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ABSTRACT

In state of the art model-free off-policy deep reinforcement learning (RL), a replay
memory is used to store past experience and derive all network updates. Even if
both state and action spaces are continuous, the replay memory only holds a finite
number of transitions. We represent these transitions in a data graph and link its
structure to soft divergence. By selecting a subgraph with a favorable structure,
we construct a simple Markov Decision Process (MDP) for which exact Q-values
can be computed efficiently as more data comes in – resulting in a QGRAPH. We
show that the Q-value for each transition in the simplified MDP is a lower bound
of the Q-value for the same transition in the original continuous Q-learning prob-
lem. By using these lower bounds in TD learning, our method is less prone to soft
divergence and exhibits increased sample efficiency while being more robust to
hyperparameters. QGRAPHs also retain information from transitions that have al-
ready been overwritten in the replay memory, which can decrease the algorithm’s
sensitivity to the replay memory capacity.

1 INTRODUCTION

With the wide-spread success of deep neural networks, also deep reinforcement learning (RL) has
enabled rapid improvements in many domains including computer games (Silver et al., 2017) and
simulated continuous control tasks (Mnih et al., 2016). Particularly in areas where correct envi-
ronment models are hard to obtain, such as robotic manipulation, model-free approaches have the
potential to outperform model-based solutions (Fazeli et al., 2017; Levine et al., 2016) – as long as
enough training data is available or can be generated.

Although efforts in the research community on building an understanding of deep RL for sim-
ple examples seem to be rising (Mania et al., 2018), deep reinforcement learning remains under-
investigated from a theoretical point of view. Many algorithms use function approximation, off-
policy learning and bootstrapping together – which has even been called deadly triad by Sutton
& Barto (2018) because this is a very unstable combination of techniques. Although Q-learning
is known to have convergence issues even with linear function approximation (Baird, 1995), deep
Q-learning descendants like DQN and DDPG often excel empirically (Van Hasselt et al., 2018). At
the same time their performance can be unreliable and hard to reproduce (Henderson et al., 2018).

To add to the community’s understanding of when deep Q-learning diverges, we propose a graph-
perspective on the replay memory which allows to analyze its structure. We show on educational
examples which types of structures are linked to divergence, derive our method from these cases
and show that it prevents many cases of soft divergence and thereby helps to stabilize model-free
off-policy deep reinforcement learning.

2 PRELIMINARIES

We consider a standard reinforcement learning setup where an agent interacts in discrete time steps
t = 1, . . . , T with an environment that is modeled as a Markov decision process (MDP) with a state
space S, action space A, an initial state distribution p(s1), transition dynamics p(st+1|st, at) and a
reward function r(st, at). In the following, we will assume deterministic transition dynamics.
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Figure 1: We take a graph perspective on past experience (middle) and extract a subgraph (right)
such that its structure allows to compute exact Q-values using Q-iteration the resulting simplified
and finite MDP. Its Q-values represent lower bounds to the Q-values in the actual continuous MDP.

At each time t, the agent can observe its state st and take an action at which determines the next state
st+1 and an associated reward rt. A policy is a function π that maps from states to actions. The sum
over future expected rewards when following policy π is called return: Rπ =

∑T
i=t γ

i−tri, where
γ is the so-called discount factor. For γ < 1 and a constant reward r for infinite trajectories, the
return forms a geometric series and converges to r

1−γ . This also means, that if the reward function
is bounded by Rmin and Rmax, the smallest and largest possible Q-value can be computed as[

min
(
Rmin,

Rmin

1− γ

)
,max

(
Rmax,

Rmax

1− γ

)]
(1)

respectively (Lee & Kim, 2015). The min/max operations ensure that also cases when terminal
states are reached are covered.

Analogously, if the reward only depends on the current state and the agent stays in a state s forever,
because action a = π(s) does not lead to a change in states, then Q(s, a) = r

1−γ . This transfers to
larger loops, e.g. if transitions (s1, a1, r1, s2) to (sn, an, rn, s1) are known to be induced by a policy
π,

Q(s1, π(s1)) = r1 + γr2 + ...+ γn−1rn︸ ︷︷ ︸
rL

+γnr1 + γn+1r2 + ... = rL

∞∑
t

(γn)t =
rL

1− γn
(2)

The expected future return for executing an arbitrary action at and then following the policy is
called Qπ(st, at) = E

[
rt + γ ·Rπt+1

]
. The agent’s goal is to find the optimal policy π∗ such that

the expected future return is maximized from any state. This can be achieved by finding (a good
approximation to) the Q-function and then choosing the action with highest Q-value in each state.

