithms have been deployed at large scale in practice
by organizations such as Apple, Google, Microsoft, Uber, and the U.S. Census Bureau.

Much of the prior work on differentially private synthetic data generation has been either theoretical
algorithms for highly structured classes of querigkit et al, 2008 Hardi & Rothhium 2010 or
based on deep generative models such as Generative Adversarial Models (GANs) or autoencoders.
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These architectures have been primarily designed for either all-binary or all-real-valued datasets,
and have focused on tlseipervisedetting, where datapoints are labelled.

In this work we introduce th®P-auto-GAN frameworkwhich combines the low dimensional rep-
resentation of autoencoders with the flexibility of GANs. This framework can be used to take in
raw sensitive data, and privately train a model for generating synthetic data that should satisfy the
same statistical properties as the original data. This learned model can be used to generate ar-
bitrary amounts of publicly available synthetic data, which can then be freely shared due to the
post-processing guarantees of differential privacy. We implement this framework on both unlabeled
binary data (for comparison with previous work) and unlabeled mixed-type data. We also introduce
new metrics for evaluating the quality of synthetic mixed-type data, particularly in unsupervised
settings.

1.1 OUR CONTRIBUTIONS

In this work, we provide three main contributions: a new algorithmic framework for privately gen-
erating synthetic data, new evaluation metrics for measuring the quality of synthetic data in unsu-
pervised settings, and empirical evaluations of our algorithmic framework using our new metrics, as
well as standard metrics.

Algorithmic Framework. We propose a hew data generation architecture which combines the ver-
satility of an autoencodekK{ngma & Welling, P0T3 with the recent success of GANs on complex
data. Our model extends previous autoencoder-based DP data genébagret al, 7018 Chen

ef-al, PZ0T8Y by removing an assumption that the distribution of the latent space ought to follows a
mixture of Gaussian distribution. Instead, we incorporate GANSs into the autoencoder framework so
that the generator must learn the true latent distribution against the discriminator. We describe the
composition analysis of differential privacy when the training consists of optimizing both autoen-
coders and GANs (with different noise parameters). Furthermore, in this analysis we halve the noise
injected into autoencoder from all existing works while provably maintaining the same mathematical
privacy guarantee.

Unsupervised-Learning Evaluation Metric of Synthetic Data.We define several new metrics that
evaluate the performance of synthetic data compared to the original data when the dataedef

type Previous metrics in the literature are applicable only to all-binary or all-real-valued datasets.
Our new metrics generalize the previously used mettig{ et al, P0T7, Xie et al, 2018 from all-

binary data to mixed-type by training various learning models to predict each feature from the rest
of the data in order to assess correlation between features. In additional, our metrics do not require a
particular feature to be specified as a label, and therefore do not assume a supervised-learning nature
of the data, as in much of the previous work dd@agernot et 3|2?0T7, 2018 Jordon et al.20T8.

Empirical Results. We empirically comepare the performance of our algorithmic framework on
medical datelohnson_et al(?0T# and ADULT dataDua"& Graff (2017 with previously used
metrics in literatureErigerio_ef al.(2?019; Xieef al. (2018, showing that our algorithms perform
better especially at practically meaningful values e 1. We evaluate our synthetic data on new
guantitiative and qualitiative matrics confirming that the performance of our algorithm remains high
even for small privacy budgets. The source code is open to public for future use of research.

1.2 RELATED WORK ON DIFFERENTIALLY PRIVATE DATA GENERATION

Early work on differentially private synthetic data generation was focused primarily on theoretical
algorithms for solving theuery release problemf privately and accurately answering a large class

of pre-specified queries on a given database. It was discovered that generating synthetic data on
which the queries could be evaluated allowed for better privacy composition than simply answering
all the queries directlyRium ef al, ?008 Hardf & Raothbium POT0) Hardi ef al, P0T2, Gahoardli

efal, 2014). Bayesian inference has also been used for differentially private data geneZatamy(

efal, 2017, Pingefal, 2017 by estimating the correlation between features. Sigendra & Mohan

(201 for a survey of techniques used in private synthetic data generation through 2016.

In 2016, Bbadiet al.(201H introduced a framework for training deep learning models with dif-
ferential privacy. Non-convex optimization, which is required when training deep models, can be
made differentially private by adding a Gaussian noise to a clipped (horm-bounded) gradient in each
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training stepBbadi efal.(2016 also introduced thmmoment accountamtrivacy analysis for private
stochastic gradient descent, which allowed for much tighter Gaussian-based privacy composition,
and allowed for significant improvements in accuracy over previously used composition techniques,
such as advanced compositibmork ef al.(2010). The moment account was later defined in terms

of Renyi Differential Privacy (RDPjMironay, 2017, which is a slight variant of differential pri-

vacy designed for easy composition, particularly for differentially private stochastic gradient descent
(DP-SGD). Much of the work that followed on private data generation used deep (neural-network-
based) generative models to generate synthetic data, and can be broadly categorized into two types:
autoencoder-based and GAN-based. Our algorithmic framework is the first to combine both DP
GANSs and autoencoders into one framework.

Differentially Private Autoencoder-Based Models.A variational autoencoder (VaEK{ngma &

Welling, 20173 is a generative model that compresses high-dimensional data to a smaller space called
latent spaceThe compression is commonly achieved through deep models and can be differentially
private trained (Chen et al.?0T8 Acs ef al, ?0TH. VaE makes the (often unrealistic) assumption
that thelatent distributionis GaussianAcs et al, (2018 uses Restricted Boltzmann machine (RBM)

to learn the latent Gaussian distribution, é&day et al. (2018 uses expectation maximization

to learn a Gaussian mixture. Our work extends this line of work by additionally incorporating the
generative model GANs which have also been shown to be successful in learning latent distributions.

Differentially Private GANs. GANs are a generative model proposedtyodfellow ef al (2014

that have been shown success in generating several different types oviafiiy 2016 Saito

etal, P01T, Salimans ef a| 2016 Jang et a| 2016 Kusner & Herfiindez-Lobatd?016 Wang et al,

?018. As with other deep models, GANs can be trained privately using the aforementioned private
stochastic gradient descent. Additional related work, including variants of the DP GAN framework,
optimization techniques to improve the performance of DP GANSs, and Batlenmarizing these
works can be found in Append®.

Differentially Private Generation of Mixed-Type Data. Next we describe the three most relevant
recent works on privately generating synthetic data of mixed tylieay et al. (2018 consider

the problem of generating mixed-type labeled data withossible labels. Their algorithm, DP-
SYN, partitions the dataset into sets based on the labels and trains a DP autoencoder on each
partition. Then a DP expectation maximization (DP-EM) algorithnPafk et al.(Z017) is used

to learn the distribution in the latent space of encoded data of the given label-class. The main
workhorse, DM-EM algorithm, is designed and analyzed for Gaussian mixture models and more
general factor analysis model€hen_et al (2018 works in the same setting, but replaces the DP
auto-encoder and DP-EM with a DP variational auto-encoders (DP-Vae). Their algorithm assumes
that the mapping from real data to the Gaussian distribution can be efficiently learned by the encoder.
Finally, Engerio_etal.(2019Y used a Wasserstein GAN (WGAN) to generate differentially private
mixed-type synthetic data. This type of GAN uses a Wasserstein-distance-based loss function in
training; see Appendid for more details. Their algorithmic framework privatized the WGAN
using DP-SGD, similar to the previous approaches for image data$etadg ef al.?018 Xie ef al,

?018. The methodology dErigerioefal (2019 for generating mixed-type synthetic data involved

two main ingredients: changing discrete (categorical) data to binary data using one-hot encoding,
and adding an output softmax layer to the WGAN generator for every discrete variable.

