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ABSTRACT

Natural question generation (QG) aims to generate questions from a passage and
an answer. Previous works on QG either (i) ignore the rich structure informa-
tion hidden in text, (ii) solely rely on cross-entropy loss that leads to issues like
exposure bias and inconsistency between train/test measurement, or (iii) fail to
fully exploit the answer information. To address these limitations, in this paper,
we propose a reinforcement learning (RL) based graph-to-sequence (Graph2Seq)
model for QG. Our model consists of a Graph2Seq generator with a novel Bidi-
rectional Gated Graph Neural Network based encoder to embed the passage, and
a hybrid evaluator with a mixed objective function that combines both the cross-
entropy and RL loss to ensure the generation of syntactically and semantically
valid text. We also introduce an effective Deep Alignment Network for incorpo-
rating the answer information into the passage at both the word and contextual
level. Our model is end-to-end trainable and achieves new state-of-the-art scores,
outperforming existing methods by a significant margin on the standard SQuAD
benchmark for QG.

1 INTRODUCTION

Natural question generation (QG) has many useful applications such as improving the question an-
swering task (Chen et al., 2017} 2019a) by providing more training data (Tang et al., 2017} Yuan
et al.| [2017), generating practice exercises and assessments for educational purposes (Heilman &
Smith} 2010; Danon & Last,|[2017), and helping dialog systems to kick-start and continue a conver-
sation with human users (Mostafazadeh et al.,2016). While many existing works focus on QG from
images (Fan et al., 2018} [Li et al., |2018)) or knowledge bases (Serban et al., [2016; |[Elsahar et al.,
2018)), in this work, we focus on QG from text.

Conventional methods (Mostow & Chen, 2009; Heilman & Smith},|2010; Heilman, 2011) for QG rely
on heuristic rules or hand-crafted templates, leading to the issues of low generalizability and scal-
ability. Recent attempts have been focused on exploiting Neural Network (NN) based approaches
that do not require manually-designed rules and are end-to-end trainable. Encouraged by the huge
success of neural machine translation, these approaches formulate the QG task as a sequence-to-
sequence (Seq2Seq) learning problem. Specifically, attention-based Seq2Seq models (Bahdanau
et al., 2014} |Luong et al.l 2015) and their enhanced versions with copy (Vinyals et al.l 2015} (Gu
et al.|[2016) and coverage (Tu et al.| | 2016) mechanisms have been widely applied and show promis-
ing results on this task (Du et al.l|2017; Zhou et al., 2017; Song et al., 2018a; Kumar et al., 2018a).
However, these methods typically ignore the hidden structural information associated with a word
sequence such as the syntactic parsing tree. Failing to utilize the rich text structure information
beyond the simple word sequence may limit the effectiveness of these models for QG.

It has been observed that in general, cross-entropy based sequence training has several limitations
like exposure bias and inconsistency between train/test measurement (Ranzato et al., 2015} [Wu
et al.,|2016). As a result, they do not always produce the best results on discrete evaluation metrics
on sequence generation tasks such as text summerization (Paulus et al., 2017 or question gener-
ation (Song et al.l [2017). To cope with these issues, some recent QG approaches (Song et al.,
2017; |[Kumar et al., 2018b) directly optimize evaluation metrics using Reinforcement Learning
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(RL) (Williams| [1992)). However, existing approaches usually only employ evaluation metrics like
BLEU and ROUGE-L as rewards for RL optimization. More importantly, they fail to exploit other
important metrics such as syntactic and semantic constraints for guiding high-quality text genera-
tion.

Early works on neural QG did not take into account the answer information when generating a
question. Recent works have started to explore various means of utilizing the answer information.
When question generation is guided by the semantics of an answer, the resulting questions become
more relevant and readable. Conceptually, there are three different ways to incorporate the answer
information by simply marking the answer location in the passage (Zhou et al., 2017; |Zhao et al.,
2018 [Liu et al., 2019), or using complex passage-answer matching strategies (Song et al., [2017),
or separating answers from passages when applying a Seq2Seq model (Kim et al.,|2018}; |Sun et al.,
2018). However, they neglect potential semantic relations between passage words and answer words,
and thus fail to explicitly model the global interactions among them in the embedding space.

To address these aforementioned issues, in this paper, we present a novel reinforcement learning
based generator-evaluator architecture that aims to: i) make full use of rich hidden structure in-
formation beyond the simple word sequence; ii) generate syntactically and semantically valid text
while maintaining the consistency of train/test measurement; iii) model explicitly the global interac-
tions of semantic relationships between passage and answer at both word-level and contextual-level.
In particular, to achieve the first goal, we first explore two different means to either construct a
syntax-based static graph or a semantics-aware dynamic graph from the text sequence, as well as its
rich hidden structure information. Then, we design a graph-to-sequence (Graph2Seq) model based
generator that encodes the graph representation of a text passage and decodes a question sequence
using a Recurrent Neural Network (RNN). Our Graph2Seq model is based on a novel bidirectional
gated graph neural network, which extends the original gated graph neural network (Li et al., [2015)
by considering both incoming and outgoing edges, and fusing them during the graph embedding
learning. To achieve the second goal, we design a hybrid evaluator which is trained by optimizing
a mixed objective function that combines both cross-entropy and RL loss. We use not only discrete
evaluation metrics like BLUE, but also semantic metrics like word mover’s distance (Kusner et al.,
2015) to encourage both syntactically and semantically valid text generation. To achieve the third
goal, we propose a novel Deep Alignment Network (DAN) for effectively incorporating answer
information into the passage at multiple granularity levels.

