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ABSTRACT

While deep neural networks have been shown to perform remarkably well in many
machine learning tasks, labeling a large amount of supervised data is usually very
costly to scale. Therefore, learning robust representations with unlabeled data is
critical in relieving human effort and vital for many downstream applications. Re-
cent advances in unsupervised and self-supervised learning approaches for visual
data benefit greatly from domain knowledge. Here we are interested in a more
generic unsupervised learning framework that can be easily generalized to other
domains. In this paper, we propose to learn data representations with a novel type
of denoising autoencoder, where the input noisy data is generated by corrupting
the clean data in gradient domain. This can be naturally generalized to span mul-
tiple scales with a Laplacian pyramid representation of the input data. In this way,
the agent has to learn more robust representations that can exploit the underly-
ing data structures across multiple scales. Experiments on several visual bench-
marks demonstrate that better representations can be learned with the proposed
approach, compared to its counterpart with single-scale corruption. Besides, we
also demonstrate that the learned representations perform well when transferring
to other vision tasks.

1 INTRODUCTION

In recent years, deep learning has made significant improvements on machine learning tasks. How-
ever, the success of deep-based approaches benefits greatly from using a large amount human labeled
data for supervision, which is usually very costly and infeasible to scale on new data. Actually, hu-
mans are exceptional experts at learning abstract knowledge from unsupervised data, i.e., without
knowing the specific labels of the data. Thus, how to approach such a human cognitive ability and
effectively learn robust representations from massive unlabeled data in an unsupervised manner have
attracted the interests of machine learning researchers.

Representation learning is a popular framework for unsupervised learning that aims to learn trans-
ferable representations from unlabeled data (Bengio et al., 2013). Although great progress has been
achieved for visual data by some recent advances (Zhang et al., 2016; 2017; Pathak et al., 2016;
Noroozi & Favaro, 2016; Doersch et al., 2015; Noroozi et al., 2017; Pathak et al., 2017; Gidaris
et al., 2018), the approaches are mostly designed to boost the performance for high-level recognition
tasks like classification and detection. We argue that good representations should benefit multiple
kinds of tasks, including both high-level recognition tasks and low-level pixel-wise prediction tasks.
We, in this paper, present a novel unsupervised representation learning approach that is applicable
to more generic type of data and tasks. The only assumption about the input data form is that the
representations to be learned should incorporate the underlying data structures along some certain
dimensions. For example, one would expect the representations for visual data should incorporate
underlying image structures along spatial dimension, while the representations for speech data might
need to exploit along temporal dimension.

Specifically, we propose to decouple the representations into different semantic levels in the Lapla-
cian domain. A novel type of denoising autoencoder (DAE) (Vincent et al., 2010) is proposed to
distill both high- and low-level representations accordingly. Different from conventional DAE where
the noisy input is generated from the clean data by adding noises in the original space, we propose
to generate noisy input by corrupting the clean data in the gradient domain. By perturbing the clean
data in such a manner, the corruptions are diffused into larger scales and made more difficult to
remove (Fig. 1 (a)). More importantly, the gradient domain corruption can be naturally extended to
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Figure 1: (a) Top: illustration of our Laplacian pyramid based corruption construction strategy com-
pared to traditional spatial corruption, where “LPS” indicates the Laplacian pyramid scale; Bottom:
learned kernels when corruption is added in spatial domain (left) and gradient domain (right). (b) Vi-
sualization of the discriminative capability on the MNIST test dataset, where samples are projected
to the 2D domain by using the t-SNE technique (Maaten & Hinton, 2008).

span multiple scales with a Laplacian pyramid representation of the data (Burt & Adelson, 1983).
To this end, the DAE is enforced to learn more robust representations that can exploit the underlying
data structures across multiple scales. In addition, the proposed learning approach can be easily in-
corporated into other representation learning framework, and boosts their performance accordingly.