Our framework is distinct from these three approaches. We use a differentially private auto-encoder
which, unlike VaeChenef al.2018, does not require mapping data to a Gaussian distribution. This
allows us to reduce the dimension of the problem handled by the WGAN, hence escaping the issues
of high-dimensionality from the one-hot encodingrigeria et al.(2019. We also use DP-GAN,
replacing DP-EM irBbay efal.(2018), for learning distributions in the latent encoded space.

Evaluation Metrics for Synthetic Data. Various evaluation metrics have been considered in the
literature to quantify the quality of the synthetic data (8#ares(20T]) for a survey). The metrics

can be broadly categorized into two groupsipervisedandunsupervised Supervised evaluation
metrics are used when there are clear distinctions between features and labels of the dataset, e.g.,
for healthcare applications, a person’s disease status is a natural label. In these settings, a predictive
model is typically trained on the synthetic data, and its accuracy is measured with respect to the
real (test) dataset. Unsupervised evaluation metrics are used when no feature of the data can be
decisively termed as a label. Recently proposed metrics inalidension-wise probabilityor

binary data Choi et al, 2017, which compares the marginal distribution of real and synthetic data



Under review as a conference paper at IR0

on each individual feature, ardimension-wise predictiowhich measures how closely synthetic

data captures relationships between features in the real data. This metric was proposed for binary
data, and we extend it here to mixed-type data. ReceRNiigl (2019 used a 3-way marginal
evaluation metric which used three random features of the real and synthetic datasets to compute the
total variation distance as a statistical score. See Appdidox more details on both categories of
metrics, including Tabl& which summarizes the metrics’ applicability to various data types.

2 PRELIMINARIES ON DIFFERENTIAL PRIVACY

In the setting of differential privacyX is a dataset ofn individual’s sensitive information, and

two datasets are neighbors if one can be obtained from another by the addition or deletion of one
datapoint. Differential privacy requires that an algorithm produce similar outputs on neighboring
datasets, thus ensuring that the output does not overfit to its input dataset, and that the algorithm
learns from the population but not from the individuals.

Definition 1 (Differential privacy Dwork et al, P00§). For ¢,§ > 0, an algorithmM is (¢, d)-
differentially privateif for any pair of neighboring database$, X’ and any subsef C Rangé M),

PrM(X) € S] <e - PrIM(X’) € S]+ 4.

A smaller value ot implies stronger privacy guarantees (as the constraint above binds more tightly),
but usually corresponds with decreased accuracy, relative to non-private algorithms or the same
algorithm run with a larger value af Differential privacy is typically achieved by adding random
noise that scales with theensitivityof the computation being performed, which is the maximum
change in the output value that can be caused by changing a single entry. Differential privacy has
strongcomposition guaranteemeaning that the privacy parameters degrade gracefully as additional
algorithms are run on the same dataset. It also hass&processinguarantee, meaning that any
function of a differentially private output will maintain the same privacy guarantees.

2.1 DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT(DP-SGD)

The DP-SGD framework (given formally in AlgorithBhin AppendixD1) is generically applicable
for private non-convex optimization. In our proposed model, we use this framework to train the
autoencoder and GAN.

Training deep learning models reduces to minimizing some (empirical) loss funfti®ng) :=

L5 f(xi;0) on a dataseX = {z; € R"}!™,. Typically f is a nonconvex function, and a
common method to minimizg is by iteratively performing stochastic gradient descent (SGD). To
make SGD privateAbadief al. (Z0T16 proposed to is to first clip the gradient of each sample to
ensure bounded,-norm, and then add multivariate Gaussian noise to the gradient. The clipping
reduces the scale of noise that must be added to preserve differential privacy. The noisy-clipped-
gradient is then used in the update step instead of the true gradient. Further details of this procedure
are deferred to Append XL

A variant notion of differential privacy, known &enyi Differential Privacy (RDRMironow, 2017,
that is often used to analyze privacy for DP-SGD. A randomized mechakiss(«, €)-RDP if for
all neighboring database$, X’ that differ in at most one entry,

RDP(a) = Da(M(X)[IM(X) < e,

where D, (P||Q) := —L5logE,.x (ggig) is the Renyi divergencer Renyi entropyof order

« between two distribution® and Q). Renyi divergence is better tailored to tightly capture the
privacy loss from the Gaussian mechanism that is used in DG-SGD, and is a common analysis tool
for DP-SGD literature. To compute the fingl, ¢)-differential privacy parameters from iterative

runs of DP-SGD, one must first compute the subsampled Renyi Divergence, then compose privacy
under RDP, and then convert the RDP guarantee into DP. Further details of this process are given in
AppendixD2.
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3 ALGORITHMIC FRAMEWORK

The overview of our algorithmic framework DP-auto-GAN is shown in Fidiyrand the full details

are given in Algorithnil. The algorithm takes im raw data points, angre-processethese points

into m vectorszy, ..., x,,, € R™ to be read by DP-auto-GAN, where usuallys very large. For
example, categorical data may be pre-processed using one-hot encoding, or text may be converted
into numerical values. Similarly, the output of DP-auto-GAN carpbst-processetfom R™ back

to the data’s original form. We assume that this pre- and post-processing can done based on public
knowledge, such as possible categories for qualitative features and reasonable bounds on quantitative
features, and therefore does not require privacy.

Within the DP-auto-GAN, there are two main components: abtoencodermand the GAN. The
autoencoder serves to reduce the dimensionality of the data before it is fed into the GAN. The GAN
consists of @eneratorthat takes in noise sampled from distributio and produce€!,, (z) € R<,

and adiscriminator D, (-) : R — {0, 1}. Because of the autoencoder, the generator only needs to
synthesize data based on the latent distribuRdnwhich is a much easier task than synthesizing

in the original high-dimensional spad&®. Both components of our architecture, as well as our
algorithm’s overall privacy guarantee, are described in the remainder of this section.

Autoencoder Loss

’ Autoencoder De(En(xl)), s
Training De(En(x,,)) € R®
) X € R™

Encoder En(-) Decoder De(-)

Latent space R?
En(x;) € RY & 9
R4 & -
Gy(2) € >

Public
Postprocesi Synthetic
Generator Generator Data
Noise z ~ Z Gw() Training
De(Gy(2)) € R
Discriminator
Dy ()
Discriminator ¢l Discriminator

Training Training

Wasserstein Loss

Figure 1. The summary of our algorithmic framework of DP-auto-GAN. Pre- and post-processing
(in black) are assumed to be public knowledge. Encoder and generator (in green) are trained without
noise injection, whereas decoder and discriminator (in yellow) are trained with noise. The four red
arrows indicate how data are forwarded for each training: autoencoder training, generator training,
and discriminator training. After the training, generator and decoder (but not encoder) are released
to the public to generate synthetic data.