One popular way to learn a Q-function is temporal difference (TD) learning. Given a transition
(s, a, r, s′), the next Q-value Q′(s, a) is computed based on the current estimate for state s′,

Q′(s, a) = r +

{
0, if s′ is terminal
γ · Q(s′, π(s′)), else

(3)

Such a process with updates that are based on the current estimates of the function to be approxi-
mated is called bootstrapping. Note that bootstrapping is actually only applied in the case of non-
terminal states (i.e. in the second line of the equation). We refer to states that do not require boot-
strapping to estimate a Q-value as anchors.

In small settings with finitely many states and actions, Q can be represented as a table – this form
of Q-learning is referred to as tabular. The policy in tabular Q-learning can be read of the table as
π(s) = argmaxaQ(s, a). In continuous state or action spaces, Eq. (3) can be used with function
approximation.

3 RELATED WORK

One of the most popular function approximators for Q-functions are neural networks: In deep Q
networks (DQN), a single network is trained to take states as an input and output one Q-value for

2



Under review as a conference paper at ICLR 2020

each possible action (Mnih et al., 2015). For continuous actions, an actor-critic architecture can
be used: the policy is approximated by one network (the so-called actor), while a second network
estimates the Q-value for a state-action pair (the critic). In deep deterministic policy gradients
(DDPG), the critic’s estimates are then used as a training signal for the actor network (Lillicrap
et al., 2015).

Both DDPG and DQN are model-free algorithms, i.e. do not assume nor learn a model of the en-
vironment (including dynamics and other objects in the environment). Furthermore, they use off-
policy data, i.e. they store past experience in a replay memory and update their networks based on
this experience, even if the policy π has changed since the data was collected. It is insightful to note
that this replay memory only contains a finite number of transitions (s, a, r, s′, t) that all networks
are updated from, even for continuous state-action spaces.

The original reasoning behind replay memories and experience replay was to break dependencies be-
tween transitions (Mnih et al., 2015), which is important for most function approximation schemes.
We will therefore keep the principle of random selection of data for our learning process, but at
the same time we will make use of additional information that a graph perspective can provide and
would be lost otherwise. Prior work has incorporated trajectory-centric perspectives already: Monte
Carlo updates for example do not estimate Q-values based on single transitions as in Eq. (3) but on
empirical returns for full episodes. Many intermediate algorithms exist, mixing TD-learning and
Monte Carlo approaches, (e.g. Amiranashvili et al. (2018); Munos et al. (2016)) but often the result-
ing gradients on the Q-function suffer from large variance (Doerr et al., 2019). Trajectories have also
been combined to graph structures, for instance to guide exploration (Shkolnik & Tedrake, 2009),
to allow for planning (Farquhar et al., 2018) or to re-visit previously discovered states (Dong et al.,
2019).

Despite its success in many applications, model-free off-policy deep reinforcement learning can
be rather unstable: On the one hand, many algorithms are very sensitive to hyperparameters and
even subtle differences in their implementation (Henderson et al., 2018), making it hard to provide
sensible empirical comparisons. On the other hand, the theoretical underpinning is quite weak:
Reinforcement learning with (even linear) function approximation has already been known to be
instable for more than 20 years (Baird, 1995). Since DQN and DDPG combine (highly non-linear)
function approximation with bootstrapping and off-policy learning, these algorithms are in a cat-
egory of methods that Sutton & Barto (2018) call deadly triad because it is even more prone to
divergence. Other types of off-policy reinforcement learning are much better understood and proven
to converge under certain conditions, e.g. for prediction in finite MDPs with non-linear function
approximation as in (Maei et al., 2009) or control under the assumption of a stationary policy (Maei
et al., 2010). Also simplified MDPs have been examined for reinforcement learning, for instance to
combine model-based and model-free methods as in Seijen et al. (2011).

Since empirical success seems to be on the side of DQN and DDPG though, there has been an in-
creasing number of works on simpler reinforcement learning on the one hand (Mania et al., 2018)
and analyses of small examples to build an understanding of why this often works so well. Van Has-
selt et al. (2018) for instance show that unbounded divergence, which would cause floating point
NaNs, as expected for the deadly triad, barely happens in deep Q-learning. Instead, typically only
soft divergence, causing Q-values beyond the realizable range, is observed. Nonetheless, all vari-
ants of divergence not just lead to instable Q-estimates but also prolong the learning phase – which
is particularly painful for areas with high costs associated to new data samples such as robotics.
Our method, QGRAPH-bounded Q-learning, analyzes cases of soft divergence and prevents many of
them by establishing and using Qgraph-based lower bounds for Q-values.