Our motivation is inspired by the human knowledge learning by visual perception. Instead of try-
ing to remember every single detail, human vision focuses more on the general concept of the ob-
ject/scene, which favors a combined perception of both local and non-local information (Bubić et al.,
2010). An example of the proposed gradient-domain corruption is illustrated in Fig. 1 (a). It can be
observed that compared to directly adding noise spatially, editing on different scales of the Lapla-
cian pyramid leads to non-local random corruptions. We also showcase the learned kernels by the
corruption in the spatial domain and that in the gradient domain in the bottom of Fig. 1 (a). We
can see that more edge-sensitive and color-sensitive kernels and non-local responses are learned by
the gradient domain corruption (right) compared to the spatial one (left) which preferring local re-
sponses. We argue that in order for an agent to be able to recover the corruptions from different
scales non-locally, it will require understanding the context in the scene.

In Fig. 1 (b), we show the discriminative capability of our model on the MNIST (LeCun et al., 1998)
testing set. The visualization is achieved by projecting the high-dimensional data or feature to a
two-dimension space, using the t-SNE (Maaten & Hinton, 2008) technique. Compared to the raw
data distribution, the embedding space of the conventional denoising autoencoder shows a better
clustering ability while with some background noise. When comparing to the embedding of the pro-
posed Laplacian denoising autoencoder (LapDAE), we can observe that different categories (digits)
are well discriminated from each other and with much less noise. For example, the digit 5 and 3 are
better discriminated compared to those from the raw data and DAE.

We demonstrate the effectiveness of the proposed unsupervised learning approach in two folds: 1)
by evaluating the clustering and discriminative capability on classic benchmarks; 2) by training on
large-scale data and transferring the learned visual features to a variety of vision tasks including
multi-label classification, object detection and semantic segmentation. The main contributions of
our work are summarized as follows:

• We propose a new unsupervised representation learning framework , by enforcing the
model to learn more context and discriminative information in the Laplacian domain.

• The proposed framework is trained only based on the raw data itself and neither data do-
main assumptions nor pseudo labels are necessary.

• Our framework is superior to the conventional DAE and achieves state-of-the-art perfor-
mance on several benchmarks.
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Figure 2: The illustration of the corruption with Laplacian pyramid. A Gaussian pyramid is first
constructed from the clean image, following which a Laplacian pyramid is built. After randomly
selecting a level (slice) from the Laplacian pyramid and adding random corruptions (e.g., noise) on
it, the final corrupted image is obtained by a reconstruction from the modified Laplacian pyramid.

2 RELATED WORKS

Autoencoders: The conventional autoencoder (AE) (Hinton & Salakhutdinov, 2006) is based on
the idea of learning a mapping from high-dimension to low-dimension so that the encoded repre-
sentation can be used to reconstruct the original raw input. Bengio et al. (2007) propose to learn
the abstract representation by stacking single-layer autoencoders. Poultney et al. (2007) impose a
sparsity prior for the latent encoded space. Later on, the denoising autoencoder (DAE) (Vincent
et al., 2010) is proposed to achieve abstraction that is robust to noise and is proven to be able to learn
better representations. The variational autoencoder (VAE) (Kingma & Welling, 2013) aims to learn
a parametric latent variable model by encouraging the latent space to satisfy a distribution. We refer
to (Bengio et al., 2013) for a broader view of autoencoder based approaches.

Representation learning: As a fundamental problem, representation learning has been studied for
years. A comprehensive review could be referred to (Bengio et al., 2013). Early classical algorithms
mainly focus on reconstructing the raw data by learning compressed features (Hinton & Salakhut-
dinov, 2006; Vincent et al., 2010). Some other methods use probabilistic models like Boltzmann
machines (Hinton & Sejnowski, 1986; Salakhutdinov & Larochelle, 2010) and GANs (Goodfellow
et al., 2014; Donahue et al., 2016). Recently, some approaches address the problem by defining
some pretext tasks (terms “self-supervised learning”) have shown promising performance, includ-
ing predicting relative spatial location/ordering of image patches (Doersch et al., 2015; Noroozi &
Favaro, 2016; Noroozi et al., 2017), motion in video (Misra et al., 2016; Pathak et al., 2017; Wang &
Gupta, 2015), colorization (Zhang et al., 2016; 2017), predicting rotations (Gidaris et al., 2018) and
transformations (Zhang et al., 2019), to name a few. Such pretext-task-based methods can be cate-
gorized as a different group to the AE/DAE-based ones. Compared to these representation learning
methods, the proposed approach does not make any assumptions to the data thus is more generic.