3.1 AUTOENCODERTRAINING

The autoencoder consists of the encofler;(-) : R® — R? and decodeDey(-) : R? — R"
parametrized by edge weights 6, respectively. The architecture of autoencoder assumes that
high-dimensional data; € R™ can be represented compactly in low-dimensional sfRiGealso

called latent space The encodetEn, is trained to find such low-dimensional representations.
We also need the decodeRey to map this pointEng(x;) in the latent space back tg,. A
measure of the information preserved in this process is the error between the decoder’s image
and the originalz;. Thus a good autoencoder should to minimize (gt (Eng(x;)),x;) for

each datapoint; and the appropriate distance function dist. We use binary cross entropy loss
dist(z,y) = — 377,y log(z () — 25— (1 — yy) log(1l — 2(;)) (wherez ;) is thejth coordi-

nate ofz).
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This also motivates the definition of a (true) loss functidn. z [dist(Deg(Eng(z;)), z;)] when
data are drawn independently from an underlying distribuigh The corresponding empirical
loss function when we have an access to sarfiplél” , is

Lauo(¢,0) := > i~ dist(Deg(Eng(x;)), z;). (1)

The task of finding good autoencoder can be done by optimiziagd6 to yield small empirical
loss as in equatiof.

We minimize equatioi privately using DP-SGD (described in Sectidd). Our approach differs

from previous work on private training of autoencoddeaén et al.?018 Acs et al, 2018 Bbay

etal, 2018 by not adding noise to the decoder during DP-SGD whereas previous work adds noise
to both the encoder and decoder. In this way we improve performance by reducing the noise injected
into the model by half, while maintaining the same privacy guarantee (see Prop&3itidne full
description of our autoencoder training is in Algoritlihin the appendix. In our DP-auto-GAN
framework, the autoencoder is trained first until completion, and is then fixed for the second phase
of training GAN.

3.2 GAN TRAINING

GAN consists of the generat6t,, and discriminatoD,, : R™ — {0, 1}, parameterized respectively
by edge weightss andy. The aim of generatof,, is to synthesize (fake) data similar to the real
dataset, while the aim of discriminator is to determine whether an inpigt from the generator’s
synthesized data (and assigning labglz;) = 0) or is real data (and assigning lati@) (z;) = 1.
The generator is seeded with a random noise term Z that contains no information about real
dataset, such as a multivariate Gaussian vector, and aims to generate a distéily(tiorihat is
hard for D, is distinguish. Hence, the generator wants to minimize the probability2hahakes
acorrectgues¥, . z[1 — D,(G,(z))]. Atthe same time, the discriminator wants to maximize its
probability of correct guess when the data is féke. z[1 — D, (G, (z))] and when the data is real
Eonzx [Dy(z)].

We generalize the output @¥, to a continuous range, 1], with the value indicating the confidence

that a sample is real. We use the zero-sum objecdiyg w) for the discriminator and generator
proposed byArjovsky et al. (2017 and motivated by the Wasserstein distance of two distributions.
Although their proposed Wasserstein objective cannot be computed exactly, it can be approximated
by optimizing the objective

min, max,, O(y, w) := Epozy [Dy(x)] — Eonz[Dy(Gyw(2))]. (2)

We optimize equatioB privately using the DP-SGD framework described in SedAdn We differ
from prior work on DP GANSs in that our generat6t,,(-) outputs data?,,(z) in latent spacéR?
which needs to be encoded fon(G.,(z)) before being fed into the discriminatdy,(z). The
gradientV,,G,, is obtained by backpropagation through one more compoReift). Hence, the
training of generator remains totally private because the additional comph&nt is fixed and
never accesses the private data. The full description of our GAN training is given in Alg@iithm
the appendix.

At the end of the two-phase training (including autoencoder and GAN), the noise distritijtion
trained generataf., (), and trained encoddtn(-) are released to the public. The public can then
generate synthetic data by sampling- Z to obtain a synthesized datapoiit (G, (z)) repeatedly

to obtain synthetic dataset of any desired size.

3.3 PRIVACY ACCOUNTING

Our autoencoder and GAN are trained privately by adding noise to the decoder and discrimina-
tor. Since the generator only accesses data through the discriminator’s (privatized) output, then the
trained parameters of generator are also private by post-processing guarantees of differential privacy.
Finally, we release privatized decoder and generator, together with generator’s noise distébution
and post-processing procedure, both of which are assumed to be public knowledge.

The privacy accounting is therefore required for the two parts that access redl datining the
autoencoder and the discriminator. In each of the training, we apply the RDP accountant (described



Under review as a conference paper at IR0

in SectionZZ1 and AppendiXD2) to analyze privacy of the DP-SGD training algorithm, to compute
final (e, 9)-DP bound. Our application of the RDP accountant diverges from the previous literature
in two main ways.

First, we do not add noise to decoder during the autoencoder training, which is contrary to prior work
that adds noise to both the encoder and decoder. Our approach of not adding noise to decoder does
not affect the algorithms’ overall privacy guarantees. The following corollary states this formally,
and follows immediately from Propositiofisandd

Corollary 2. Suppose autoencoder in DP-auto-GAN is trained with RDP privRByP,,(-) and
the discriminator in DP-auto-GAN is trained with RDP privaBDPy(-), then DP-auto-GAN is
RDP with valuefRDPayo(-)+RDPp ().

Second, the privacy analysis must account for two phases of training, usually with different privacy
parameters (such as different batch sampling rate, noise, and number of iterations). One obvious
solution is to calculate the desired §)-DP parameter obtained from each phase and compose them
to obtain(e; + e2,01 + d2)-DP. However, we can obtain a tighter privacy bound by composing
the privacy at the Renyi Divergence level before translating Renyi DivergencéenipDP. In

other words, we first apply Propositi@to compute RDP) of two-phase training before applying
PropositionB to translate RDP into DP. This is the approach used in CoroHary practice, this
reduces the privacy parameteny about 30%.

4 EVALUATION METRICS

In this section, we discuss the evaluation metrics that we use in the experiments (&gdtion
empirically measure the quality of the synthetic data. Some of these metrics have been used in the
literature, while many are novel contributions in this work. The evaluation metrics are summarized
in Table(; our contributions are in bold.

For the first two metrics described below, the dataset should be partitioned into a trainfgeset
R™1*" and testing sel’ € R™2*" wherem = my + ms is the total number of samples the real
data, andh is the number of features in the data. After training the DP-auto-GAN, we also create a
synthetic datasef € R™3*", for sufficiently largems.

Dimension-wise probability. This metric is used when the entire dataset is binary and serves as
a basic sanity check to verify whether DP-auto-GAN has learned marginal distributions in each
feature. In particular, we compare the proportionl sf(which can be thought of as estimators of
Bernoulli success probability) in each feature of trainingBeind synthetic datasét

Dimension-wise prediction. This metric evaluates whether DP-auto-GAN has correctly learned
the relationshippetweerfeatures. For thé-th feature of training seR and synthetic datase,

we chooseyr, € R™ andyg, € R™3 as labels of a classification or regression task based on the
type of that feature. Remaining featurBs; andS_, are used for prediction. We train either a
classification or regression model and measure their goodness of fit based on the model’'s accuracy
using AUROC,F; or R? scores whose definitions can be found in Apperidix

We propose following novel evaluation metrics. The details of existing metrics can be found in
Appendix.

1-way feature marginal. This metric works as a sanity check for real features. We compute his-
tograms for the feature interest of both real and synthetic data.