4 EDUCATIONAL EXAMPLES

Let’s assume a continuous state-action space, but the replay memory only contains up to four tran-
sitions and three states (one of which is terminal). Figure 2 illustrates this as a graph, where each
node is a state and each edge represents a transition. Under the assumption that it is possible for an
agent to have discovered any subset of transitions, 24 = 16 cases emerge from this setting (one of
which is empty and therefore ignored).
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Figure 2: Illustration of the educational example with four transitions and three states (where state
0 is terminal). We characterize transition subsets based on their graph structure: (in-)directly con-
nected to a terminal state (blue, orange); loose ends (green) and disconnected but infinite paths (red).
The right plot illustrates the standard deviation over predicted Q-values for each type of transition.

We have trained a DDPG critic network for each of the 15 cases under the following conditions:
The reward for each step that leads to a non-terminal state is −1 (to encourage fast solutions), the
reward for reaching the terminal state is 0. The states were assigned 2D-coordinates as from the
graph illustration (0: [0, 0], 1: [−1, 1], 2: [1, 1]) and the action to move from state s to state s′ was
defined as the offset a = s′ − s. For the critic network we chose two layers with 4 hidden states,
ReLU activations (except on the output) and Xavier-initialization. The policy was computed as in
tabular Q-learning by selecting the action with highest Q-value for a given state. We performed
ten thousand updates for each case consisting of all available transitions. The whole procedure was
repeated with 10 random seeds (drawn uniformly from [0, 1000]).

Confirming the finding in Van Hasselt et al. (2018), no unbounded divergence occurred (which
would cause floating point NaNs). However, we found occurrences of soft divergence (causing Q-
values beyond the realizable range as given in Eq. (1)). In particular, we have computed the standard
deviation of Q-values for each transition over the different random seeds. Evaluating the results
(Figure 2) for the following four categories of transitions (s, a, r, s′, t) reveals the relation between
graph structure and soft divergence:

Transitions where s′ is terminal are referred to as directly connected. Their Q-values are estimated
almost perfectly, because Q-learning is reduced to supervised learning in these cases (cf Eq. (3)).

Transitions that end in a non-terminal state from which a terminal state is reachable are referred
to as connected. Their Q-estimates exhibit only slightly more variance than the directly connected
transitions. Presumably the reachable terminal state still acts as an anchor for the Q-value (as long
as all transitions on the path are regularly used for updates). In line with this hypothesis, the two
following categories that do not have an anchor show significantly more variance in their predictions:

If no terminal state is reachable from s′ and there is no infinite path from s′, the transition is referred
to as a loose end. These transitions occur for instance at the end of each episode in episodic learning
setups, when the agent is reset to a starting position. It is insightful to note that Q-values for such
transitions are conceptually ill-defined in tabular Q-learning where a state without successors would
be defined as terminal. For non-terminal states, a Q-value could be determined under the assump-
tion that further transitions exist (and just have not been experienced yet), but then the Q-value is
estimated using bootstrapping from another Q-value that has never been explicitly updated. This
may be okay, if the function generalizes nicely from states with well-defined Q-values to loose ends
– however there is no guarantee for this to happen.

Transitions are referred to as disconnected if no terminal state is reachable from s′ but there exists
at least one infinite path from s′. These transitions caused the highest variance in Q-estimates. In
contrast to loose ends however, the Q-value for these transitions is well-defined under the assumption
that all possible transitions are known (cf. Eq. (2)). The method we will introduce in the following
builds on the insight that state of the art deep off-policy RL only updates their networks from a

4



Under review as a conference paper at ICLR 2020

finite set of transitions; but for disconnected transitions the estimate suffers from high variance
although exact Q-values can be computed under the assumption of complete replay memories. This
even holds in our educational toy example in which no data was ever added or removed from the
replay memory. Our method will compute the exact Q-values for a subproblem and use them for
the original learning problem in the form of lower bounds. We will show empirically that, besides
further effects, this reduces the variance of predicted Q-values.

5 METHOD

Despite the continuous state-action space, the networks in DDPG are updated based on a finite set of
transitions from the replay memory. It is therefore possible to take a graph perspective on this data:
A transition (s, a, r, s′, t) can be seen as an edge between the nodes corresponding to states s and s′
(which is terminal iff indicated by t); and can be annotated with r and a. We refer to this directed
graph as data graph (see Figure 1 for an illustration).