3 LAPLACIAN DENOISING AUTOENCODER

3.1 BACKGROUND

The original Laplacian pyramid is proposed for image editing (Burt & Adelson, 1983) and can be
easily generalized to other types of data where low-pass filter is applicable. Given input data x,
its Gaussian pyramid is composed of a set of progressively lower resolution versions of the data,
denoted as {xGl } where l is a pyramid level. In the pyramid, the bottom level is the data itself,
xG0 = x, and xGl+1 = downsample(xGl ). The Laplacian pyramid {xLl } is constructed by subtracting
the neighboring levels in a Gaussian pyramid, xLl = xGl − upsample(xGl+1). Note that the top level
of the Laplacian pyramid is the residual and the same as that in the Gaussian pyramid, xLN = xGN ,
where N is the top level of the pyramid. The construction process can be referred to Fig. 2. Given
a Laplacian pyramid, the original data could be reconstructed by recursively applying xGl = xLl +
upsample(xGl+1) until xG0 , which is the reconstructed data. Gradient domain editing on x can be
achieved by editing its Laplacian pyramid and then reconstruct the resulting x̃ from the modified
Laplacian pyramid.
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3.2 LAPDAE METHODOLOGY

Following the denoising autoencoder framework (Vincent et al., 2010), we attempt to distill the
essential representations by training a convolutional network (ConvNet) to restore the clean data
x ∈ X from the corrupted data x̃ ∈ X̃ . Different from vanilla DAE, we generate the corrupted
data x̃ from x with the aid of a Laplacian pyramid. Specifically, we construct a Laplacian pyramid
from the clean data x and randomly corrupt a level of the pyramid, then x̃ is reconstructed from
the corrupted pyramid. Fig. 2 illustrates the process of the corruption with an example of image
data. Since the corruption applied to higher levels of the pyramid affects larger spatial scales of the
image (see Fig. 1), the randomly corrupted levels will enforce the network to learn features that can
represent underlying structures across multiple scales. As known in the literature (Zeiler & Fergus,
2014), the ConvNet is by nature in favor of both local and non-local features at its different level
of layers. Hence only local disturbance is hard to capture the non-local semantic concept. This has
also been verified to some extent in the self-supervised learning methods that try to leverage patch-
based context information (Doersch et al., 2015; Noroozi & Favaro, 2016; Noroozi et al., 2017), and
similar in spirit to the non-local scheme (Wang et al., 2018) on the network design side. By adding
corruptions across multiple scales, hopefully both local and non-local information can be captured
during the representation learning. Besides, in order to incorporate diverse types of corruptions and
to force the network to “learn harder”, it is also possible to apply multiple types of corruptions to
the pyramid during learning.

Algorithm 1: LapDAE Optimization
Initialize corruption set C and parameters θ, θ′
while not converged do

for x ∈ X do
Compose the Gaussian pyramid {xGl }
Construct the Laplacian pyramid
{xLl } from {xGl }

for c ∈ C do
Randomly select a pyramid level l
x̃l ← apply corruption c on level l

end
Reconstruct the corrupted data
x̃ = Lap(x; x̃l) in image domain
y = Fθ(x̃)
z = Gθ′(y)

end
min

∑
x∈X

∑
c∈C
‖ x− zc ‖22

end
Return θ, θ′ for the LapDAE

Denote the corrupted data as x̃ = Lap(x; x̃l)

(note that we use x̃l instead of x̃Ll for concise-
ness to denote a corrupted level l in the Lapla-
cian pyramid). The corrupted input space is
achieved as L = {Lap(x; x̃l)c, c ∈ C}, where
C is the corruption type set. Then the corrupted
space is mapped to a hidden space Y = Fθ(L)
through an encoder with parameter θ. Differ-
ent from DAE that using sparse code as hid-
den representation, each sample in our hidden
space has its resolution, from which we recover
the reconstruction space Z = Gθ′(Y) by a de-
coder with parameter θ′. During the optimiza-
tion in mini-batch, each time a training sample
x is presented, one or multiple versions of cor-
ruptions are constructed according to C. There-
fore each time the optimization is based on a
sub-mini-batch, and a sub-batch reconstruction
objective is defined as:

Lrec =
∑
c∈C

Ex ‖ x− zc ‖22, (1)

where zc ∈ Z is the reconstructed data by the network. The learning process of the proposed
LapDAE is summarized in Algorithm 1.

