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ABSTRACT

Adversarial attacks such as Gradient-based attacks, Fast Gradient Sign Method
(FGSM) by Goodfellow et al. (2015) and DeepFool by Moosavi-Dezfooli et al.
(2016) are input-dependent, small pixel-wise perturbations of images which fool
state of the art neural networks into misclassifying images but are unlikely to fool
any human. On the other hand a universal adversarial attack is an input-agnostic
perturbation. The same perturbation is applied to all inputs and yet the neural
network is fooled on a large fraction of the inputs. In this paper, we show that
multiple known input-dependent pixel-wise perturbations share a common spec-
tral property. Using this spectral property, we show that the top singular vec-
tor of input-dependent adversarial attack directions can be used as a very simple
universal adversarial attack on neural networks. We evaluate the error rates and
fooling rates of three universal attacks, SVD-Gradient, SVD-DeepFool and SVD-
FGSM, on state of the art neural networks. We show that these universal attack
vectors can be computed using a small sample of test inputs. We establish our
results both theoretically and empirically. On VGG19 and VGG16, the fooling
rate of SVD-DeepFool and SVD-Gradient perturbations constructed from observ-
ing less than 0.2% of the validation set of ImageNet is as good as the universal
attack of Moosavi-Dezfooli et al. (2017a). To prove our theoretical results, we
use matrix concentration inequalities and spectral perturbation bounds. For com-
pleteness, we also discuss another recent approach to universal adversarial per-
turbations based on (p, q)-singular vectors, proposed independently by Khrulkov
& Oseledets (2018), and point out the simplicity and efficiency of our universal
attack as the key difference.

1 INTRODUCTION

Neural network models achieve state of the art results on several image classification tasks. How-
ever, these models are known to be vulnerable to adversarial attacks. Szegedy et al. (2013) show that
small, pixel-wise changes that are almost imperceptible to the human eye can make neural network
models grossly misclassify images. Regarding an image as a vector x in Rd, an adversarial, pixel-
wise perturbation gives a small perturbation vector v ∈ Rd to perturb x so that the network classifies
x+v differently from x. Szegedy et al. (2013) find such a perturbation vector using box-constrained
L-BFGS. Goodfellow et al. (2015) propose the Fast Gradient Sign Method (FGSM) as a faster ap-
proach to find such an adversarial perturbation. In subsequent work on FGSM, its iterative variant
was introduced by Kurakin et al. (2017) and another version called Projected Gradient Descent
(PGD) by Madry et al. (2018). In the works of Goodfellow et al. (2015) and Madry et al. (2018),
the adversarial perturbations considered are from an `∞-ball around the input x - namely, each pixel
value is perturbed by a quantity within [−ε,+ε]. DeepFool by Moosavi-Dezfooli et al. (2016) gives a
method to compute a minimal `2-norm perturbation to fool the input. To understand how adversarial
attacks transfer across different models Tramer et al. (2017) also study model-agnostic perturbations
using the direction of the difference between the intra-class means.

Universal adversarial perturbations are input-agnostic so that the same perturbation fools the trained
model on a large fraction of test inputs. Recent work by Moosavi-Dezfooli et al. (2017a;b) on
universal adversarial perturbations looks at the curvature of the decision boundary. Their universal
attacks are more sophisticated than the simple and fast, gradient-based adversarial perturbations,
and require significantly more computation. In Moosavi-Dezfooli et al. (2017b) the authors give
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a theoretical analysis of existence of universal adversarial perturbations using directions in which
the decision boundary has positive curvature. Khrulkov & Oseledets (2018) propose a different
method to construct a universal adversarial perturbation. Their perturbation is based on computing
the (p, q)-singular vectors of the Jacobian matrices of hidden layers of the network.

The above discussion raises an important question: are there any interesting properties shared by
the input dependent adversarial attacks which can be exploited to come up with an easy to compute
universal perturbation? Can one find such a universal perturbation using only a small fraction of
test inputs and also ensure that a perturbation along this direction fools most test inputs? We answer
both of these questions affirmatively in this paper. Furthermore, we show that our universal attack
compares favourably with the universal attack in Moosavi-Dezfooli et al. (2017a).

2 SUMMARY OF OUR MAIN RESULTS

• Our first observation is that even though the adversarial attack directions are input-
dependent, overall they have only a small number of dominant principal components. We
show this for attacks based on the Gradient of the loss function, the FGSM attack and
DeepFool, on a variety of architectures and datasets.

• Construct a matrix whose i-th row is an input dependent attack vector on the i-th test point.
Our second observation is that a small pixel-wise perturbation in the direction of the top
principal component of this matrix alone can be used as a universal attack. This simple
algorithm gives us SVD-Gradient, SVD-FGSM and SVD-DeepFool perturbations.