Our main contributions are as follows:

e We propose a novel RL-based Graph2Seq model for natural question generation. To the
best of our knowledge, we are the first to introduce the Graph2Seq architecture for QG.

e We explore both static and dynamic ways of constructing graph from text and are the first
to systematically investigate their performance impacts on a GNN encoder.

e The proposed model is end-to-end trainable, achieves new state-of-the-art scores, and out-
performs existing methods by a significant margin on the standard SQuAD benchmark for
QG. Our human evaluation study also corroborates that the questions generated by our
model are more natural (semantically and syntactically) compared to other baselines.

2 AN RL-BASED GENERATOR-EVALUATOR ARCHITECTURE

In this section, we define the question generation task, and then present our RL-based Graph2Seq
model for question generation. We first motivate the design, and then present the details of each
component as shown in Fig. [T}

2.1 PROBLEM FORMULATION

The goal of question generation is to generate natural language questions based on a given form of
data, such as knowledge base triples or tables (Bao et al. [2018), sentences (Du et al.l [2017; [Song
et al.,2018a), or images (L1 et al.||2018)), where the generated questions need to be answerable from
the input data. In this paper, we focus on QG from a given text passage, along with a target answer.

We assume that a text passage is a collection of word tokens X? = {z}, 2}, ..., 2%}, and a target
answer is also a collection of word tokens X* = {z{,z%,...,x%}. The task of natural question
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Figure 1: Overall architecture of the proposed model. Best viewed in color.

generation is to generate the best natural language question consisting of a sequence of word tokens
Y = {y1,v2, ..., yr} which maximizes the conditional likelihood Y = arg max, P(Y|X?, X%).
Here N, L, and T are the lenghts of the passage, answer and question, respectively. We focus on the
problem setting where we have a set of passage (and answers) and target questions pairs, to learn
the mapping; existing QG approaches (Du et al., 2017} [Song et al., 2018a} |Zhao et al., 2018; |Kim
et al.,[2018)) make a similar assumption.

2.2 DEEP ALIGNMENT NETWORK

Answer information is crucial for generating relevant and high quality questions from a passage. Un-
like previous methods that neglect potential semantic relations between passage and answer words,
we explicitly model the global interactions among them in the embedding space. To this end, we
propose a novel Deep Alignment Network (DAN) component for effectively incorporating answer
information into the passage with multiple granularity levels. Specifically, we perform attention-
based soft-alignment at the word level, as well as at the contextualized hidden state level, so that
multiple levels of alignments can help learn hierarchical representations.

Figure 2: The attention-based soft-alignment mechanism.

Let XP € RFXN and XP € RFXN denote two embeddings associated with messasge text. Similarly,

let X® € RF*L and X € RF*L denoted two embeddings associated with answer text. Concep-
tually, as shown in Fig. |2 the soft-alignment mechanism consists of three steps: i) compute the
attention score j3; ; for each pair of passage word z! and answer word x§: ii) multiply the atten-

tion matrix 3 with the answer embeddings X to obtain the aligned answer embeddings H? for the
passage; iii) concatenate the resulting ahgned answer embeddings H? with the passage embeddings

XP? to get the final passage embeddings H? € RF*N
Formally, we define our soft-alignment function as following:
HP? = Align(X?, X%, X?, X%) = CAT(X?; H?) = CAT(X?; X“g") (1)

where the matrix HP is the final passage embedding, the function CAT is a simple concatenation
operation, and 3 is a N x L attention score matrix, computed by

B o exp (ReLU(WXP)TReLU(Wxa)) 2)
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where W € R?*F is a trainable weight matrix, with d being the hidden state size and ReLU is the
rectified linear unit (Nair & Hinton, 2010). After introducing the general soft-alignment mechanism,
we next introduce how we do soft-alignment at both word-level and contextualized hidden state
level.