The proposed Laplacian denoising autoencoder performs data reconstruction in the Laplacian pyra-
mid space across multiple scales. Despite simple and making no assumptions about the data and no
specially designed domain-specific loss functions, the proposed framework is able to learn represen-
tations competitive with existing unsupervised (as well as some self-supervised) approaches, as we
will show in the following evaluation section. Similar to some recent work exploring withholding
parts of the data (e.g., AE to remove noise; inpainting and context-encoder to drop data in spatial
domain; colorization to drop data along channel direction), our LapDAE model can be considered
as removing context-aware noise along the scale direction in Laplacian domain.

Being a purely unsupervised model, it is a generic framework that can be applied to other domains in
addition to the visual data. The proposed framework opens a new potential direction for representa-
tion learning in another transfered domain (e.g., gradient domain), which we believe to be beneficial
to the community that mainly focuses on the original (spatial) domain knowledge mining.
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Figure 3: Left: An illustration of the reconstruction performance on the MNIST dataset. The original
raw input images randomly selected from the test set are shown in the first row, while the second
and third rows show the reconstructed results. Right: Illustration on model convergence. Horizontal
axis shows the training iterations, while vertical axis the training loss (in log scale).

3.3 LAPDAE ARCHITECTURE

In this section, we describe the detailed architecture of the proposed LapDAE. Specifically, we
utilize convolutional neural network (CNN) to implement the LapDAE and showcase on visual data.
The corruption in Laplacian domain is modeled as a Laplacian layer. Specifically, We randomly add
Gaussian noise (with σ = 25) to a randomly chosen level l in the Laplacian pyramid. The encoder
consists of several simple convolutional (conv) layers, while the decoder is with mirrored structure
to the encoder and consists of up-conv (also terms deconv in some literatures) layers. The model is
trained by a supervision from the reconstruction objective defined in Equation (1).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The setup of the proposed framework is described in Sec. 3.3. For the basic LapDAE architec-
ture, four 3 × 3 conv layers are used to construct the Encoder, while the decoder consists three
similar up-conv layers. For the experiments on large-scale datasets (Sec. 4.4, 4.5), we use the
AlexNet (Krizhevsky et al., 2012) structure for the encoder and the decoder consists of three up-
conv layers. For simplicity, in this paper only one corruption type, random noise, is set in C. The
Laplacian pyramid is constructed with eight levels. The whole model is trained end-to-end by the
Adam optimizer (Kingma & Ba, 2014), with learning rate set to 10−4. The learning rate is decreased
by multiplying 10−1 for every 20 epochs. A batch size of 128 is used throughout the experiments.

4.2 EVALUATION ON MNIST

The MNIST 1 dataset consists of 70,000 images of handwritten digits with size of 28 × 28, in
which 60,000 are used for training and the rest 10,000 for testing. Some randomly selected example
images from the MNIST are shown in Fig. 3 (left). In this experiment, the input images fed into
the models are fixed at the size 28 × 28 with only horizontal flipping as data augmentation during
training. As the objective for our model is set as the reconstruction error (as in Equation 1), we
first illustrate the qualitative performance on the image reconstruction, as in Fig. 3. As we can see
from the reconstruction results, the conventional DAE generally reconstruct the digits but with some
noise and are unclear. In contrast, the reconstruction of our LapDAE model is much more clear
and with more details, e.g., the number 0 and 4. We also compare the convergence property of the
proposed LapDAE and conventional DAE, as shown in Fig. 3 (right). It can be observed that with
the proposed LapDAE, the model converges faster and results in a much better optimum point.