• Our third observation is that the top principal component can be well-approximated from
a very small sample of the test data, and small samples are good enough to obtain SVD-
Universal perturbations comparable to that in Moosavi-Dezfooli et al. (2017a).

• We give a theoretical justification of this phenomenon using matrix concentration in-
equalities and spectral perturbation bounds. This observation holds across multiple input-
dependent adversarial attack directions given by Gradient, FGSM and DeepFool.

3 DEFINITIONS AND THE PROBLEM FORMULATION

Assume that we have a distribution D on pairs of images and labels, with images coming from a set
X . In the case of CIFAR-10 for example we can think of X to be a set of all 32 × 32 images with
pixel values from [0, 1]. Let (X,Y ) be a sample from D and let f : X → [k], be a k-class classifier.
The natural accuracy δ of the classifier f is defined to be

Pr(X,Y )∈D[f(X) = Y ].

We regard a deterministic adversary to be a function A : X → X . The error rate of A on the
classifier f is defined to be

Pr(X,Y )∈D[f(X +A(X)) 6= Y ].

WhenA is a distribution over functions, we get a randomized adversary. The norm of the perturba-
tion applied to X is the norm of A(X) (we only consider `2 norm in this paper).

In Moosavi-Dezfooli et al. (2017a;b) and in Khrulkov & Oseledets (2018) the authors consider the
fooling rate of an adversary and not the error rate. Recall that f is said to be fooled on input x by
the perturbation A(x) if f(x) 6= f(x+A(x)). And the fooling rate is defined to be the probability
that f is fooled by choosing x at random. Note that

Pr(X,Y )∈D[f(X +A(X)) 6= Y ]

= Pr(X,Y )[f(X +A(X)) 6= Y |f(X) = Y ] Pr(X,Y )[f(X) = Y ]

+ Pr(X,Y )[f(X +A(X)) 6= Y |f(X) 6= Y ] Pr(X,Y )[f(X) 6= Y ]

≤ Pr(X,Y )[f(X +A(X)) 6= Y |f(X) = Y ] + (1− δ).

So, if the natural accuracy of the classifier is high, the fooling rate is close to the error rate.

Pr(X,Y )[f(X +A(X)) 6= f(X)]

≥ Pr(X,Y )[f(X +A(X)) 6= Y ]− (1− δ).
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The error rate of the adversary with zero perturbation is the error rate of the trained network, whereas
the fooling rate of the adversary with zero perturbation is necessarily zero. However, small fooling
rate does not necessarily imply small error rate, especially when the natural accuracy is not close
to 100%. Note that existing models such as VGG16, VGG19, ResNet50 do not achieve natural
accuracy greater than 0.8.

3.1 INPUT DEPENDENT ATTACKS

There are a number of input dependent attacks known and our generic algorithm can be used to
produce a universal adversary from each of them. We demonstrate the effectiveness of our method
by applying it to a few popular input dependent attacks, which we discuss below. Let L(θ, x, y)
denote the loss function used to train the model. Here θ are the model parameters, x is the input and
y is the class label.

In the Gradient attack the adversarial example produced on input x is

x′ = x+ ε∇xL(θ, x, y).

In the FGSM attack proposed by Goodfellow et al. (2015) the adversarial example produced on input
x is

x′ = x+ ε sign (∇xL(θ, x, y)) .

So the perturbed input is within an `∞ ball of radius ε about x.

DeepFool proposed by Moosavi-Dezfooli et al. (2016) is an iterative algorithm. At each stage of the
iteration the region of space around the current perturbed input xt where the classifier outputs label
f(xt) is approximated by a polyhedron Pt. xt is projected to the closest face of Pt. We stop at the
smallest t for which f(x) 6= f(xt).

3.2 EXISTING UNIVERSAL ATTACKS

In Moosavi-Dezfooli et al. (2017a), the authors fix a budget ε, a bound on the allowed `2 norm of
the attack1 and also the desired fooling rate. They pick a sample S of the training data. Starting with
the zero perturbation v, the algorithm proceeds in stages as long as the fooling rate of the current
perturbation vector v is less than the desired fooling rate on S. They run over x ∈ S, for which
f(x) = f(x+ v). For each such x they find the smallest perturbation rx sending x to the boundary
(using DeepFool) and v is updated to Π(v + rx) where Π is the projection onto the ball of radius ε.