2.2.1 WORD-LEVEL ALIGNMENT

In the word-level alignment stage, we first perform a soft-alignment between the passage and the
answer based only on their pretrained GloVe embeddings and compute the final passage embed-
dings by H? = Align(G?, G*, [G?; BP; L], G%), where GP, BP, and L” are the corresponding
GloVe embedding (Pennington et al., 2014), BERT embedding (Devlin et al., [2018)), and linguistic
feature (i.e., case, NER and POS) embedding of the passage text, respectively. Then a bidirectional
LSTM (Hochreiter & Schmidhuber,|1997) is applied to the final passage embeddings HP = {Ef W

to obtain contextualized passage embeddings H? € RF*V,

On the other hand, for the answer text X, we simply concatenate its GloVe embedding G and
its BERT embedding B® to obtain its word embedding matrix H® € R%*L_ Another BiLSTM is
then applied to the concatenated answer embedding sequence to obtain the contextualized answer
embeddings H® € R <L,

2.2.2 HIDDEN-LEVEL ALIGNMENT

In the hidden-level alignment stage, we perform another soft-alignment based on the contextual-
ized passage and answer embeddings. Similarly, we compute the aligned answer embedding, and
concatenate it with the contextualized passage embedding to obtain the final passage embedding ma-
trix Align([GP; B?; H?], [G*; B*; H*], H?, H®). Finally, we apply another BILSTM to the above
concatenated embedding to get a F' x N passage embedding matrix X.

2.3 BIDIECTIONAL GRAPH-TO-SEQUENCE GENERATOR

While RNNs are good at capturing local dependencies among consecutive words in text, GNNs
have been shown to better utilize the rich hidden text structure information such as syntactic parsing
(Xu et al., 2018b) or semantic parsing (Song et al., | 2018b), and can model the global interactions
(relations) among sequence words to further improve the representations. Therefore, unlike most of
the existing methods that rely on RNNs to encode the input passage, we first construct a passage
graph G from text where each passage word is treated as a graph node, and then employ a novel
Graph2Seq model to encode the passage graph (and answer), and to decode the natural language
question.

2.3.1 PASSAGE GRAPH CONSTRUCTION

Existing GNNs assume a graph structured input and directly consume it for computing the corre-
sponding node embeddings. However, we need to construct a graph from the text. Although there
are early attempts on constructing a graph from a sentence (Xu et al., 2018b), there is no clear an-
swer as to the best way of representing text as a graph. We explore both static and dynamic graph
construction approaches, and systematically investigate the performance differences between these
two methods in the experimental section.

Syntax-based static graph construction: We construct a directed and unweighted passage graph
based on dependency parsing. For each sentence in a passage, we first get its dependency parse
tree. We then connect neighboring dependency parse trees by connecting those nodes that are at a
sentence boundary and next to each other in text.

Semantics-aware dynamic graph construction: We dynamically build a directed and weighted graph
to model semantic relationships among passage words. We make the process of building such a
graph depend on not only the passage, but also on the answer. The graph construction procedure
consists of three steps: i) we compute a dense adjacency matrix A for the passage graph by applying
self-attention to the word-level passage embeddings W?, ii) a KNN-style graph sparsification strat-
egy is adopted to obtain a sparse adjacency matrix A, where we only keep the K nearest neighbors
(including itself) as well as the associated attention scores (i.e., the remaining attentions scores are
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masked off) for each node; and iii) inspired by BiLSTM over LSTM, we also compute two nor-
malized adjacency matrices A~ and A" according to their incoming and outgoing directions, by
applying softmax operation on the resulting sparse adjacency matrix A and its transpose, respec-
tively.

A = ReLU(UWP?)T ReLU(UWP?), A =KNN(A), A7 A" =softmax({A,AT}) (3)

where U is a d x d,, trainable weight matrix. Note that the supervision signal is able to back-
propagate through the KNN-style graph sparsification operation since the K nearest attention scores
are kept.

2.3.2 BIDIRECTIONAL GATED GRAPH NEURAL NETWORKS

To effectively learn the graph embeddings from the constructed text graph, we propose a novel Bidi-
rectional Gated Graph Neural Network (BiGGNN) which extends Gated Graph Sequence Neural
Networks (Li et al. 2015) by learning node embedding from both incoming and outgoing edges
in an interleaved fashion when processing the directed passage graph. Similar idea has also been
exploited in (Xu et al., |2018a), which extended another popular variant of GNNs - GraphSAGE
(Hamilton et al.l [2017). However, one of key difference between our BiGGNN and their bidi-
rectional GraphSAGE is that we fuse the intermediate node embeddings from both incoming and
outgoing edges in every iteration during the training, whereas their model simply trains the node
embeddings of each direction independently and concatenates them in the final step.