2-way PCA marginal. This metric generalizes the 3-way marginal score usédi (Z?0T9. In
particular, we compute a principle components of the original data and evaluate a projection operator
for first two principle components. Let us dendtec R"*? as the projection matrix sudhat

R = RP is the projection on first two principle componentsfof Then we evaluate projection of
syntheticdataS = S P and scatterplot 2-D poinia & andS for visual evaluation. For quantitative
evaluation, we also compute Wasserstein distéreteeenr andS. We used Wasserstein distance
since we optimize for WGAN objective, however, any distributional divergence metric can be used.
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Table 1: Summary of evaluation metrics in DP synthetic data generation. We list applicability of
each metric to each of the data type. Partsaoid areour new contributions. Evaluation methods

with asterisk * are predictive-model-specific, and their applicability therefore depends on types of
data that the chosen predictive model is appropriate for. Methods with asterisks ** are equipped
with any any distributional distance of choice such as Wasserstein distance.

TYPES EVALUATION METHODS DATA TYPES
Binary Categorical Regression
. Label prediction* Chenetal.?018 Yes Yes Yes
Supervised Bbay 2t al, 2013\ Frigeriolet a?
ZIONKY)
Predictive model ranking* Dordon Yes Yes s
etal, 2018
Unsupervised,  Dimension-wise prediction plot* Ye&hoiretal Yes Yes
prediction-based (20179, ours)
Unsupervised, = Dimension-wise probability plot Yes No No
distributional- (Choietal, P0T7)
distance-based 3-way feature marginal, total varia- Yes Yes Yes
tion distance IS, POTY
k-way feature marginal** Yes Yes Yes
k-way PCA marginal** Yes Yes Yes
Distributional distance** Yes Yes Yes
Unsupervised,  1-way feature marginal (histogram) Yes Yes Yes
qualitative 2-way PCA marginal (data visual- Yes Yes Yes
ization)

Distributional distance. In this metric, we compute Wasserstein distaf¢g R, S) between entire
real and synthetic datase®s.S. Wasserstein score is then defined as
Wacod B, ) 1= 1 = o P2EE) s 3

maxy yex [[2—yl[3

by normalizing the distance by the maximum distance possible of two datapoints in data universe
X. To compute Wasserstein score bmwvay marginal PCA projectio®, we normalize the score
with additional term,/v, whereu is the explained variance &t:

Wecord R, 5, P) := 1 — Wy (R.5) @)

ﬁmaxr,ygx Hi—yHi

For more details about implementation of these new evaluation metrics, their generalizations and
relationships among them, we refer the reader to Appelidix

5 EXPERIMENTS

In this section we present details of our datasets and show empirical results of our experiments.
Throughout our experiments, we fix = 10~5 for training DP-auto-GAN and show results for
different values of includinge = oo, i.e., non-private GAN, which serves as a benchmark. We
also compare our results with the existing works in the literature where relevant. Details of hyper-
parameters and architecture can be found in the appendix. The code of our implementation is avail-
able athttps://github_com/DPautoGAN/DPautoGAN

5.1 BINARY DATA

First, we consider the MIMIC-IIl datas@bhnson et a(?0T# which is a publicly available dataset
consisting of medical records of 46K intensive care unit (ICU) patients over 11 years old. Thisis a
binary dataset with 1071 features.
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Even though our DP-auto-GAN framework can handle mixed-type data, we first evaluate it on the
MIMIC-III dataset, which is all binary. We do this since our framework matches Whii_et-al.

(2017 and this dataset is used in their paper as well as other works such as DRX(&AN al.

(2018. We also use the evaluation metrics used in these papers. First we plot dimension-wise
probability for this dataset.

(@)e= o0 (b) e = 3.11865 (c) e = 1.27655 (d) e = 0.94145

Figure 2: Dimension-wise probability scatterplots for different values &br each point in the plot
represents one of 1071 features in MIMIC-IIl datagseandy coordinates of a point are proportion
of 1 in real and synthetic datasets of a feature, respectively.

As one can see in FiguB proportion of 1 in the marginal distribution for real and synthetic dataset

is close to the lingy = = for e = co ande = 3.11865. The performance of DP-GAN is affected
marginally fore = 1.27655 which can be noticed by increased variance of points alongjliaer.
However, fore = 0.94145, DP-GAN is unable to capture marginal distribution as most of the
features in synthetic dataset have much higher proportion of 0’'s. This trend in the performance is
expected for smaller values ef However, we would like to mention that our results are much
stronger than the ones obtainedXme _ef al. (Z018 in the sense that we can show good results for
much smaller values af See more details on MIMIC dataset and explanation of dimension-wise
prediction in the appendix.

(@)e = oo (b) e = 3.11865 (c) e = 1.27655 (d) e = 0.94145

Figure 3: Dimension-wise prediction scatterplot for different values &ach point represents one
of 1071 features in MIMIC-11l dataset. For each pointandy coordinate represents AUROC score
of logistic regression classifier trained on real and synthetic datasets, respectively.

5.2 MIXED DATA

Second, we consider ADULT datadenia & Graff (2017 which is an extract of the US census and
contains information about working adults. This dataset has 14 features out of which 10 features are
categorical and rest are real-valued. Figdirshows the dimension-wise prediction plot. Here, for
blue points and single green point (i.e., categorical features) we use random forest classifier in order
to compare our result witkrigerio et al.(2019. For red points (i.e., real-valued feature), we used
lasso regression model. Green point represent the salary feature which is used asHabefiin

efal. (2019. Similar to mimic dataset, we see that for large values pbints are scattered close

toy = z line and as gets smaller, points gradually shift downward implying tiatscore for
synthetic data deceases. We choose to evaltigteore instead of AUROC score for this dataset
since many features are non-binary in nature for which AUROC score is not used.

Green points in Figur@ show theF; score of real and synthetic dataset while treating the salary
columns as binary label (based on conditisr50k). For this specific feature, we also compute
accuracy scores for comparison wkhnigerio_ef al.(Z019. In Tablel, we report the accuracy of
each synthetic dataset as well as benchmark accuracy.
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(@)e = oo (b)e=1.5 (©e=1 (d)e=0.8

Figure 4: Dimension-wise prediction scatterplot for different values. oEach point represents

one of 10 categorical features in ADULT dataset. Blue points and single green point are plotted
according toF; score and for red points, we pldt? score. For each point; andy coordinate
represents relevant score evaluated on real and synthetic datasets, respectively.

Table 2: Accuracy scores of prediction on salary feature evaluated on difterahtes.

e value Reabataset 0o 1.5 1 0.8
Accurag 86.63% 79.18% | 77.86%| 76.92% | 77.7%

Note that in ADULT dataset, we have four real-valued features but we plot fewer red pointin Figure
B. Infact, we plot the red point related to the age feature consistently across vadumg afe mostly

neglect other features. The reasoning behind is that we can not get good fit (veriftidc/alue) for

these features in terms of the rest of the features for even the real dataset. We verified this starting
with simple regression models such as lasso to as complex as neural networks. To check whether
we learn the distribution correctly for these features, we plot 1-way feature marginal histogram on
each of them. Please look into Figuéén Appendix@. It can be seen that DP-auto-GAN identifies

the distribution in those features.