In Khrulkov & Oseledets (2018) the authors consider the outputs fi(x) of the i-th hidden layer of a
network on an input x. Denote by Ji(x) the matrix of partial derivatives ∂fi(x)

∂x evaluated at x. They
pick a sample S of X of size m and compute for each x ∈ S, Ji(x). Stacking these in different rows
of a matrix J , they use as their universal attack the vector argmax||Jv||q subject to ||v||p = 1.

In Mopuri et al. (2017) the authors propose a universal attack which is completely data independent.
It only depends upon the model architecture. Given a trained neural network with K hidden (convo-
lution) layers, the authors start with a random image v and minimize Πi=K

i=1
¯̀
i(v), ||v||∞ ≤ ε. Here

¯̀
i(v) is the mean activation of layer i when the input is v. The authors show that the perturbation v

achieving the minimum is a data agnostic attack and achieves a reasonable fooling rate.

4 UNIVERSAL ADVERSARIAL ATTACK USING A SMALL SAMPLE

4.1 SVD-UNIVERSAL ALGORITHM

Algorithm 1 gives the pseudocode to construct a universal attack for a given model. The output of
the algorithm is a universal attack vector, and this depends upon the input dependent attack used.

It is the simplicity of the algorithm which we would like to emphasize. The algorithm samples a
set of n images from the test set. We use the terms batch size and sample size interchangeably. For
each of the sample points it computes an input-dependent attack direction. We stack these attack

1the authors consider other `p norms as well. We restrict ourselves to the `2-norm.
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directions in a matrix, one for each of the sample points and return the top singular vector of the
matrix of attack directions as our SVD-Universal.

Algorithm 1: SVD-Universal Algorithm
Data: Network N , any input-dependent adversarial attack A, and n test samples.
Result: A universal attack direction for network N

1 Obtain input-dependent perturbation vectors a1, ..., an based on A for the n test samples.
2 Normalize ai’s to get only the attack directions or unit vectors ui = ai/||ai||2, for i = 1 to n.
3 Form a matrix M whose rows are u1, u2, . . . , un.
4 Compute Singular Value Decomposition (SVD) of M as M = USV T , with
V = [v1|v2| . . . |vn].

5 Return the top right singular vector v1 as the universal attack vector.

4.2 ERROR RATES AND FOOLING RATES OF SVD-UNIVERSAL

We evaluate the fooling rate of SVD-Gradient, SVD-FGSM and SVD-DeepFool on the validation set
of the ImageNet dataset on VGG16, VGG19 and ResNet50. We used off the shelf code available for
these architectures. In these architectures pixel intensities of images are scaled down and images are
normalized before they are deployed for use in classifiers. Our (unit) attack vectors are constructed
using batch sizes of 64(0.13%), 128(0.26%)) and 1024(2%).

In Figure 1, we plot the fooling rate of εv as a function of ε, in all the architectures, where v
is obtained using a batch size of 64. The top left plot is the fooling rate of SVD-gradient, the
top right that of SVD-FGSM and the bottom left that of SVD-DeepFool. We explain the bottom
right plot in the next section. SVD-Gradient attack scaled to have norm 50 fools about 36% of the
validation set of ImageNet on VGG19. Note that the average `2 norm of the images in ImageNet
is 450 and using the language of Moosavi-Dezfooli et al. (2017a), a perturbation with norm 50 is
quasi-imperceptible. We visualize the perturbed images in Figure 4 in Appendix A.1.

We plot the error rate of SVD-Universal for ImageNet on VGG19 in Figure 5, Appendix A.1, on
different batch sizes. It is clear from the plots that SVD-Universal attacks obtained using batch size
64 perform as well (and sometimes better) as attack vectors obtained using larger batch sizes.

In Appendix A.2 we plot the error rate of SVD-Universal attacks on CIFAR-10 trained on ResNet18.
On ResNet18, the error rate of SVD-DeepFool obtained from 100 samples of the CIFAR-10 test data
is 0.55 when it is scaled to norm 15 (0.23 of the average norm), see Figure 6. We notice that the
SVD-Universal perturbations constructed with small batch sizes perform better.

The visualizations of our perturbations as images are given in Appendix B.

4.3 COMPARISON WITH MOOSAVI-DEZFOOLI ET AL. (2017A), KHRULKOV & OSELEDETS
(2018)

It is difficult to compare our results exactly with what is reported in Moosavi-Dezfooli et al. (2017a),
since their perturbation vectors are different at different ε, while our attack vectors are scaled up
versions of the same vector. Also in Moosavi-Dezfooli et al. (2017a) and Khrulkov & Oseledets
(2018) pixel intensities are not normalized. In (Khrulkov & Oseledets, 2018, Figure 9) the authors
report that the universal perturbation of Moosavi-Dezfooli et al. (2017a) constructed from a sample
of size 64 and having norm 1/25 of the average norm of the ImageNet dataset has a fooling rate of
0.18 on VGG19. A comparable perturbation in our model has `2 norm 18, and Figure 1 shows that
SVD-Gradient and SVD-DeepFool achieve a similar fooling rate, about 0.16 to 0.17.