In BiGGNN, node embeddings are initialized to the contextualized passage embeddings HP returned
by the Deep Alignment Network. The same set of network parameters are shared at every hop
of computation. At each computation hop, for every node in the graph, we apply an aggregation
function which takes as input a set of incoming (or outgoing) neighboring node vectors and outputs
a backward (or forward) aggregation vector. For the syntax-based static graph, we use a mean
aggregator for simplicity although other operators such as max or attention (Velickovic et al., 2017)
could also be employed,

hy ., = MEAN({hj ™'} U {hi~", Vu e N_,)})

. . 4)
hy, ., = MEAN({h; '} U {hi~",Vu e Ny ()})

For the semantics-aware dynamic graph we compute a weighted average for aggregation where the
weights come from the normalized adjacency matrices A~ and A", defined as,

k — = k-1 k _ k-1
hNA(,U) - Z av,uhu ’ hNHv) - Z a’u,uhu (5)
V’LLGNA(W VUENF(,[,)

While (Xu et al.l [2018a)) learn separate node embeddings for both directions independently, we
choose to fuse the information aggregated in the two directions at each hop, which we find works
better in general.

hy = Fuse(h%, by, ) (6)
We design the fusion function as a gated sum of two information sources,

Fuse(a,b) =zGa+ (1-2z)Ob, z=0c(W,[a;b;a®@b;a—Db]+b,) (7
where © is the component-wise multiplication, ¢ is a sigmoid function, and z is a gating vector.

Finally, a Gated Recurrent Unit (GRU) (Cho et al.}2014) is used to update the node embeddings by
incorporating the aggregation information.

h} = GRU(h; ™', hY) (8)

After n hops of GNN computation, where 7 is a hyperparameter, we obtain the final state embedding
h? for node v. To compute the graph-level embedding, we first apply a linear projection to the node
embeddings, and then apply max-pooling over all node embeddings to get a d-dim vector h9.

2.3.3 RNN DECODER

On the decoder side, we adopt the same model architecture as other state-of-the-art Seq2Seq
mdoels where an attention-based (Bahdanau et al., 2014; [Luong et al., 2015) LSTM decoder with
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copy (Vinyals et al.|[2015; |Gu et al., 2016 and coverage mechanisms (Tu et al.,|2016) is empolyed.
The decoder takes the graph-level embedding h9 followed by two separate fully-connected layers
as initial hidden states (i.e., ¢y and sg) and the node embeddings {h?,Vv € G} as the attention

memory, and generates the output sequence one word at a time. The particular decoder used in this
work closely follows (See et al.,[2017). We refer the readers to Appendix |A|for more details.

2.4 HYBRID EVALUATOR

It has been observed that optimizing such cross-entropy based training objectives for sequence learn-
ing does not always produce the best results on discrete evaluation metrics (Ranzato et al., 2015}
Wu et al.|, 2016} [Paulus et al., 2017). Major limitations of this strategy include exposure bias and
evaluation discrepancy between training and testing. To tackle these issues, some recent QG ap-
proaches (Song et al., 2017 [Kumar et al., 2018b) directly optimize evaluation metrics using REIN-
FORCE. We further use a mixed objective function with both syntactic and semantic constraints for
guiding text generation. In particular, we present a hybrid evaluator with a mixed objective function
that combines both cross-entropy loss and RL loss in order to ensure the generation of syntactically
and semantically valid text.

For the RL part, we employ the self-critical sequence training (SCST) algorithm (Rennie et al.,
2017) to directly optimize the evaluation metrics. SCST is an efficient REINFORCE algorithm that
utilizes the output of its own test-time inference algorithm to normalize the rewards it experiences.
In SCST, at each training iteration, the model generates two output sequences: the sampled output
Y?, produced by multinomial sampling, that is, each word ¥; is sampled according to the likelihood
P(yt| X, y<¢) predicted by the generator, and the baseline output Y, obtained by greedy search, that
is, by maximizing the output probability distribution at each decoding step. We define (V) as the
reward of an output sequence Y, computed by comparing it to corresponding ground-truth sequence
Y'* with some reward metrics. The loss function is defined as:

L= (r(Y) =r(Y*)) Y log P(y; | X, y%,) ()

As we can see, if the sampled output has a higher reward than the baseline one, we maximize its
likelihood, and vice versa.

One of the key factors for RL is to pick the proper reward function. To take syntactic and semantic
constraints into account, we consider the following metrics as our reward functions:

Evaluation metric as reward function: We use one of our evaluation metrics, BLEU-4, as our reward
function feya, which lets us directly optimize the model towards the evaluation metrics.

Semantic metric as reward function: One drawback of some evaluation metrics like BLEU is that
they do not measure meaning, but only reward systems for n-grams that have exact matches in
the reference system. To make our reward function more effective and robust, we additionally use
word movers distance (WMD) as a semantic reward function fe,. WMD is the state-of-the-art
approach to measure the dissimilarity between two sentences based on word embeddings (Kusner
et al., 2015). Following |Gong et al| (2019), we take the negative of the WMD distance between
a generated sequence and the ground-truth sequence and divide it by the sequence length as its
semantic score.

We define the final reward function as 7(Y) = feya (Y, Y™*) + afem(Y, Y*) where « is a scalar.