In order to understand combined performance of all features, we use two metrics. First, we show
the qualitative results from 2-way PCA marginal score in Fidlie close qualitative inspection

e ’?ﬁ‘. T i
(a) Real data (0)e = o (©e=15 (de=1 (e)e : 0.8

Figure 5: Scatterplot of projection of given dataset on first two principle component of the real
dataset

of plots clearly shows the similarities of trends between the plots for real dataset and for different
values ofe, as low ax = 1. Finally we also evaluate Wasserstein distributional distance between
synthetic and real data, shown in TaBle
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A ALGORITHM DESCRIPTION ANDPSEUDOCODE OFDP-AUTO-GAN

We provided the pseudocode of our proposed DP-auto-GAN in Algoilthfie Algorithm is spec-

ified by the architecture and training parameters of encoder, decoder, generator, and discriminator.
After pre-processing, DPRAIN 410 trains autoencoder fully specified in AlgorithBa As noted

earlier, the decoder is trained privately by clipping gradient norm and injecting Gaussian noise in
order to obtain the gradient of decodgt while the gradient of encodgg, can be used directly as
encoder can be trained non-privately.

The second phase is to train GAN. As suggestethbpdiellow et al (?014), discriminator trained

for several iterations per one iteration of generator training. When discriminator is trained, generator
is fixed, and vice-versa. Discriminator and generator training is described in Algoitard@. As

the discriminator receives real data sample in their training, the training is made private by clipping
the norm and adding Gaussian noise to the gradiefithe training of generator does not use any
private dataX and hence can be train without any need to clip gradient norm or to inject noise to
the gradient.

Finally, the privacy analysis is via RDP accountant for each training, and composing at the RDP
level (as a function of) as described in Corollafy. After the sum of RDP (as a function af is
obtained, for any given fixed, we optimizea to get the best by PropositiorB. Because the value

of ¢(«) obtained from PropositioB as a function ok is convex oveln (Van_Ernven & Harremos
(2014 and noted byWang et al (?019), we implement ternary search to efficiently optimize dor

Proposition 3. DP-auto-GAN trained with differentially private algorithmgl; on the decoder and
M on the discriminator (and possibly a non-private algorithm on the encoder) achieves differential
privacy guarantee equivalent to that of the compositionof, M.

Proof. DP-auto-GAN needs to release only generator and decoder as an output. Releasing the de-
coder incurs cost of privacy equal to that.bf;. The generator accesses the data only through a
discriminator, which is differentially private by mechanisi,, so releasing the generator has the
same privacy loss as1, from post-processing. Therefore, releasing both decoder and generator
incurs privacy loss of composition ¢¢1; and M. O

Propositior3 is stated more formally using the RDP notion of privacy (where the privacy parameters
are a function ofo) in Corollary2 in the main body. That corollary follows immediately from
Propositiond andd.

B MOREDETAILS ON METRIC EVALUATION

We recall the notations from the main body. We explain the scoring used more specifically.

Dimension-wise prediction. We describe the model’s accuracy using the following well known
metrics:
1. Area under the ROC curve (AUROC) score andscore for classification: Thé; score of a

ifier i 1 .__ 2xprecisionxrecall . . . .
classifier is defined aB) := “ EESEEEIE, where precision is ratio of true positives to true and

false positives, and recall is ratio of true positives to total positives. AUROC score is graphical
measure capturing area under ROC (receiver operating characteristic) curve. Both metrics take
values in interva[0, 1] with larger values implying good fit.
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Algorithm 1 DPAuTOGAN (full procedure)

1: architecture input: Private dataseD € X whereX is the set of (raw) data universe, pre-
processed data dimensianlatent space dimensiaf) preprocessing functioRre : X — R™,
post-processing functioRost : R™ — X, encoder architectuBn,; : R* — R? parameterized
by ¢, decoder architecturBe, : R — R™ parameterized by, generator’s noise distribution
Z on sample spac@(Z), generator architectur@,, : Q(Z) — R? parameterized by, dis-
criminator architectur®,, : R" — {0,1}.

2: autoencoder training parameters Learning rate;;, number of iteration rounds (or optimiza-
tion steps)iy, loss functionl o, Optimization method optigy,, batch sampling rate, (for the
batch expectation siZzg = ¢;m), clipping normC1, noise multipliery);, microbatch size;

3: generator training parameters. Learning rate),, batch sizéb,, loss functionl, optimization
method opting;, number of generator iteration rounds (or optimization sté&ps)

4: discriminator training parameters: Learning rateyjs, number of discriminator iterations per
generator stepp, loss function p, optimization method optim, batch sampling rates (for
the batch expectation sizg = g3m), clipping normC's, noise multiplier:s, microbatch size
T3

. privacy parameter § > 0

: procedure DPAUTOGAN

X « Pre(D)

Initialize ¢, 0, w, y for Eng, Deg, G, D,

> Phase 1: autoencoder training

fort=1...7Tydo

10: DPTRAINauto(X, En, De, autoencoder training parameters)

> Phase 2: GAN training
11: fort=1...Tydo

©

12: forj=1...tpdo > (privately) train D, for ¢ iterations
13: DPTRAINpscriminator(X s Z, G, De, D, discriminator training parameters)
14: TRAINGgenerator(Z, G, De, D, generator training parameters)

> Privacy accounting
15:  RDPyy-) <« RDP-ACCOUNT(TY, q1, %1, 71)
16: RDPD() — RDP-ACCOUNT(TQ -tD,q;;,’lb&Tg)
17: € «—GET-EPYRDPyyo(-) + RDPp(+))
18: return model(G.,, Dey), privacy (e, )

Algorithm 2 DPTRAINau1o(X, Eng, Dey, training parameters)

1: training parameter input : Learning rate);, number of iteration rounds (or optimization steps)
T, loss functionLgy, Optimization method optigy, batch sampling rate; (for the batch
expectation sizé; = g;m), clipping normC1, noise multiplier;, microbatch size

: goal train one step of autoencod@n, Dey)

: procedure DPTRAIN syt

B« SAMPLEBATCH(X, ¢1)

Partition3 into By, ..., B, each of size (ignoring the dividend)

fo e nm > an estimate of

forj=1...kdo

> Bothgfb, g, can be computed in one backpropagation

9l 9y < Vo (Lauwo(Dea(Eng(By)), B;)), Vo (Lauo Dea(Eng(By)), Bj)

10: go— (o cup(el, 1)) + N(0, C2u2D))
11: (¢7 9) — Optimauto(¢7979¢,90a771)

N aRwd
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Algorithm 3 DPTRAINpscriminator(X, Z, G, Deg, Dy, training parameters)

1: training parameter input : Learning ratejs, number of discriminator iterations per generator
steptp, loss functionL p, optimization method optim, batch sampling rate; (for the batch
expectation sizés = gzm), clipping normCs, noise multiplier)s, microbatch sizes

2: goal: train one step of discriminatdp,,
3: procedure DPTRAINpscriminaTOR
4: B« SAMPLEBATCH(X, ¢3)
5: Partition5 into By, . . ., By, each of size- (ignoring the dividend)
6: ke % > an estimate of:
7: forj=1...kdo
8: {zi}i_, ~ 2"
0 B De(G ()Y,
10: ¢ — V(L (BBD))

> In the case of WGAN,

Lp(B;,B',D ZD —% > Dy(b)

bGB b'eB’

11: g2 ((E?Zl CLIP(gj,Cg)) +N(0,C§¢§I))
12:  y« optimy(y,g,73)

Algorithm 4 TRAINgenerator(Z, G, Deg, Dy, g€Nerator training parameters)

1: training parameter input: Learning raten,, batch sizeb,, loss functionLs, optimization
method opting;, number of generator iteration rounds (or optimization sté&ps)
2: goal train one step of generatc6f,,
3: procedure TRAIN generaTOR
40 Az, ~ 2t
5 B {De(Gu(z)}2,
6: g+ Vy(La(B, Dy))
> In the case of WGAN,

La(B',D,) = —— Z D, (V)
b’eB’

7. w « optimg(w, g,72)
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L T)\2
2. R? score for regressionk? score is defined ak — Z(yliyj)% wherey; is the true labely;

Yi —
is the predicted labedndy is the mean of the true labels. This is a popular metric used to measure
goodness of fit as well as future prediction accuracy for regression.