To compare our universal perturbations with that of Moosavi-Dezfooli et al. (2017a), the same 64
samples used to construct our SVD-Universal vectors were used to obtain the universal perturbation
vector, M-DFFF, of Moosavi-Dezfooli et al. (2017a). This vector was scaled down to get a unit
vector w in `2 norm. In Figure 1 (right bottom) we plot the fooling rate of M-DFFF εw as a function
of ε, in all the architectures. We observe trends similar to what was reported in Moosavi-Dezfooli
et al. (2017a, Table 1) - the error rate achieved by M-DFFF on VGG16 is higher than that of M-DFFF
on VGG19.
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Figure 1: On ImageNet validation, VGG16 vs VGG19 vs ResNet50: fooling rate vs. norm of
perturbation. Attacks constructed using 64 samples. (top left) SVD-Gradient (top right) SVD-FGSM
(bottom left) SVD-DeepFool and (bottom right) M-DFFF universal.

The plots in Figure 1 of the fooling rates of the four universal attacks on VGG16 and ResNet50 are
are collated together in Figure 2. We also plot the error rate of these universal attacks on VGG16
and ResNet50. SVD-DeepFool and M-DFFF have comparable fooling and error rates for ImageNet
on the two networks.

Khrulkov & Oseledets (2018) get a fooling rate of 40% using perturbations obtained from samples
of sizes 64 that are scaled to have `2 norm 1/25 of the average `2 norm of ImageNet (this is the
reason why we considered using a sample of size 64). Khrulkov & Oseledets (2018) do an extensive
experimentation and determine which intermediate layer to attack and (p, q) are also optimized
to maximize the fooling rate of their (p, q)-singular vector. However (p, q)-SVD computation is
expensive and is known to be a hard problem, (Bhaskara & Vijayaraghavan, 2011; Bhattiprolu et al.,
2019). We do no such optimization and use p = q = 2, our emphasis being on the simplicity of our
SVD-Universal algorithm. Therefore we do not compare our SVD-Universal with them. However,
we observe a trend similar to what is reported by Khrulkov & Oseledets (2018) - the error rate of
SVD-Universal attacks is higher on VGG16 and VGG19 than on ResNet50.

Figure 7 in Appendix A.2 compares the error rates of SVD-Universal attacks and M-DFFF con-
structed using samples of size 100 from the test data of CIFAR-10 on ResNet18. Error rates of
SVD-DeepFool and M-DFFF are comparable - for this dataset, SVD-Gradient is not as good. When
the norm of the perturbation is about 15 (0.23 of the average norm), the error rate of SVD-DeepFool
fool is about 0.55.

5 THEORETICAL ANALYSIS OF OUR UNIVERSAL PERTURBATION

In this section, we attempt to provide a theoretical justification for the existence of universal adver-
sarial perturbations. Let our data be given by a joint distribution D on feature vectors in Rd and
corresponding true labels in [k] = {1, 2, . . . , k}. Let (X,Y ) denote a random sample from D. Let
f : Rd → [k] be a given classifier, and for any x ∈ Rd, letA(x) be its adversarial perturbation given
by a fixed adversarial attack A, e.g., FGSM, DeepFool. As in Moosavi-Dezfooli et al. (2017b), the
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VGG16 ResNet50

Figure 2: On ImageNet validation, (top left): VGG16: error rate (bottom left) VGG16: fooling rate
(top right) ResNet50: error rate, (bottom right) ResNet50: fooling rate, vs. norm of perturbation
along top singular vector of attack directions on 64 samples.

fooling rate of this attack is given by Pr (f(X) 6= f(X +A(X))), where the probability is over the
data distribution D.