2.5 TRAINING AND TESTING

We train our model in two stages. In the first state, we train the model using regular cross-entropy
loss, defined as,

Elm = Z - logp(y;k‘Xa yit) + )‘ COVIOSSt (10)
t

where y;* is the word at the ¢-th position of the ground-truth output sequence and covloss; is the
coverage loss defined as ), min(al, c}), with a! being the i-th element of the attention vector over

the input sequence at time step ¢. Scheduled teacher forcing (Bengio et al.| 2015) is adopted to
alleviate the exposure bias problem. In the second stage, we fine-tune the model by optimizing a
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mixed objective function combining both cross-entropy loss and RL loss, defined as,
L= ’Y‘Crl + (1 - ’y)ﬁlm (11)

where 7 is a scaling factor controling the trade-off between cross-entropy loss and RL loss. During
the testing phase, we use beam search to generate final predictions.

3  EXPERIMENTS

We evaluate our proposed model against state-of-the-art methods on the SQuAD dataset (Rajpurkar
et al.,2016). Our full models have two variants G2S,;,+BERT+RL and G2S4,,,+BERT+RL which
adopts static graph construction or dynamic graph construction, respectively. For model settings and
sensitivity analysis, please refer to Appendix and

3.1 BASELINE METHODS

We compare against the following baselines in our experiments: i) SeqCopyNet (Zhou
et all [2018), ii)) NQG++ (Zhou et all [2017), iii) MPQG+R (Song et al, 2017), iv)
Answer-focused Position-aware model (Sun et al., 2018)), v) s2sa-at-mp-gsa (Zhao et al.| 2018), vi)
ASs2s (Kim et al., [2018)), and vii) CGC-QG (Liu et al.;2019). Detailed descriptions of the baselines
are provided in Appendix [D| Experiments on baselines followed by * are conducted using released
source codes. Results of other baselines are taken from the corresponding papers, with unreported
metrics marked as —.

3.2 DATA AND METRICS

SQuAD contains more than 100K questions posed by crowd workers on 536 Wikipedia arti-
cles. Since the test set of the original SQUAD is not publicly available, the accessible parts
(~90%) are used as the entire dataset in our experiments. For fair comparison with previ-
ous methods, we evaluated our model on both data split-1 (Song et al., 2018aﬂ that contains
75,500/17,934/11,805 (train/development/test) examples and data split-2 (Zhou et al., 2017) E]that
contains 86,635/8,965/8,964 examples.

Following previous works, we use BLEU-4 (Papineni et al., 2002), METEOR (Banerjee & Lavie,
2005) and ROUGE-L (Lin, 2004) as our evaluation metrics. Initially, BLEU-4 and METEOR were
designed for evaluating machine translation systems and ROUGE-L was designed for evaluating
text summarization systems. Note that we only report BLEU-4 on split-2 since most of the baselines
only report this result.

Besides automatic evaluation metrics, we also conduct a human evaluation study on split-2. We ask
human evaluators to rate generated questions from a set of anonymized competing systems based
on whether they are syntactically correct, semantically correct and relevant to the passage. The
rating scale is from 1 to 5, on each of the three categories. Evaluation scores from all evaluators
were collected and averaged as final scores. Further details on human evaluation can be found
in Appendix [E]

3.3 EXPERIMENTAL RESULTS AND HUMAN EVALUATION

Table |1| shows the automatic evaluation results comparing our proposed models against other state-
of-the-art baseline methods. First of all, we can see that both of our full models G2S,;,+BERT+RL
and G284y, +BERT+RL achieve the new state-of-the-art scores on both data splits and consistently
outperform previous methods by a significant margin. This highlights that our RL-based Graph2Seq
model, together with the deep alignment network, successfully addresses the three issues we high-
lighted in Sec. E} Between these two variants, G2S,;,+BERT+RL outperforms G2S 4,,,+BERT+RL
on all the metrics. Also, unlike the baseline methods, our model does not rely on any hand-crafted
rules or ad-hoc strategies, and is fully end-to-end trainable.

!'The implementation of our model will be made publicly available after the review period.
Zhttps://www.cs.rochester.edu/~1lsongl0/downloads/ngg_data.tgz
Shttps://res.qgyzhou.me/redistribute.zip
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Table 1: Automatic evaluation results on the SQuAD test set.

Split-1 Split-2
Methods BLEU-4 METEOR ROUGE-L BLEU-4
SeqCopyNet (Zhou et al[[2018) - - - 13.02
NQG++ (Zhou et al.,[2017) - — - 13.29
MPQG+R* (Song et al.,[2017) 14.39 18.99 42.46 14.71
AFPQA (Sun et al.,[2018) - - - 15.64
s2sa-at-mp-gsa (Zhao et al., 2018) 15.32 19.29 4391 15.82
ASs2s (Kim et al.,[2018)) 16.20 19.92 43.96 16.17
CGC-QG (Liu et al.,[2019) - - - 17.55
G2S4,,+BERT+RL 17.55 21.42 45.59 18.06
G2S.:,+BERT+RL 17.94 21.76 46.02 18.30

Table 2: Human evaluation results on the SQuAD split-2 test set. The rating scale is from 1 to 5
(higher scores indicate better results).