C EXPERIMENTAL DETAILS

FigureB shows dimension-wise prediction plot for different values.os one can see, far= oo,

many points are concentrated along the lower side ofjire x which is the ideal performance.

This shows that AUROC score of the real dataset is marginally higher than that of synthetic dataset.
Fore = 3.11865 ande = 1.27655, there is a gradual shift downwards compared to fjne =

with larger variance in the plotted points. This means that AUROC scores of real and synthetic
data shows more difference for smaller values.dfore = 0.94145, which shows the same trend,

one can also see that number of datapoints plotted have reduced significantly. This is since many
features in synthetic data have very high proportior),060 logistic regression classifier trained

on these features uniformly outpuion the hold-out test datasét In such cases, AUROC score
outputsl /2 by default and as such, does not have any meaning. Hence we drop those features from
the plot.

Below we show the full plots of dimension-wise prediction for MIMIC-III dataset.

(@)e= o0 (b) e = 3.11865 (c) € = 1.27655 (d) e = 0.94145

Figure 6: Full plots of dimension-wise prediction for mimic dataset

Below we provide 1-way histogram for ADULT dataset. As one can see, DP-auto-GAN identifies
the marginal distribution of capital gain and capital loss quite well and it does reasonably well on
hours-per-week feature.

Below we provide comprehensive details of our experiments for ADULT dataset:

The autoencoder was trained via Adam with Beta 1 = 0.9, Beta 2 = 0.999, and a learning rate of
0.005 for 20,000 minibatches of size 64 and a microbatch size of 1. The L2 clipping norm was
selected to be the median L2 norm observed in a non-private training loop, equal to 0.012. The
noise multiplier was then calibrated to achieve the desired privacy guarantee.

The GAN was composed of two neural networks, the generator and the discriminator. The generator
used a ResNet architecture, adding the output of each block to the output of the following block. It
was trained via RMSProp with alpha = 0.99 with a learning rate of 0.005. The discriminator was a
simple feed-forward neural network with LeakyRelLU hidden activation functions, also trained via
RMSProp with alpha = 0.99. The L2 clipping norm of the discriminator was set to 0.022. The
pair was trained on 15,000 minibatches of size 128 and a microbatch size of 1, with 15 updates to
the discriminator per 1 update to the generator. Again, the noise multiplier was then calibrated to
achieve the desired privacy guarantee.

A serialization of the model architectures used in the experiment can be found below.

Autoencoder(

(encoder): Sequential(

0: Linear(in-features=106, out-feature=60, bias=True)
(1): LeakyReLU(negative-slope=0.2)

(2): Linear(in-feature=60, out-feature=15, bias=True)
(3): LeakyReLU(negative-slope=0.2)

)
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Figure 7: 1-way histogram for different valuesefThree rows correspond to capital gain, capital
loss and weekly work-hours

(decoder): Sequential(

(0): Linear(in-feature=15, out-feature=60, bias=True)
(1): LeakyReLU(negative-slope=0.2)

(2): Linear(in-feature=60, out-feature=106, bias=True)
(3): Sigmoid()

)

)

Generator(

(block-0): Sequential(

(0): Linear(in-feature=64, out-feature=64, bias=False)
(2): BatchNorm1d()

(2): LeakyReLU(negative-slope=0.2)

)

(block-1): Sequential(

(0): Linear(in-feature=64, out-feature=64, bias=False)
(1): BatchNorm1d()

(2): LeakyReLU(negative-slope=0.2)

)

(block-2): Sequential(

(0): Linear(in-feature=64, out-feature=15, bias=False)
(2): BatchNorm1d()

(2): LeakyReLU(negative-slope=0.2)

)

)

Discriminator(

(model): Sequential(

(0): Linear(in-feature=106, out-feature=70, bias=True)
(1): LeakyReLU(negative-slope=0.2)

(2): Linear(in-feature=70, out-feature=35, bias=True)
(3): LeakyReLU(negative-slope=0.2)

(4): Linear(in-feature=35, out-feature=1, bias=True) )
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D ADDITIONAL BACKGROUND AND RELATED WORK

D.1 DEeTAILS OFDP-SGD

The DP-SGD framework (given formally in Algorith&) is generically applicable to private non-
convex optimization.

Algorithm 5 DP-SGD (one iteration step)

1: parameter input: DataX = {z;}!",, deep learning model parametgrlearning rate;, loss
function f, optimization method ®T1im, batch sampling rate (for the batch expectation size
b = gm), clipping normC, noise multiplier, microbatch size

2: goal differentially privately train one step of the model parametrized laith optim

3: procedure DP-SGD

4: procedure SAMPLEBATCH(X, q)

5: B —{}
6: fori=1...ndo
7: Add z; to B with probability ¢
return B
8: Partition3 into By, ..., B, each of size (ignoring the dividend)
9: ko 2 > an estimate ok

100 g1 (zf:l CLIP(Vyf(X5,,0),C) +N(o,02¢2f))
11: 6 — OPTIM(6,g,7)

Performance improvements.In general, the descent step can be performed using other optimiza-
tion methods—such as Adam or RMSProp—in a private manner, by replacing the gradient value
with ¢ in each step. Also, one does not need to clip the individual gradients, but can instead clip
the gradient of a group of datapoints, callethizrobatch(McMahan & Andrew P0T8. Mathe-
matically, the batcltB is partitioned into microbatcheB,, ..., By each of size:, and the gradient
clipping is performed on the average of each microbatch:

g % (Zle CLIP(Vyf(XB,,0),0) +N(0702w2.’))

Standard DP-SGD corresponds to setting 1, but setting higher values of (while holding|B|

fixed) significantly decreases the runtime and reduces the accuracy, and does not impact privacy
significantly for large dataset. Other clipping strategies have also been suggested. We refer readers
to McMahan & Andrew(?018 for more details of clipping and other optimization strategies.

The improved privacy analysis badi_ef-al. (20T (which has been implemented (Booglée

(2018 and is widely used in practice) obtains a tighter privacy bound when data are subsampled, as
in SGD. This analysis requires independently sampling each datapoint with a fixed prolgibility
each step.

D.2 CONVERTING RENYI DPTODP

To compute the fingle, ¢)-differential privacy parameters from iterative runs of DP-SGD, there are
three key steps.

Step 1. Subsampled Renyi DivergenceGiven sampling rate and noise multipliery, one can
obtain RDR-) values as a function af > 1 for one run of DP-SGDNIironov, ?0T7). We denote
this function by RDR—; (+), which will depend ory andz).