Define A = {x : f(x) 6= f(x + A(x)}. For any x ∈ A, assume that x + A(x) lies on the
decision boundary, and let the hyperplane Hx = {x+ z ∈ Rd : 〈z,A(x)〉 = ‖A(x)‖22} be a local,
linear approximation to the decision boundary at x +A(x). This holds for adversarial attacks such
as DeepFool by Moosavi-Dezfooli et al. (2016) which try to find an adversarial perturbation A(x)
such that x +A(x) is the nearest point to x on the decision boundary. Now consider the halfspace
Sx = {x+z ∈ Rd : 〈z,A(x)〉 ≥ ‖A(x)‖22}. Note that x /∈ Sx and x+A(x) ∈ Sx. For simplicity
of analysis, we assume that f(x) 6= f(x + z), for all x ∈ A and x + z ∈ Sx. This is a reasonable
assumption in a small neighborhood of x, and is implied by the positive curvature of the decision
boundary assumed in the analysis of Moosavi-Dezfooli et al. (2017b). In other words, we assume
that if an adversarial perturbation such as A(x) fools the model at input x, then any perturbation z,
where z has a sufficient projection along A(x), also fools the model at x, and this is a reasonable
assumption in a small neighborhood of x.
Theorem 1. Given any joint data distributionD on features or inputs in Rd and true labels in [k], let
(X,Y ) denote a random sample from D. For any x ∈ Rd, let A(x) be its adversarial perturbation
by a fixed input-dependent adversarial attack A. Let

M = E
[
A(X)

‖A(X)‖2
A(X)T

‖A(X)‖2

]
∈ Rd×d,

and 0 ≤ λ ≤ 1 be the top eigenvalue of M and v ∈ Rd be the corresponding eigenvector (normal-
ized to have unit `2 norm). Then under the assumption that f(x) 6= f(x + z), for all x ∈ A and
x + z ∈ Sx, we have

Pr (f(X + u) 6= f(X)) ≥ Pr (f(X) 6= f(X +A(X)))− 1− λ
1− δ2

,

where u = ±(ε/δ)v, where ε = max
x
‖A(x)‖2.
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Proof. Let µ(x) denote the induced probability density on features or inputs by the distribution D.
Define A = {x : f(x) 6= f(x +A(x)} and G = {x : |〈A(x),v〉| ≥ δ ‖A(x)‖2}. Since λ is the
top eigenvalue of M with v as its corresponding (unit) eigenvector,

λ = E

[〈
A(X)

‖A(X)‖2
,v

〉2
]

=

∫
x∈S

〈
A(x)

‖A(x)‖2
,v

〉2

µ(x)dx +

∫
x/∈S

〈
A(x)

‖A(x)‖2
,v

〉2

µ(x)dx

≤
∫
x∈G

µ(x)dx + δ2
∫
x/∈G

µ(x)dx because ‖v‖2 = 1

= Pr (G) + δ2 (1− Pr (S))

= (1− δ2) Pr (G) + δ2.

Thus, Pr (G) ≥ (λ − δ2)/(1 − δ2), and equivalently, Pr (Gc) = 1 − Pr (G) ≤ (1 − λ)/(1 − δ2).
Now for any x ∈ G, we have |〈A(x),v〉| ≥ δ ‖A(x)‖2. Letting ε = maxx ‖A(x)‖2, we get
|〈A(x), (ε/δ)v〉| ≥ ‖A(x)‖22. Thus, x ± (ε/δ)v ∈ Sx, where Sx = {x + z ∈ Rd : 〈z,A(x)〉 ≥
‖A(x)‖22}, and therefore, by our assumption stated before Theorem 1, we have f(x) 6= f(x +
u), where u = ±(ε/δ)v. Putting all of this together, Pr (f(X + u) 6= f(X)) ≥ Pr (G ∩A) ≥
Pr (A)− Pr (A ∩Gc) ≥ Pr (A)− Pr (Gc), and therefore,

Pr (f(X + u) 6= f(X)) ≥ Pr (f(X) 6= f(X +A(X)))− 1− λ
1− δ2

,

Theorem 1 shows that any norm-bounded, input-dependent, adversarial attack A can be converted
into a universal attack u of comparable norm, without losing much in the fooling, if the top eigen-
value λ of M is close to 1. This universal attack direction lies in the one-dimensional span of the
top eigenvector v of M . The proof of Theorem 1 can be easily generalized to the top SVD subspace
of M and where the top few eigenvalues of M dominate its spectrum (note that tr (M) = 1).

Singular value drop We empirically verify our hypothesis about top eigenvalue (or the top few
eigenvalues) dominating the spectrum ofM in Theorem 1. LetX1, X2, . . . , Xm bem i.i.d. samples
of X drawn from the distribution D and consider the unnormalized, empirical analog of M as
follows,

m∑
i=1

A(Xi)

‖A(Xi)‖2
A(Xi)

T

‖A(Xi)‖2
.

Figure (3) shows how the singular values drop for the three input dependent attacks, Gradient,
FGSM, and DeepFool on CIFAR-10 trained on ResNet18 on batch sizes 500 and 10,000. These plots
indicate that the drop in singular values is a shared phenomenon across different input dependent
attacks, and the trend is similar even when we look at a small number of input samples.