QGRAPH
Building on the insights from section 4, we extract all transitions except for loose ends from the data
graph. That is, we select the largest set of transitions from the data graph for which exact Q-values
can be computed under the assumption that the resulting graph is complete (i.e. that all possible
transitions and all states are included). This graph formally induces a smaller finite MDP for which
the associated Q-function can be computed using tabular Q-iteration with guaranteed convergence
due to its contraction property. We refer to this subgraph, annotated with exact Q-values for the
simplified MDP, as QGRAPH.

The Q-values on the QGRAPH can be efficiently computed, e.g. by solving the linear equation
system for a sparse transition matrix or a standard dynamic programming approach to Q-Iteration:
For transitions to terminal states, the Q-value corresponds to the observed reward. Small transition
loops are possible, for instance if an agent gets stuck at an obstacle, and are efficiently treated using
Eq. (2). Whenever a Q-value is newly added or changed, the Q-values of all predecessors are updated
recursively until no Q-values are changing anymore. Thus, the QGRAPH can easily be constructed
incrementally as more data comes in and does not need to be built from a classic replay memory or
data graph for each training.

In many settings, there are known zero actions az that do not change the agent’s state at all, e.g.
moving by 0 units or applying 0 force. If those are applicable in all states, it may be possible to add
a self-loop to every single node in the data graph. This effectively eliminates all lose ends and turns
them into disconnected states, in other words it enables the QGRAPH to contain all transitions from
the data graph.

QGRAPH values as lower bounds on the original Q-learning problem
In most cases, the original MDP actually contains more states or transitions than the simplified MDP
induced by the QGRAPH, in particular for all settings with continuous state-action spaces. Then, the
Q-values do not transfer to the original MDP as a correct solution but in deterministic environments,
they can serve as a lower bound for the true Q-values:

Each Q-valueQ(s, a) on the QGRAPH is based on actually experienced trajectories, but it is possible
that unseen states and transitions exist. Assume that transitions (s0, a1, r1, s1) and (s1, a2, r2, s2)
are already known and part of the QGRAPH, but in fact at least one further transition from s1 exists.
Then the Q-value for the first transition is lower bounded byQ(s1, a2) because of the max operation:

Q(s0, a1) = r +max
a
Q(s1, a) ≥ r +Q(s1, a2)

Thus, each Q-value for a transition in our QGRAPH is a lower bound of the Q-value for the same
transition in the original MDP on continuous state and action spaces.

QGRAPH-bounded Q-learning
Q-values from our QGRAPH can be used as lower bounds in bootstrapping for temporal difference
learning as in Eq. 3 – a method we call QGRAPH-bounded Q-learning:

Q′(s, a) = max(LB, r + ·γmax
a′
Q(s′, a′)) (4)
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Figure 4: The 7-state star problem (Baird, 1999). Using vanilla TD-learning, state values and
weights spiral out to infinity (orange dots). Applying our graph perspective however makes TD-
learning converge to the correct solution (blue solid line).

where LB represents a per-sample lower bound.

Loose ends are not associated with such a lower bound but could potentially still carry important
information (e.g. in cases where the function approximator has generalized nicely to the states
involved). The transitions associated with loose can therefore still be used as usual, i.e. using un-
bounded TD-learning.

6 EXPERIMENTAL RESULTS

Figure 3: Simulated Peg-
In-Hole task.

We evaluated the core of our method on a classical toy example and
empirically examine further aspects of the method on a simulated peg-
in-hole problem.

6.1 BAIRD’S STAR PROBLEM

The 7-state star problem (Figure 4) was proposed by Baird (1999) to
demonstrate convergence issues in value iteration with (linear) function
approximation. The agent receives a reward of zero for each action and
thus the correct solution to the problem is to set all weights to zero and
obtain state-values of zero. If all weights are initially positive and w0 larger than the others, this
causes oscillatory behavior of both state values and weights. We reproduced the exact setting and
result plots for Figure 4.2 in Baird (1999). Applying our graph view to the problem, we can derive
a lower bound of zero for V7 because it has a self-loop with reward 0; and thus this lower bound
recursively leads to a lower bound of 0+γV7 = 0 for all other states. These graph-based bounds can
be applied in TD learning in analogy to Eq. (4) as V ′(s) = max(LB, r + γV (s′)). As a result, our
method converges to the correct state values rather than diverging to infinity as Figure 4 illustrates.