Step 2: Composition of RDPWhen DP-SGD is run iteratively, we can compose the Renyi privacy
parameter across all runs using the following proposition.

Proposition 4 ((Mironov, 2017). If My, M, respectively satisfyo, ¢1), (o, €2)-RDP fora > 1,
then the composition of two mechanisivis (M (X)) satisfiea, €; + €2)-RDP.

Hence, we can compute RDIPvalues forT" iterations of DP-SGD as RDP-@COUNT(T, ¢ ¢) :=
T - RDPp—,(-).
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Step 3: Conversion to(e, §)-DP. After obtaining the final RDR) function, any(«, ¢)-RDP guar-
antee can be converted inta §)-DP.

Proposition 5 ((Mironav, 20179). If M satisfies(a, €)-RDP fora > 1, then for allo > 0, M
satisfies(e + 221/ 5)-DP.

a—1 7

Since thee privacy parameter of RDP is also a functionagfthis last step involves optimizing for
the«a that achieves smallest privacy parameter in Propodiion

D.3 DIFFERENTIALLY PRIVATE GAN ARCHITECTURES

Training deep learning models reduces to minimizing some (empirical) loss funfti®ngd) :=
L5 f(xi;0) on a dataseX = {z; € R"}!™,. Typically f is a nonconvex function, and a
common method to minimiz¢ is by iteratively performing stochastic gradient descent (SGD):

B «+ BATCHSAMPLE(X) 5)
0 —60—n- 1 Yiep Vof(2:,0) (6)

The size ofB is typically fixed as a moderate number to ensure quick computation of gradient, while
maintaining thats; 3=, 5 V f (24, 0) is a good estimate of true gradieWiy f (X 0).

In the setting of differential privacyX is a dataset ofn individual’s sensitive information, and

two datasets are neighbors if one can be obtained from another by the addition or deletion of one
datapoint. To make SGD private, a standard method propos@dhagi et al.(Z0TH is to first clip

the gradient of each sample to ensuredh@orm is at most:

CLiP(z,C) == -min(1,C/||z||2) .

Then a multivariate Gaussian noise parametrized by noise multiplisradded before taking an
average across the batch, leading to noisy-clipped-averaged gradient egtimate

9 — B (Ziep CLIP(Vo f(2:,6),C) + N(0,C2¢1))

The quantityy is now private and can be used for the descenttepd —n- g in place of equatiof.

Variants of DP GANs have been used for synthetic data generation, including the Wasserstein GAN
(WGAN) (Arjovsky ef al, 2017, Gulrajani et al, 2017 and DP-WGAN Bizanfof & Srivastava

?019 [Mrastcyn & Falfings 2018 that use a Wasserstein-distance-based loss function in training
(Arjovsky et al, POTT, Gulrajani et al, POTF, Alzaniof & Srivastava?0719 [Triasicyn & Falfings

2018; the conditional GAN (CGAN)Nirza & Osinderi 20174 and DP-CGAN [farkzadehmahani

et-al, 2019 that operate in a supervised (labeled) setting and use labels as auxiliary information
in training; and Private Aggregation of Teacher Ensembles (PAPBp&rnofet 3| 2017, 2018

for the semi-supervised setting of multi-label classification when some unlabelled public data are
available (or PATEGANordon et a|.20T8 when no public data are available). Our work focuses

on unsupervised setting where data are unlabeled, and no (relevant) labeled public data are available.

Existing works in differentially private synthetic data generation can be summarized indlrable

D.4 DIFFERENTIALLY PRIVATE TRAINING OF DEEPMODELS

There are numerous works on optimizing the performance of differentially private GANs, including
data partitioning (either by class of labels in supervised setting or a private algor¥onex@l,

et al, ?018; reducing the number of parameters in deep mod@isahan et al.?017); changing

the norm clipping for the gradient in DP-SGD during trainifcfiahan et al.?0T7, van der \/een
etal, 2018 Thakkar ef al.2019; changing parameters of the Gaussian noise used during training
(Muretal, P019; and using publicly available data to pre-train the private model with a warm start
(zhang et al.?018 McMahan et al.?017). Clipping gradients per-layer of modeB¢Mahan &
Bndrew, 7018 McMahan ef al.2017) and per-dynamic parameter groupinang et al.?018 are

also proposed. Additional details for some of these optimization approaches are given below.
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Table 4: Algorithmic frameworks for differentially private synthetic data generati®Guor new
algorithmic framework (in bold) is the first to combine both DPGAN and autoencoder into one
framework by using GAN to learn generative model in latent space.

Algorithmic framew ork

Types Main architectur e Variants
DPGAN PATEGAN (Jordon et a|.2018
(Bbadieral, /D(I)31 ‘;Nassersteln GAN A[zaniof & —Srivasfava
IOKK: N . o
Deep 201 DP Conditional GAN lforkzadehmahani_et ial.
generative 20TY N
models Gumbel-softmax for categorical datdrigerio
et al, 2019
DP-VaE Chen et al.P2018 Acs efal, 2018
Autoencoder RBM generative models in latent spa&et et al,
ZAONE:]
Mixture of Gaussian model in latent spa@&bay
efal, 2018
Autoencoder and DPGAN(ours)
Other SmallDB (?), PMW (Hardf_& Rathblum 2010, MWEM Hardi_et_al.
models (2012, DualQueryGaboardi et 2l(?014), DataSynthesizerHing-et-al,
2017, PriBayes Whang ef al.2?017)

Batch Sampling Three ways are known to sample a batch from data in each optimization step.
The three methods are describedMnoMahan & Andrew(2018. We also summarize here for the
completeness of DP-SGD background.

The first is to sample each individual’s data with a fixed probability independently. This sampling
procedure is one used in analysis of subsampled moment accdiibhdh et al.(2016; McMahan

& Andrew (2018 and subsampled RDP compositionvhronov (2017). This RDP composition

is publicly available at Tensorflow Privactafogié 2018. We implement this sampling procedure
and use Tensorflow Privacy to account Renyi Divergence during the training.

Another sampling policy is to sample uniformly at random a subset of fixed size of all datapoints.
This achieves a different RDP guarantee from the first one, but the analysis of this sampling has
been done iWang et al (20T19).

Finally, a common subsampling procedure is to shuffle the data at random, and take a fixed-size
batch in the order of the shuffling without replacement. The process is repeated after a pass over
all datapoints (an epoch). Though this batch sampling is most common in practice, no subsampled
privacy composition is known in this case.

Hyperparameter Tuning Training a deep learning models involves hyperparameter tuning to find
good architecture and optimization parameters. This process is private and privacy budget must be
accounted for.Abadi_ef-al. (2016 accounts for hyperparameter search using the woltaiita

et all. (2010). Beaulieu-Jones efigl201Y uses Report Noisy Mabkwork & Roth (2014 to private

select a model with top performance when a model evaluation metric is known. Some works are
done to account for selecting high-performance models without losing much prizaawdhiiri &
Vinterho, P0T3 Ciu& Talwar, 20T9. In our experimental work, we omit the privacy accounting

of hyperparameter search as this is not the focus fof our contribution (new algorithmic framework
using RDP subsampled composition for privacy analysis), following most literatures in differentially
private synthetic data generation.