Our second contribution is finding a good approximation to the universal adversarial perturbation
given by the top eigenvector v of M , using only a small sample X1, X2, . . . , Xm from the distribu-
tionD. Theorem 2 shows that we can efficiently pick such a small sample whose size is independent
ofD, depends linearly on the intrinsic dimension ofM , and logarithmically on the feature dimension
d.

Theorem 2. Given any joint data distribution D on features in Rd and true labels in [k], let (X,Y )
denote a random sample from D. For any x ∈ Rd, let A(x) denote the adversarial perturbation of
x according a fixed input-dependent adversarial attack A. Let

M = E
[
A(X)

‖A(X)‖2
A(X)T

‖A(X)‖2

]
∈ Rd×d.

Let 0 ≤ λ = ‖M‖2 ≤ 1 denote the top eigenvalue of M and let v denote its corresponding
eigenvector (normalized to have unit `2 norm). Let r = tr (M) / ‖M‖2 be the intrinsic dimension of
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Figure 3: On CIFAR-10, ResNet18, Singular values of attack directions over a sample of (left) 500
and (right) 10,000 test points.

M . LetX1, X2, . . . , Xm bem i.i.d. samples ofX drawn from the distributionD, and let λ̃ =
∥∥∥M̃∥∥∥

2

be the top eigenvalue of the matrix M̃ ,

M̃ =
1

m

m∑
i=1

A(Xi)

‖A(Xi)‖2
A(Xi)

T

‖A(Xi)‖2
,

and ṽ be the top eigenvector of M̃ .

Also suppose that there is a gap of at least γλ between the top eigenvalue λ and the second eigen-
value of M . Then for any 0 ≤ ε < γ and m = O(ε−2r log d), we get ‖v − ṽ‖2 ≤ ε/(γ − ε), with a
constant probability. This probability can be boosted to 1 − δ by having an additional log(1/δ) in
the O(·).

Proof. Take m = O(ε−2r log d). By the covariance estimation bound in Theorem 4 and Markov’s
inequality, we get that

∥∥∥M − M̃∥∥∥
2
≤ ελ, with a constant probability. Applying Theorem 5 due

to Weyl on eigenvalue perturbation, we get
∣∣∣λ− λ̃∣∣∣ ≤ ελ. Moreover, if there is gap of at least γλ

between the first and the second eigenvalue of M with γ > ε, we can use the well-known Theorem
6 of Davis-Kahan to bound the difference between the corresponding eigenvectors as ‖v − ṽ‖2 ≤
ε/(γ − ε), with a constant probability. Please see Appendix D, and the book by Vershynin (2018)
cited therein, for more details about the covariance estimation bound, Weyl’s theorem, and Davis-
Kahan theorem.

The theoretical bounds are weaker than our empirical observations about the number of test samples
needed for the universal attack. What we want to highlight is that the bound in Theorem 2 is
independent of the support of underlying data distributionD and depends only on its dimensionality
d. There is more room to tighten our analysis using additional properties of the data distribution as
well as the spectral properties of M .

6 UNIVERSAL INVARIANT PERTURBATIONS AND FUTURE DIRECTIONS

Let x be an image for which the predicted label of a neural network classifier f is f(x). For highly
accurate classifiers trained on data that already contains small rotation augmentations, one would
expect f(x+∆(x)) = f(x), where x+∆(x) is the image resulting from a small rotation applied to
x. For an image x, we call I(x) an invariant perturbation for x, if f(x + I(x)) = f(x). Using this
terminology we expect ∆(x) to be an invariant perturbation for x for classifiers trained on data that
is inherently (or additionally) augmented with small rotations. A natural question is whether there
are any universal invariant perturbations x + u that are invariant for most x. We show empirically
that there are such universal invariant perturbations. By their very definition we would also expect
that universal invariant perturbations will not be universal adversarial perturbations. We show this
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empirically by plotting the error rates of the top singular invariant perturbation of CIFAR-10 on
ResNet18 in Figure 10, Appendix C. The error rate is below 0.2 even when the norm of the invariant
perturbation is scaled up to 50. We give more empirical evidence of such invariant perturbations - we
show that the principal angles between the subspace of the top 5 universal adversarial perturbations
and the subspace of the top 5 universal invariant perturbations are all close to 90◦.

The empirical and theoretical results in this paper hold in greater generality than what we have
presented. Our experiments indicate the existence of universal adversarial perturbations and univer-
sal invariant perturbations for datasets trained on equivariant networks. GCNN’s Cohen & Welling
(2016) are among the more popular equivariant networks, and achieve state of the art on CIFAR-10.
In Appendix C we give a peek into this work and show plots of the error rates of SVD-Universal on
CIFAR-10 on GCNN’s. We also plot the singular values of CIFAR-10 on GCNN’s.