Methods Syntactically correct Semantically correct Relevant
MPQG+R* 4.34 4.01 3.21
G2S4:,+BERT+RL 441 4.31 3.79
Ground-truth 4.74 4.74 4.25

As shown in Table 2] we conducted a human evaluation study to assess the quality of the questions
generated by our model, the baseline method MPQG+R, and the ground-truth data in terms of syn-
tax, semantics and relevance metrics. We can see that our best performing model achieves good
results even compared to the ground-truth, and outperforms the strong baseline method MPQG+R.
Our error analysis shows that main syntactic error occurs in repeated/unknown words in generated
questions. Further, the slightly lower quality on semantics also impacts the relevance.

3.4 ABLATION STUDY

Table 3: Ablation study on the SQuAD split-2 test set.

Methods BLEU-4 Methods BLEU-4
G2S4yn+BERT+RL 18.06 G2S4yn 16.81
G2S,:,+BERT+RL 18.30 G2Sta 16.96
G2S,:,+BERT-fixed+RL 18.20 G2S4yn w/o DAN 12.58
G2S4yn+BERT 17.56 G2S,:, Ww/o DAN 12.62
G2S,;,+BERT 18.02 G2S,;, w/o BiGGNN, w/ Seq2Seq 16.14
G2S,;,+BERT-fixed 17.86 G2S,;, w/o BiGGNN, w/ GCN 14.47
G2S4yn+RL 17.18 G2S;:q W/ GGNN-forward 16.53
G2S,:.+RL 17.49 G2S4t, W/ GGNN-backward 16.75

As shown in Table [3] we perform an ablation study to systematically assess the impact of differ-
ent model components (e.g., BERT, RL, DAN, and BiGGNN) for two proposed full model variants
(static vs dynamic) on the SQuAD split-2 test set. It confirms our finding that syntax-based static
graph construction (G2S;,+BERT+RL) performs better than semantics-aware dynamic graph con-
struction (G2S4,,+BERT+RL) in almost every setting. However, it may be too early to conclude
which one is the method of choice for QG. On the one hand, an advantage of static graph construc-
tion is that useful domain knowledge can be hard-coded into the graph, which can greatly benefit the
downstream task. However, it might suffer if there is a lack of prior knowledge for a specific domain
knowledge. On the other hand, dynamic graph construction does not need any prior knowledge
about the hidden structure of text, and only relies on the attention matrix to capture these structured
information, which provides an easy way to achieve a decent performance. One interesting direction
is to explore effective ways of combining both static and dynamic graphs.

By turning off the Deep Alignment Network (DAN), the BLEU-4 score of G2S,;, (similarly for
G2S4yn) dramatically drops from 16.96% to 12.62%, which indicates the importance of answer in-
formation for QG and shows the effectiveness of DAN. We can see the advantages of Graph2Seq
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learning over Seq2Seq learning on this task by comparing the performance between G2Sg;, and
Seq2Seq. In our experiments, we also observe that doing both forward and backward message pass-
ing in the GNN encoder is beneficial. Surprisingly, using GCN (Kipf & Welling| 2016)) as the graph
encoder (and converting the input graph to an undirected graph) does not provide good performance.
In addition, fine-tuning the model using REINFORCE can further improve the model performance
in all settings (i.e., w/ and w/o BERT), which shows the benefits of directly optimizing the evalu-
ation metrics. Besides, we find that the pretrained BERT embedding has a considerable impact on
the performance and fine-tuning BERT embedding even further improves the performance, which
demonstrates the power of large-scale pretrained language models.

3.5 CASE STUDY

Table 4: Generated questions on SQuAD split-2 test set. Target answers are underlined.
Passage: for the successful execution of a project , effective planning is essential .
Gold: what is essential for the successful execution of a project ?
G2S,;:, w/o BIGGNN (Seq2Seq): what type of planning is essential for the project ?
G2S;;, w/o DAN.: what type of planning is essential for the successful execution of a project ?
G2S,;,: what is essential for the successful execution of a project ?
G2S,;,+BERT: what is essential for the successful execution of a project ?
G2S,;,+BERT+RL: what is essential for the successful execution of a project ?
G284y, +BERT+RL: what is essential for the successful execution of a project ?

Passage: the church operates three hundred sixty schools and institutions overseas .
Gold: how many schools and institutions does the church operate overseas ?
G2S,:, w/o BIGGNN (Seq2Seq): how many schools does the church have ?
G2S;:, w/o DAN.: how many schools does the church have ?

G2S,;,: how many schools and institutions does the church have ?
G2S,;,+BERT: how many schools and institutions does the church have ?
G2S;:,+BERT+RL: how many schools and institutions does the church operate ?
G2S 4y, +BERT+RL: how many schools does the church operate ?

In Table[d] we further show a few examples that illustrate the quality of generated text given a pas-
sage under different ablated systems. As we can see, incorporating answer information helps the
model identify the answer type of the question to be generated, and thus makes the generated ques-
tions more relevant and specific. Also, we find our Graph2Seq model can generate more complete
and valid questions compared to the Seq2Seq baseline. We think it is because a Graph2Seq model
is able to exploit the rich text structure information better than a Seq2Seq model. Lastly, it shows
that fine-tuning the model using REINFORCE can improve the quality of the generated questions.