6.2 EXPERIMENTAL SETUP

All further experiments were conducted in a simulated environment, see environment details in
Appendix A.1 and DDPG implementation details in Appendix A.2. After each epoch, the Q-targets
were updated, i.e. no explicit target network was used, since those are known to prolong training and
thereby postpone convergence issues but not solve them (Van Hasselt et al., 2018). All algorithms
were tested for 300 episodes. We tested vanilla DDPG on a grid of learning rates for actor and critic
in {10−2, 10−3, 10−4} and chose three cases that are representative for the spectrum of DDPG
performance. The learning curves for all learning rates are shown in Appendix 7. Most results will
be presented in the form of learning curves, where the line represents the mean performance over
ten runs with different random seeds and the shaded area highlights the standard deviation of the
mean estimator, i.e. σ√

n
.

6.3 SAMPLE EFFICIENCY AND ROBUSTNESS TO HYPERPARAMETERS

We hypothesized that QGRAPH-based lower bounds would correctly limit the range of Q-values
which prevents some cases of soft divergence and thereby increases sample efficiency. We further
hypothesized that explicit bounds would barely have any impact in cases when vanilla Q-learning
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Figure 5: Learning curves for vanilla DDPG and QGRAPH-bounded Q-learning(’QG’) on the left; a
number of baselines in the center; and performance under limited graph capacity on the right.

works well, because our method as described in Eq. (4) reduces to standard TD learning when
no bound is violated. In other words this implies that QGRAPH-bounded Q-learning should never
decrease performance.

For a first overview, we compared learning curves of QGRAPH-bounded Q-learning (’QG’) to those
of vanilla DDPG in Figure 5 (left). As expected, QGRAPHs speed up learning for all examined
learning rates. The effect size varies and is larger for those learning rates that lead to relatively poor
performance in vanilla DDPG. This decrease the gap in performance between different learning rates
and can therefore be interpreted as an indicator for increased robustness to hyperparameters.

6.4 VARIANCE OF PREDICTIONS
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Figure 6: Standard deviation of pre-
dicted Q-values.

To assess if this performance is due to similar effects as in our
educational examples, we evaluated the variance in predicted
Q-values at the end of each experiment under the learning rate
with largest effect size (10−4). We covered the state space
with a regular grid of 27 states and evaluated the learned Q-
value for each of these states with a set of eleven given actions
as well as with the action that the actor network suggests for
each state. The full list of all states and given actions that
were tested can be found in Appendix A.4.

For the boxplot in Figure 6, we collected the standard devi-
ations over the predicted Q-values for each state-action pair
from 10 runs with different random seeds. The orange line indicates the median value, the box
extends from the lower to the upper quartile value, the whiskers cover 1.5 times the inter quartile
range and outliers are shown as circles. The results shows very clearly that QGRAPH-runs resulted
in significantly less variance for predicted Q-values, indicating that QGRAPH-bounded Q-learning
does indeed prevent cases of soft divergence.

6.5 FURTHER BASELINES

We ran the following baselines to deepen our understanding of the previously reported effects:

In many settings a zero action is known that does not change the agent’s state (in our case it is the
offset in position by zero meters). Adding hypothetical transitions with the zero action after each
physical transition (’vanilla-ZA’) improves the structure of the data graph by turning loose ends
into disconnected transitions. Using zero actions in our method (’QG-ZA’) not only improves the
structure of the data graph but also spreads information in the form of lower bounds to predecessors
in the QGRAPH. The results in the center of Figure 5 show that zero actions improve marginally
over vanilla DDPG and QGRAPH-bounded Q-learning. This implicates on the one hand that the
structure of the data graph matters and that in particular vanilla DDPG benefits from a structure
without loose ends. A the same time, adding our QGRAPHis much more effective than changing the
data graph only. This demonstrates that the propagation of information through the QGRAPH and
the integration of lower bounds into TD-learning are the main contribution of our method.
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The next set of baselines was designed to evaluate how much influence the exact bounds have.
Bounded temporal difference learning could, besides our QGRAPH-based bounds, integrate two fur-
ther types of lower and upper bounds: A priori bounds may be known in the case of a bounded
reward function, see Eq. (1). Empirical bounds may seem like an alternative for correct a priori
bounds: rather than using known bounds on the reward, these bounds could be estimated from expe-
rience. Note that the true Q-values are guaranteed to lie within QGRAPH-based bounds and correct
a priori bounds, while empirical bounds might be too tight. We combined QGRAPH-bounded Q-
learning and vanilla DDPG with both types of bounds. When several bounds were available for
one Q-value, the tightest upper and lower bound were chosen. The results in Figure 5 confirm that
incorrect empirical bounds (green lines) have adverse effects on both methods, while a priori bounds
do not seem to have any significant effect. We conclude that the tight sample-specific lower bounds
from our QGRAPH are key and much more informative than more general bounds.