It is common to augment data with rotations and train neural networks, so they become equivariant
to rotations and so an image and its rotation are classified the same. We believe that a study of how
the subspaces of universal adversarial perturbations and universal invariant perturbations change as
a model is trained to handle more and more rotations will be important. This is ongoing work.

7 CONCLUSION

We show how to use a small sample of input-dependent adversarial attack directions on test inputs
to find a single universal adversarial perturbation that results in a large drop in the accuracy of state
of the art neural network models. Our main observation is a spectral property shared by different
attacks directions such as Gradients, FGSM, DeepFool. We give a theoretical justification for how
this spectral property helps in using the top singular vector as a universal attack direction. We
justify theoretically and empirically that such a perturbation can be computed using only a small
sample of test inputs. Our empirical results also indicate that these universal perturbations are almost
orthogonal to perturbations of inputs that these models are invariant to.
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APPENDIX A DATA SETS AND MODEL ARCHITECTURES USED

Data sets CIFAR-10 dataset consists of 60, 000 images of 32 × 32 size, divided into 10 classes.
40, 000 used for training, 10, 000 for validation and 10, 000 for testing. ImageNet dataset refers
to ILSRVC 2012 dataset (Russakovsky et al., 2015) which consists of images of 224 × 224 size,
divided into 1000 classes. We use the validation set of 50, 000 images for our testing purposes.

All experiments performed on neural network-based models were done using the validation set of
ImageNet and test set of CIFAR-10 datasets.

Model Architectures For the ImageNet based experiments we use pre-trained networks of
VGG16, VGG19 and ResNet50 architectures2. For the CIFAR-10 based experiments we use the
ResNet18 architecture as in He et al. (2016).

2https://pytorch.org/docs/stable/torchvision/models.html
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A.1 SVD-UNIVERSAL ON IMAGENET

Figure 4 shows that the images with SVD-DeepFool perturbations upto norm 100 are quasi-
imperceptible. Figure 5 shows the error rate of SVD-Universal on VGG19 calculated with varying
sample size.

Norm 0 Norm 16 Norm 50 Norm 100 Norm 450

Figure 4: Sample images misclassified at norm 16. Images perturbed with SVD-DeepFool.
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Figure 5: On ImageNet validation, error rate, VGG19: error rate vs. norm of perturbation along top
singular vector of attack directions on 64/128/1024 sample, (top left) Gradient (top right) FGSM
(bottom) DeepFool

A.2 SVD-UNIVERSAL ON CIFAR-10

In this section we plot the error rates of SVD-Universal on CIFAR-10 trained on ResNet18.

Figure 6: On CIFAR-10, ResNet18: error rate vs. norm of perturbation along top singular vector of
attack directions on 100/500/10000 sample, (top left) Gradient (top right) FGSM (bottom) DeepFool
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Figure 7: On CIFAR-10, ResNet18: error rate vs. norm of perturbation along top singular vector of
attack directions on 100 samples.
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APPENDIX B VISUALIZING SVD-UNIVERSAL PERTURBATIONS

We visualize the top singular vectors for the Gradient, FGSM, DeepFool directions from ImageNet
and CIFAR-10 in this section.

Figure 8: For ImageNet, Top SVD vector from (left) Gradient, (center) FGSM, (right) DeepFool on
ResNet50.

Figure 9: For CIFAR-10 (top) Top 5 SVD vectors from Gradient, (middle) Top 5 SVD vectors from
FGSM, (bottom) Top 5 SVD vectors from DeepFool on ResNet18.
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APPENDIX C INVARIANT PERTURBATIONS

C.1 PRINCIPAL COMPONENTS OF ATTACK AND INVARIANT DIRECTIONS

We pick a batch of 100 images, and for each image x in our sample we compute the difference
between x and its 2◦ rotation. We stack these input dependent invariant directions in rows and
compute the top singular invariant (unit) vector w. Figure 10 shows the error rate of εw as a function
of ε on CIFAR-10. The curves are flat indicating that these directions are invariant perturbations.

Figure 10: Error rate vs norm of perturbation using top singular invariant vector for StdCNN and
GCNN on CIFAR-10 test data.

Recall that for two subspaces V ,W , the first principal angle is defined as the minimum angle between
two unit vectors v1 ∈ V , w1 ∈ W . The second principal angle is the minimum angle between unit
vectors v2 ∈ V,w2 ∈ W , with v2 ⊥ v1 and w2 ⊥ w1. The other principal angles are defined
similarly.