To evaluate the encoding performance, we perform an experiment on image clustering for the DAE
and the proposed LapDAE models. The result is shown in Fig. 1 (b). From the result, we can see
that the proposed LapDAE has a better discriminative capability compared to the conventional DAE.

1http://yann.lecun.com/exdb/mnist/
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Figure 4: Evaluation on the CIFAR-10 dataset. (a) The reconstruction result comparison, in which
examples from each category are randomly selected for visualization. (b) The image retrieval result
by nearest neighbor. Given the query on the left, the top-5 (from left to right) retrieved result of
DAE (middle) and LapDAE (right) are presented, in which red ones indicate wrong category.

4.3 EVALUATION ON CIFAR

Different to the MNIST dataset, the CIFAR-10 (Krizhevsky, 2009) dataset is composed of RGB
natural images with size 32 × 32, covering 10 different categories of natural objects. The training
set consists of 50,000 images while the testing set 10,000, in which each category includes 6,000
images. In this experiment, we first visualize the reconstructed images and compare to those re-
constructed by the conventional DAE, in Fig. 4 (a). From the results we can see that by using the
proposed LapDAE, the representative context is well reconstructed, e.g., the face of the cat and
the deer in the forest. We also explore the quality of the learned representation, by performing an
image retrieval task. The retrieval is based on the similarity of the embedding space, by using the
nearest neighbor scheme. Given an input query image, the feature at the bottleneck (latent space)
of the model is extracted for the retrieval in the whole testing set. For this experiment, we com-
pare with the conventional DAE. Fig. 4 (b) shows example results. From the results in Fig. 4 (b)
we can observe that our LapDAE model learns a much better representation compared to the DAE.
The conventional DAE tends to retrieve based on the appearance of the images, while our LapDAE
focuses more on the context/semantic information, e.g., the airplane in the first row. We owe this to
the multiple scale corruptions in the Laplacian domain. Overall, this result together with the above
evaluation on the MNIST dataset can be considered as initial evidences that the proposed LapDAE
is capable of capturing both low-level and high-level context information.

4.4 EVALUATION ON IMAGENET

In this section, we aim to investigate the representation learning capability of the proposed LapDAE
on large-scale data. To achieve the goal, we perform evaluations on the ImageNet (Deng et al., 2009)
dataset. Specifically, we use the training set without labels from ImageNet (Deng et al., 2009) to
train our LapDAE model. The training set includes 1.2 million images covering 1,000 categories.
Each image is first resized to 256 × 256 and randomly cropped to 227. Horizontal flipping is also
applied for data augmentation.

Conv1 learned filter visualization: In Fig. 5, we show the comparison on the learned filters from
the first layer (i.e., conv1) of AlexNet between our approach and the fully-supervised ones. In the
supervised version (the left panel), both color blobs and edge filters are learned. We can see that
although not as sharp as those filters learned by the supervised setup for some blobs, our approach
(the right panel) learns quite good filters including edges along different directions, edges with
different frequencies, color contrast along different directions, etc., similar to the supervised ones.
Comparing with conventional DAE (the middle panel), the learned representations are much better.

Controlled classification: Here we quantitatively evaluate our learned representations on Ima-
geNet classification task (Deng et al., 2009). Following the experimental settings in (Zhang et al.,
2016), we freeze the pre-trained weights of our model and train a linear classifier on the top of
each conv layer, to perform the 1000-category classification task. In order to have approximately
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Figure 5: The learned convolutional filters (kernels) from the first layer of AlexNet (conv1) trained
on the ImageNet dataset. Left: result with fully-supervision from the labeled data; Middle and
Right: the filters learned in an unsupervised manner by DAE and our LapDAE respectively.

Table 1: Top-1 accuracy on ImageNet and Places classification with a linear classifier. The results
are reported based on the ImageNet / Places validation set and all the listed methods except ImageNet
/ Places labels, Domain Adapt are pre-trained on ImageNet without ground truth labels.