4 RELATED WORK

4.1 NATURAL QUESTION GENERATION

Early works (Mostow & Chenl [2009; Heilman & Smith} [2010; Heilmanl, [2011) for QG focused on
rule-based approaches that rely on heuristic rules or hand-crafted templates, with low generaliz-
ability and scalability. Recent attempts have focused on NN-based approaches that do not require
manually-designed rules and are end-to-end trainable. Existing NN-based approaches (Du et al.,
2017; |Yao et al.; Zhou et al., [2018) rely on the Seq2Seq model with attention, copy or coverage
mechanisms. In addition, various ways (Zhou et al.,|2017;Song et al.,|2017; Zhao et al., 2018; Sun
et al.| 2018} [Kim et al.} 2018} [Liu et al.l 2019) have been proposed to utilize the target answer so as
to guide the generation of the question. To address the limitations of cross-entropy based sequence
learning, some approaches (Song et al., | 2017; |Kumar et al.,|2018b) aim at directly optimizing eval-
uation metrics using REINFORCE.

However, the existing approaches for QG suffer from several limitations; they (i) ignore the rich
structure information hidden in text, (ii) solely rely on cross-entropy loss that leads to issues like
exposure bias and inconsistency between train/test measurement, and (iii) fail to fully exploit the
answer information. To address these limitations, we propose a reinforcement learning (RL) based
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graph-to-sequence (Graph2Seq) model for QG as well as deep alignment networks to effectively
cope with the QG task. To the best of our knowledge, we are the first to introduce the Graph2Seq
architecture to solve the question generation task.

4.2 GRAPH NEURAL NETWORKS

Over the past few years, graph neural networks (GNNs) (Kipf & Welling, [2016; |Gilmer et al., 2017;
Hamilton et al., 2017; |Li et al.| [2015)) have attracted increasing attention. Due to more recent ad-
vances in graph representation learning, a number of works have extended the widely used Seq2Seq
architectures (Sutskever et al., 2014} /Cho et al., 2014) to Graph2Seq architectures for machine trans-
lation, semantic parsing, and AMR(SQL)-to-text tasks (Bastings et al., | 2017; |Beck et al., 2018} [ Xu
et al., [2018azbfic; [Song et al.l |2018b). While the high-quality graph structure is crucial for the per-
formance of GNN-based approaches, most existing works use syntax-based static graph structures
when applied to textual data. Very recently, researchers have started exploring methods to automat-
ically construct a graph of visual objects (Norclitfe-Brown et al.| 2018)) or words (Liu et al.| 2018;
Chen et al.,[2019b) when applying GNNs to non-graph structured data.

To the best of our knowledge, we are the first to investigate systematically the performance difference
between syntactic-aware static graph construction and semantics-aware dynamic graph construction
in the context of question generation.

5 CONCLUSION

We proposed a novel RL based Graph2Seq model for QG, where the answer information is utilized
by an effective Deep Alignment Network and a novel bidirectional GNN is proposed to process the
directed passage graph. Our two-stage training strategy benefits from both cross-entropy based and
REINFORCE based sequence training. We also explore both static and dynamic graph construction
from text, and systematically investigate and analyze the performance difference between the two.
On the benchmark SQuAD dataset, our proposed model outperforms previous state-of-the-art meth-
ods by a significant margin and achieve new best results. One of the interesting future directions is
to investigate more effective ways of automatically learning graph structures from any data source,
including texts. It would be also be interesting to study the unpaired problem setting for QG.
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A DETAILS ON THE RNN DECODER

At each decoding step ¢, an attention mechanism learns to attend to the most relevant words in the
input sequence, and computes a context vector h based on the current decoding state s;, the current
coverage vector ¢’ and the attention memory. In addition, the generation probability peen € [0, 1] is
calculated from the context vector hj, the decoder state s; and the decoder input y;_1. Next, pgen is
used as a soft switch to choose between generating a word from the vocabulary, or copying a word
from the input sequence. We dynamically maintain an extended vocabulary which is the union of the
usual vocabulary and all words appearing in a batch of source examples (i.e., passages and answers).
Finally, in order to encourage the decoder to utilize the diverse components of the input sequence, a
coverage mechanism is applied. At each step, we maintain a coverage vector ct, which is the sum
of attention distributions over all previous decoder time steps. A coverage loss is also computed to
penalize repeatedly attending to the same locations of the input sequence.