Table 1: Principal angles between Top-5 SVD-subspace of gradient directions of test points, and the
Top-5 SVD-subspace of invariant directions on test points (small 2◦ rotations) respectively.

Dataset Model 1 2 3 4 5
CIFAR-10 ResNet18 89.99958413 89.82902968 89.52802116 88.91712082 88.64889062
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APPENDIX D PROOF DETAILS

Theorem 5.6.1 (General covariance estimation) from Vershynin (2018) bounds the spectral norm of
covariance matrix estimated from a small number of samples as follows.
Theorem 3. Let X be a random vector in Rd, d ≥ 2. Assume that for some K ≥ 1, ‖X‖2 ≤

K
(
E
[
‖X‖22

])1/2
, almost surely. Let Σ = E

[
XXT

]
be the covariance matrix of X and Σm =

1
m

∑m
i=1XiX

T
i be the estimated covariance fromm i.i.d. samplesX1, X2, . . . , Xm. Then for every

positive integer m, we have

E [‖Σm − Σ‖2] ≤ C

(√
K2d log d

m
+
K2d log d

m

)
‖Σ‖2 ,

for some positive constant C and ‖Σ‖2 being the spectral norm (or the top eigenvalue) of Σ.

Note that using m = O(ε−2d log d) we get E [‖Σm − Σ‖2] ≤ ε ‖Σ‖2.

A tighter version of Theorem 5.6.1 appears as Remark 5.6.3, when the intrinsic dimension r =
tr (Σ) / ‖Σ‖2 � d.

Theorem 4. Let X be a random vector in Rd, and d ≥ 2. Assume that for some K ≥ 1, ‖X‖2 ≤

K
(
E
[
‖X‖22

])1/2
, almost surely. Let Σ = E

[
XXT

]
be the covariance matrix of X and Σm =

1
m

∑m
i=1XiX

T
i be the estimated covariance fromm i.i.d. samplesX1, X2, . . . , Xm. Then for every

positive integer m, we have

E [‖Σm − Σ‖2] ≤ C

(√
K2r log d

m
+
K2r log d

m

)
‖Σ‖2 ,

for some positive constant C and ‖Σ‖2 being the operator norm (or the top eigenvalue) of Σ.

Note that using m = O(ε−2r log d) we get E [‖Σm − Σ‖2] ≤ ε ‖Σ‖2.

Theorem 4.5.3 (Weyl’s Inequality) from Vershynin (2018) upper bounds the difference between i-th
eigenvalues of two symmetric matrices A and B using the spectral norm of A−B.
Theorem 5. For any two symmetric matrices A and B in Rd×d, |λi(A)− λi(B)| ≤ ‖A−B‖2,
where λi(A) and λi(B) are the i-th eigenvalues of A and B, respectively.

In other words, the spectral norm of matrix perturbation bounds the stability of its spectrum.

Here is a special case of Theorem 4.5.5 (Davis-Kahan Theorem) and its immediate corollary men-
tioned in Vershynin (2018).
Theorem 6. Let A and B be symmetric matrices in Rd×d. Fix i ∈ [d] and assume that the largest
eigenvalue of A is well-separated from the rest of the spectrum, that is, λ1(A) − λ2(A) ≥ δ > 0.
Then the angle θ between the top eigenvectors v1(A) and v1(B) of A and B, respectively, satisfies
sin θ ≤ 2 ‖A−B‖2 /δ.

As an easy corollary, it implies that the top eigenvectors v1(A) and v1(B) are close to each other
up to a sign, namely, there exists s ∈ {−1, 1} such that

‖v1(A)− s v1(B)‖2 ≤
23/2 ‖A−B‖2

δ
.

APPENDIX E ERROR RATES OF CIFAR-10 ON GCNN’S

For a fair comparison, the GCNN configuration used for CIFAR-10 is the same as that of ResNet18,
except that the operations going from one layer to the next are replaced by equivalent GCNN oper-
ations, as given in Cohen & Welling (2016).
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Figure 11: On CIFAR-10, GCNN: error rate vs. norm of perturbation along top singular vector of
attack directions on 100/500/10000 samples, (top left) Gradient (top right) FGSM (bottom) Deep-
Fool

Figure 12: On CIFAR-10, GCNN/ResNet18, Singular values of attack directions over a sample of
(left) 500 and (right) 10,000 test points.

Table 2: Principal angles between Top-5 SVD-subspace of gradient directions of test points, and the
Top-5 SVD-subspace of invariant directions on test points (small 2◦ rotations) respectively.

Dataset Model 1 2 3 4 5
CIFAR-10 GCNN/ResNet18 89.90921558 89.82469625 89.59947099 89.31534574 88.96739966
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