D.5 EVALUATION METRICS FORSYNTHETIC DATA
Now we review the evaluation schemes for measuring quality of synthetic data. Various evaluation

metrics have been considered in the literature to quantify the quality of the synthetiCtarast
20T7). Broadly, evaluation metrics can be divided into two major categories: supervised and un-
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supervised. Unsupervised metrics can then be divided into three broad types: prediction-based,
distributional-distance-based, and qualitative- (or visualization-) based. Metrics in previous work
and our proposed metrics are summarized in Téble

Supervised evaluation metrics. These metrics are used when clear distinctions exist between
feature and labels of the dataset, e.g., for healthcare applications, whether a person has a disease or
not could be a label. The main aim of generating synthetic data is to best understand the relationship
between features and labels. A popular metric for such cases is to train a machine learning model
on the synthetic data and report its accuracy on the real testXifai(al, P0T8. Zhang et al.

(2018 used inception scores on the image data with classification tasks. Inception scores were
proposed inSalimans_ef al(Z016 for images which measure quality as well as diversity of the
generated samples. Another metric usediimion er al(?0T8 reports whether the accuracy ranking

of different machine learning models trained on the real data is preserved when the same machine
learning model is trained on the synthetic data. All the evaluation metrics focus on understanding
relationship between labels and features of the data and hence we call them supervised evaluation
metrics. Also, in the literature, these metrics are used for classification setting but can be generalized
to regression setting easily.

The disadvantage of supervised metric is that in some application, it is not clear if any feature can

appropriately be a label. For example, the data analyst who wants to learn a pattern from synthetic
data may not know what specific prediction tasks to perform, but rather wants to explore the data by
several ways including by a unsupervised algorithm such as Principle Component Analysis (PCA).

As a result, we now turn our focus tmsupervised evaluation metrica metric when no feature of

the data can be decisively termed as a label. We list all three types of evaluation metrics below.

Unsupervised evaluation metric, prediction-based. One metric of this type is proposed bB¥ai

et-all. (2010 for binary data. Instead of measuring accuracy score of one particular feature in
supervised-setting, one can prediterysingle feature by using the rest of features. The predic-
tion score is therefore created for each single feature, creating a list of dimension- (or feature-) wise
prediction scores. A good synthetic data should resemble dimension-wise prediction score of that of
real data. Intuitively, similar dimension-wise prediction shows that synthetic data correctly captures
inter-feature relationships in the real data.

Though this was proposed for binary data, we extend this to mixed type data by allowing varieties
of predictive models appropriate for each data type present in the dataset. For each feature, we try
predictive models on the real dataset in order of increasing complexity until a good accuracy score
is achieved. For example, to predict real-valued feature, we use linear classifier and then neural
network predictor. This ensures that a choice of predictive model is first appropriate to the feature.
Synthetic data is then evaluated by measuring the accuracy of the same trained predictive model,
but on the synthetic data. A high accuracy score of the model on synthetic data close to original
accuracy score on real data indicates that synthetic data resembles real data well.

Zhang ef al.(2018 also provides a Jensen-Shannon score metric which measures the Jensen-
Shannon divergence between output of a discriminating neural network on the real and synthetic
dataset, and a Bernoulli random variable with probability. This metric differs from dimension-

wise prediction in that the predictive model (discriminator) is trained over the whole dataset at once,

rather than dimension-wise, to obtain a score.

Unsupervised evaluation metric, distributional-distance-based. Instead of computing
dimension-wise prediction score, one can also compute the dimension-wise probability distribution,
also proposed iichoiefal.(2017) for binary data. This metric compares the marginal distribution

of real and synthetic data on each individual feature.

3-way marginal RecentlyNIST (2019 challenge used a 3-way marginal evaluation metric in which
random three feature of the real and synthetic dat& are used to compute the total variation
distance as a statistical score. This process is repeated a few times and finally, average score is
returned. In particular, values of each of the three features are partitioned in 100 disjoint bins as
follows:

(R}€ — Rk,min) * 100

Rk,max - Rk,min

(Sz — Rk,min) * 100 J

andB% ;, = {
J ’ Rk,max - Rk,min

B}é,k = {
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whereR}w S]i is the value ofi-th datapoint'si-th feature in dataset8 and.S. R min, Rk max 8re
respectively the minimum and maximum value of thth feature inR. For example, it = 1,2, 3
are the selected features theth data points of? and S are put into bins identified by a 3-tuple,
(Bk1 B}’m, B 3) and (B 4, BS 5, Bg73), respectively.

Let B, Bg be the set of all 3-tuple bins in datas&snd.S, and let| B| denote number of datapoints
in 3-tuple binB, normalized by total number of data points. Then, the 3-way marginal metric reports
the /1-norm of the bin-wise difference & andBs as follows:

S Isesslpa=ny|Bil-IBel|+ > (1-Iip,es)|Bil+ > (1-Iip,en,})|Bal-
B1EBRr B2€B5s B1€Br B3€eBgs

Both aforementioned metrics involve two steps. First, a projection (or a selection of features) of data
is specified, and second some statistical distance or visualization of synthetic and real data in the
projected space is computed. Dimension-wise probability for binary data corresponds to projecting
data into each single dimension, and visualize synthetic and real distributions in projected space
by histograms (for binary data, histogram can be specified by one single number, i.e. probability of
feature being 1). 3-way marginal first selects a three-dimensional space specified by three features as
a space to project data to, discretize the synthetic and real distributions on that space, then compute
a total variation distance between discretized distributions. Our proposed metric generalizes both
steps of designing the metric as follow(s).

Generalization of Data ProjectionOne can generalize selection®features (3-way marginal) to
anyk features k-way marginal). However, one can also selegtrinciple componentstead ofk
features. We distinguish this &sway featuremarginal (projection onto a space spanned by feature
dimensions) an&-way PCAmarginal (projection onto a space spanned by principle components of
original datasets). Intuitivelys-way PCA marginal best compress information of real data in small
k-dimension space, and hence is a better candidate for comparing projected distributions.

Generalization of Distributional Distancélotal variation distance can be misleading as it does not
encode any information on distance of support of two distributions. In general, one can define any
metric of choice (optionally with discretization) on two projected distributions, such as Wasserstein
distance which also depends on distance of supports of two distributions.

Finally, we defineDistributional Distancemetric without any data projection. Computing statistical
score on full-dimensional and big data is likely computationally hard. However, we can subsam-
ple uniformly at random points from two distributions to compute the score more efficiently, then
average this distance over many iterations.

Unsupervised evaluation metric, qualitative. As mentioned earlier, dimension-wise probability

is a specific application of comparing histogram under binary data. One can hence plot histogram of
each feature (1-way feature marginal) for inspection. In practice, histogram visualization is particu-
larly helpful when a feature is strongly skewed, sparse (majority is zero), and/or hard to be predicted
well by predictive models. An example of this is when predictive models do not have meaningful
predictive accuracy on certain features of ADULT dataset, making prediction-based metric inap-
propriate, but an inspection of histograms of those features on synthetic and real data indicate that
synthetic data replicates those features well.

In addition,2-way PCA marginal is a visual representation of data that explains as much variance as

possible in a plane, a good trade-off between ease of visualization and information on two datasets.
As mentioned earlier, a distributional distance of choice can be defined on two distributions on these
two spaces to get a quantitative metric.
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