Method Conv1 Conv2 Conv3 Conv4 Conv5

ImageNet / Places labels 19.3 / 22.1 36.3 / 35.1 44.2 / 40.2 48.3 / 43.3 50.5 / 44.6

Random Gaussian 11.6 / 15.7 17.1 / 20.3 16.9 / 19.8 16.3 / 19.1 14.1 / 17.5
Random rescaled (Krähenbühl et al., 2015) 17.5 / 21.4 23.0 / 26.2 24.5 / 27.1 23.2 / 26.1 20.6 / 24.0

Context (Doersch et al., 2015) 16.2 / 19.7 23.3 / 26.7 30.2 / 31.9 31.7 / 32.7 29.6 / 30.9
Context Encoder (Pathak et al., 2016) 14.1 / 18.2 20.7 / 23.2 21.0 / 23.4 19.8 / 21.9 15.5 / 18.4
Colorization (Zhang et al., 2016) 12.5 / 16.0 24.5 / 25.7 30.4 / 29.6 31.5 / 30.3 30.3 / 29.7
Jigsaw (Noroozi & Favaro, 2016) 18.2 / 23.0 28.8 / 31.9 34.0 / 35.0 33.9 / 34.2 27.1 / 29.3
BiGAN (Donahue et al., 2016) 17.7 / 22.0 24.5 / 28.7 31.0 / 31.8 29.9 / 31.3 28.0 / 29.7
Split-Brain (Zhang et al., 2017) 17.7 / 21.3 29.3 / 30.7 35.4 / 34.0 35.2 / 34.1 32.8 / 32.5
Counting (Noroozi et al., 2017) 18.0 / 23.3 30.6 / 33.9 34.3 / 36.3 32.5 / 34.7 25.7 / 29.6
RotNet (Gidaris et al., 2018) 18.8 / 21.5 31.7 / 31.0 38.7 / 35.1 38.2 / 34.6 36.5 / 33.7
Domain Adapt (Ren & Lee, 2018) 16.5 / - 27.0 / - 30.5 / - 30.1 / - 26.5 / -

AET-project (Zhang et al., 2019) 19.2 / 22.1 32.8 / 32.9 40.6 / 37.1 39.7 / 36.2 37.7 / 34.7
DAE 12.5 / 15.9 18.5 / 22.6 21.8 / 24.2 20.4 / 22.1 14.8 / 18.1
(Ours) LapDAE 18.4 / 24.0 27.4 / 30.9 29.9 / 31.6 27.0 / 29.2 22.7 / 26.1
(Ours) LapDAE + Trans 19.3 / 22.2 33.2 / 33.8 43.2 / 38.2 41.1 / 37.3 39.6 / 36.1

the same dimensions across different layers, the feature maps of each layer is interpolated to have
around 9000 elements. Table 1 shows the evaluation results. Several state-of-the-art self-supervised
representation learning methods (Zhang et al., 2016; 2017; Pathak et al., 2016; Doersch et al., 2015;
Noroozi & Favaro, 2016; Donahue et al., 2016; Noroozi et al., 2017; Gidaris et al., 2018; Ren &
Lee, 2018; Zhang et al., 2019) are included for comparison. Since the proposed approach can be
easily integrated into other representation learning frameworks, we also present the performance of
our LapDAE combined with the task of predicting transformations (LapDAE+Trans). Specifically,
we base on the AET framework (Zhang et al., 2019) while reasoning the transformation between the
original image and a transformed one corrupted by our LapDAE.

From the results we observe that, the proposed method with Laplacian pyramid largely improves the
performance compared to its counterpart without the Laplacian pyramid, especially for the lower
convolutional layers. This is consistent with the above visualization and analysis of the conv1 layer,
where the filter kernels are much better in the proposed LapDAE. When incorporating with the
transformation prediction task, we can see that the performance is further boosted by a large margin.
Even when compared to the AET-project method, our approach performs much better, which again
validates the effectiveness of the proposed LapDAE.