6.6 LIMITED GRAPH CAPACITY

In deep reinforcement learning, the replay memory is typically a FIFO-buffer, i.e. those elements
that were added first are overwritten first when the buffer is full (’first in, first out’). For a data graph,
it is possible to delete single transitions but there are two possible effects: On the one hand, some
information from deleted transitions can be implicitly contained in its predecessors’ Q-values on the
QGRAPH, which could imply that our method is more robust to small memory capacities. On the
other hand, cuts from deleted transitions can stop information propagation through the QGRAPH,
which could in turn slow down further progress. We therefore empirically compared the drop in
performance for vanilla DDPG and our QGRAPH-bounded Q-learning with graph capacities of 1000
and 5000 transitions. For comparison, the average unlimited graph contained roughly 30,000 unique
transitions at the end of our 300 episode experiments. As the right plot in Figure 5 illustrates,
a QGRAPH-based method that is limited to only 1000 samples still performs on par with unlimited
vanilla DDPG, while the vanilla DDPG performance decreases for a limit of 1000 transitions. Higher
graph capacities do not seem to impact performance significantly.

7 CONCLUSION

From the observation that even for continuous state and action spaces, model-free off-policy deep
reinforcement learning algorithms perform network updates on a finite set of transitions, we have
developed a graph perspective on the replay memory that allows closer analysis. Exploiting the
graph structure, we chose a subset of transitions that give rise to a simplified MDP for which exact
Q-values can be computed. We have shown that these Q-values can serve as lower bounds for the
actual Q-learning problem on the full state-action space.

Our method converges on Baird’s classical star problem and empirically enhances DDPG perfor-
mance on a simulated peg-in-hole task. The largest boost in performance was observed for those
hyperparameters that lead to worst DDPG performance, supporting the view that our method pre-
vents some degenerate cases in function approximation for model-free off-policy deep reinforce-
ment learning. Additionally, the QGRAPH that holds the lower bounds, provides an additional kind
of memory for information from transitions which have already been overwritten in the replay mem-
ory.

The current version of this method is only guaranteed to be correct in deterministic environments,
leaving a probabilistic extension for future work. Furthermore, we believe that the reward function
interacts with soft divergence in Q-learning and might examine potential implications for reward
shaping in the future.
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A APPENDIX

A.1 PEG-IN-HOLE ENVIRONMENT DETAILS

The environment was implemented using pybullet1 A blue peg is supposed to be inserted into a green
object (see Figure 3). The peg is always upright and velocity-controlled: an action represents the
three-dimensional offset to the next position. The simulation is stepped forward until a stable new
position is reached. The actions are box-constrained to [−1, 1] in each dimension which corresponds
to a movement of 1cm. The green object has a width of 5cm and is within a cubic state space of
width 20cm. The peg has a diameter of 1cm, the hole’s diameter is 2cm. The agent receives a
distance-based reward r = exp(− δ

0.03 ) − 1, where δ is the Euclidean distance to the goal position
in meters.

A.2 NETWORK DETAILS

The critic network consists of three fully connected layers with 200 nodes each. For the inner layers,
ReLU activations were used. The network was initialized with weights sampled from a normal distri-
bution of mean 0 and std 0.001. The actor network also consists of three fully connected layers with
200 nodes each, but used tanh activations and was initialized from a He-uniform distributions (He
et al., 2015).

All neural networks were implemented using tensorflow2 and optimized using the AdamOptimizer,
with 50 training epochs after each episode (i.e. 200 agent steps) and up to 15 random mini batches
of data per epoch.

A.3 DETAILED PERFORMANCE FOR DIFFERENT LEARNING RATES

We ran vanilla DDPG on a grid of learning rates where both actor and critic learning rates is cho-
sen from {10−2, 10−3, 10−4}. We chose the three curves with solid lines as representative for the
spectrum of performance and based all further evaluation on these learning rates.
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Figure 7: Vanilla DDPG performance for all tested learning rates.

1https://github.com/bulletphysics/bullet3
2www.tensorflow.org
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A.4 STATE-ACTION PAIRS TESTED FOR VARIANCE IN PREDICTED Q-VALUES

Here we show all states and actions that were used to examine the variance in Q-estimates in Fig-
ure 6.
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