B MODEL SETTINGS

We keep and fix the 300-dim GloVe vectors for the most frequent 70,000 words in the training set.
We compute the 1024-dim BERT embeddings on the fly for each word in text using a (trainable)
weighted sum of all BERT layer outputs. The embedding sizes of case, POS and NER tags are
set to 3, 12 and 8, respectively. The size of all hidden layers is set to 300. We apply a variational
dropout (Kingma et al.| [2015) rate of 0.4 after word embedding layers and 0.3 after RNN layers. We
set the neighborhood size to 10 for dynamic graph construction. The number of GNN hops is set to 3.
During training, in each epoch, we set the initial teacher forcing probability to 0.75 and exponentially
increase it to 0.75 * 0.9999% where i is the training step. We set « in the reward function to 0.1, v in
the mixed loss function to 0.99, and the coverage loss ratio A to 0.4. We use Adam (Kingma & Ba,
2014) as the optimizer, and the learning rate is set to 0.001 in the pretraining stage and 0.00001 in
the fine-tuning stage. We reduce the learning rate by a factor of 0.5 if the validation BLEU-4 score
stops improving for three epochs. We stop the training when no improvement is seen for 10 epochs.
We clip the gradient at length 10. The batch size is set to 60 and 50 on data split-1 and split-2,
respectively. The beam search width is set to 5. All hyperparameters are tuned on the development
set.

C SENSITIVITY ANALYSIS OF HYPERPARAMETERS
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Figure 3: Effect of the number of GNN hops.

14



Under review as a conference paper at ICLR 2020

To study the effect of the number of GNN hops, we conduct experiments on the G2S,;, model on
the SQuAD split-2 data. Fig. [3| shows that our model is not very sensitive to the number of GNN
hops and can achieve reasonably good results with various number of hops.

D DETAILS ON BASELINE METHODS

SeqCopyNet (Zhou et al.|[2018)) proposed an extension to the copy mechanism which learns to copy
not only single words but also sequences from the input sentence.

NQG++ (Zhou et al., [2017) proposed an attention-based Seq2Seq model equipped with a copy
mechanism and a feature-rich encoder to encode answer position, POS and NER tag information.

MPQG+R (Song et al., 2017) proposed an RL-based Seq2Seq model with a multi-perspective
matching encoder to incorporate answer information. Copy and coverage mechanisms are applied.

Answer-focused Position-aware model (Sun et al., | 2018)) consists of an answer-focused component
which generates an interrogative word matching the answer type, and a position-aware component
which is aware of the position of the context words when generating a question by modeling the
relative distance between the context words and the answer.

s2sa-at-mp-gsa (Zhao et al., 2018)) proposed a model which contains a gated attention encoder and
a maxout pointer decoder to tackle the challenges of processing long input sequences. For fair
comparison, we report the results of the sentence-level version of their model to match with our
settings.

ASs2s (Kim et al., |2018) proposed an answer-separated Seq2Seq model which treats the passage
and the answer separately.

CGC-QG (Liu et al., 2019) proposed a multi-task learning framework to guide the model to learn
the accurate boundaries between copying and generation.

E DETAILS ON HUMAN EVALUATION

We conducted a small-scale (i.e., 50 random examples per system) human evaluation on the split-2
data. We asked 5 human evaluators to give feedback on the quality of questions generated by a set
of anonymized competing systems. In each example, given a triple containing a source passage, a
target answer and an anonymised system output, they were asked to rate the quality of the output
by answering the following three questions: 1) is this generated question syntactically correct? ii)
is this generated question semantically correct? and iii) is this generated question relevant to the
passage? For each evaluation question, the rating scale is from 1 to 5 where a higher score means
better quality (i.e., 1: Poor, 2: Marginal, 3: Acceptable, 4: Good, 5: Excellent). Responses from all
evaluators were collected and averaged.

F MORE RESULTS ON ABLATION STUDY

Table 5: Ablation study on the SQuAD split-2 test set.

Methods BLEU-4 Methods BLEU-4
G2S 4yn+BERT+RL 18.06 G2S gyn, Wlo feat 16.51
G2S,;,+BERT+RL 18.30 G2S,;, w/o feat 16.65
G2S,:,+BERT-fixed+RL 18.20 G2S4yn w/o DAN 12.58
G2S 4yn+BERT 17.56 G2S,:, Ww/o DAN 12.62
G2S,4,+BERT 18.02 G2S;:, W/ DAN-word only 15.92
G2S,:,+BERT-fixed 17.86 G2S,:, W/ DAN-hidden only 16.07
G2Sgyn+RL 17.18 G2Ss:q W/ GGNN-forward 16.53
G2S,:4+RL 17.49 G2S,;, W/ GGNN-backward 16.75
G2S4yn 16.81 G2S:, Ww/o BiGGNN, w/ Seq2Seq 16.14
G2S4q 16.96 G2S;;, w/o BiIGGNN, w/ GCN 14.47
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we perform the comprehensive ablation study to systematically assess the impact of different model
components (e.g., BERT, RL, DAN, BiGGNN, FEAT, DAN-word, and DAN-hidden) for two pro-
posed full model variants (static vs dynamic) on the SQuAD split-2 test set. Our experimental
results confirmed that every component in our proposed model makes the contribution to the overall
performance.
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