4.5 TRANSFER LEARNING ON PASCAL VOC AND PLACES

Next we carry out a transfer learning evaluation on the PASCAL VOC dataset (Everingham et al.,
2010), for the tasks of classification, detection on VOC 2007 and semantic segmentation on VOC
2012. The learned weights by our model on ImageNet are transfered to a standard AlexNet for the
evaluation. We then fine-tune the model on the PASCAL VOC trainval set and test on the test set.
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Table 2: Comparison with state-of-the-art representation learning methods on PASCAL VOC vision
tasks of classification, detection on 2007 and semantic segmentation on 2012. For classification we
also compare a setup that fix the layers before conv5 and only train the fc6-8. The learned weights
from unlabeled ImageNet are transfered for the new tasks except the ImageNet labels.

Method

Classification
(%mAP)

Detection
(%mAP)

Segmentation
(%mIoU)

fc6-8 all all all

ImageNet labels 78.9 79.9 56.8 48.0

Random Gaussian - 53.3 43.4 19.8
Random rescaled (Krähenbühl et al., 2015) 39.2 56.6 45.6 32.6

Context (Doersch et al., 2015) - 55.3 45.7 -
Context Encoder (Pathak et al., 2016) 34.6 56.5 44.5 29.7
Colorization (Zhang et al., 2016) 61.5 65.5 46.9 35.6
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6
GAN (Goodfellow et al., 2014) 40.5 56.4 - -
BiGAN (Donahue et al., 2016) 52.3 60.1 46.9 34.9
RotNet (Gidaris et al., 2018) 70.9 73.0 54.4 39.1

DAE 37.0 54.6 43.4 29.1
(Ours) LapDAE 50.6 59.0 45.6 38.3
(Ours) LapDAE + Trans 71.4 74.2 55.2 41.1

Note that we do not apply any “magic” techniques like the weights rescaling (Krähenbühl et al.,
2015). For the classification task, we use the same network architecture as in the ImageNet evalua-
tion, while for the semantic segmentation tasks we use the publicly available frameworks FCN (Long
et al., 2015), following the same setups for other state-of-the-art methods e.g., (Doersch et al., 2015;
Zhang et al., 2016). The results in Table 2 show that the learned visual features by the proposed Lap-
DAE exhibit good performances when transferred to other vision datasets/tasks, and performs favor-
ably against the state-of-the-arts. For classification task on PASCAL VOC, the proposed LapDAE
outperforms all other generic unsupervised learning methods like DAE and GAN. More impres-
sively, its segmentation performance on PASCAL VOC surpasses most of the representation learning
methods including those self-supervised learning approaches with specifically designed visual tasks.
Comparison between the proposed framework and its counterpart DAE suggests that the improve-
ment is partly due to the Laplacian pyramid. When incorporating the transformation prediction task
(LapDAE+Trans), our approach on PASCAL VOC transfer learning is further improved and achieves
state-of-the-art performance.

In addition to PASCAL VOC, we further evaluate the representation learning capability by transfer
learning on the Places dataset (Zhou et al., 2014). We use the same experimental settings as the
ImageNet experiment and the result is shown in Table 1. Different from the ImageNet experiments,
the classifier trained on top of different layers is a 205-way logistic regression layer and is trained
with the Places labels. From the result we can see that, the proposed LapDAE performs better than
its counterparts and outperforms other methods when incorporating with transformation prediction.

5 CONCLUSION

In this paper we introduced a novel type of denoising autoencoder for unsupervised representation
learning. Different from conventional DAE, the corrupted data input to the proposed DAE are pro-
duced with the aid of Laplacian pyramids. By adding corruptions to randomly chosen levels in a
Laplacian pyramid, the resulting data corruptions span multiple scales in the original data space.
In this way, the network is enforced to learn to represent underlying data structures across multiple
scales. With the proposed learning framework, the agent learns better representations compared to
conventional DAE and other self-supervised learning methods. While in this paper we showcase
the effectiveness of the proposed method for learning transferable representations for vision tasks,
it would be interesting to see how it performs with other types of data. The core idea of performing
both local and non-local learning that is consistent with the hierarchy nature of ConvNets, is the
Laplacian pyramid space, which we believe a promising direction for future research.
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