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ABSTRACT

In this paper, we consider the problem of training structured neural networks (NN)
with nonsmooth regularization (e.g. `1-norm) and constraints (e.g. interval con-
straints). We formulate training as a constrained nonsmooth nonconvex optimiza-
tion problem, and propose a convergent proximal-type stochastic gradient descent
(Prox-SGD) algorithm. We show that under properly selected learning rates, with
probability 1, every limit point of the sequence generated by the proposed Prox-
SGD is a stationary point. Finally we demonstrate its flexibility, showing how
Prox-SGD can be used to train either sparse or binary neural networks through an
adequate selection of the regularization function and constraint set, supporting the
theoretical analysis by extensive numerical tests.

1 INTRODUCTION

In this paper, we consider the problem of training neural networks (NN) under constraints and reg-
ularization. It is formulated as an optimization problem

minimize
x∈X⊆Rn

m∑
i=1

fi(x,yi)︸ ︷︷ ︸
,f(x)

+r(x), (1)

where x is the parameter vector to optimize, yi is the i-th training example which consists of a pair
of training input and desired output, and m is the number of training examples. The training loss
f is assumed to be smooth but nonconvex with respect to x, the regularization r is assumed to be
convex, proper and lower semicontinuous, and X is a convex, closed and bounded constraint set.

When r(x) = 0 and X = Rn, stochastic gradient descent (SGD) has been used to solve the optimiza-
tion problem (1). At each iteration, a minibatch of the m training examples are drawn randomly,
and the obtained gradient is an unbiased estimate of the true gradient. Therefore SGD generally
moves along the descent direction, see Bertsekas & Tsitsiklis (2000). SGD can be accelerated by
replacing the instantaneous gradient estimates by a momentum aggregating all gradient in past it-
erations. Despite the success and popularity of SGD with momentum, its convergence had been an
open problem. Assuming f is convex, analyzing the convergence was first attempted in Kingma &
Ba (2015) and later concluded in Reddi et al. (2018). The proof for a nonconvex f was later given
in Chen et al. (2019); Lei et al. (2019).

In machine learning, the regularization function r is typically used to promote a certain structure
in the optimal solution, for example sparsity as in, e.g., feature selection and compressed sensing,
or a zero-mean-Gaussian prior on the parameters (Bach et al., 2011; Boyd et al., 2010). It can be
interpreted as a penalty function since at the optimal point x? of problem (1), the value r(x?) will be
small, provided that the regularization parameter µ is properly selected. One nominant example is
the Tikhonov regularization r(x) = µ‖x‖22 for some predefined constant µ, and it can be used to al-
leviate the ill-conditioning and ensure that the magnitude of the weights will not become exceedingly
large. Another commonly used regularization, the `1-norm where r(x) = µ‖x‖1 = µ

∑n
j=1 |xj |

(the convex surrogate of the `0-norm), would encourage a sparse solution. In the context of NN, it is
used to (i) promote a sparse neural network (SNN) to alleviate overfitting and to allow a better gen-
eralization, (ii) accelerate the training process, and (iii) prune the network to reduce its complexity,
see Louizos et al. (2018) and Gale et al. (2019) for more details.
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Technically, it is difficult to analyze the regularizations as some commonly used convex regularizers
are nonsmooth, for example, `1-norm. In current implementations of Tensorflow, the gradient of
|x| is simply set to 0 when x = 0. This amounts to the stochastic subgradient descent method and
usually exhibits slow convergence. Other techniques to promote a SNN includes magnitude pruning
and variational dropout, see Gale et al. (2019).

Although regularization can be interpreted as a constraint from the duality theory, sometimes it may
still be more desirable to use explicit constraints, for example,

∑
x2j ≤ α, where the summation is

over the weights on the same layer. This is useful when we already know how to choose α. Another
example is the lower and upper bound on the weights, that is, l ≤ w ≤ u for some predefined l
and u. Compared with regularization, constraints do not encourage the weights to stay in a small
neighborhood of the initial weight, see Chapter 7.2 of Goodfellow et al. (2016) for more details.

The set X models such explicit constraints, but it poses an additional challenge for stochastic gradient
algorithms as the new weight obtained from the SGD method (with or without momentum) must be
projected back to the set X to maintain its feasibility. However, projection is a nonlinear operator,
so the unbiasedness of the random gradient would be lost.

In this paper, we propose a convergent proximal-type stochastic gradient algorithm (with momen-
tum) to train neural networks under regularization and constraints. The convergence analysis is
based on the framework developed in Ruszczyński (1980), and we present here the key technical
ideas. It turns out momentum, known as gradient averaging in automatic control community, plays
a central role in the convergence analysis. We establish that with probability (w.p.) 1, every limit
point of the sequence generated by Prox-SGD is a stationary point of the nonsmooth nonconvex
problem (1). This is in sharp contrast to unconstrained optimization, where the convergence of the
vanilla SGD method has long been well understood while the convergence of the SGD method with
momentum was only settled recently. Nevertheless, the convergence rate of the proposed algorithm
is not derived in the current work and is worth further investigating.

To test the proposed algorithm, we consider two applications. The first application is to train a SNN,
and we leverage `1-regularization, that is,

minimize
x

m∑
i=1

fi(x,yi) + µ||x||1. (2)

The second application is to train a binary neural network (BNN) where the weights (and activations)
are either 1 or -1 (see Courbariaux et al. (2015; 2016); Hou et al. (2017); Yin et al. (2018); Bai et al.
(2019) for more details). To achieve this, we augment the loss function with a term that penalizes
weights not being +1 or -1:

minimize
x,a

m∑
i=1

fi(x,yi) +
µ

4

n∑
j=1

(aj(xj + 1)2 + (1− aj)(xj − 1)2)

subject to al = 0 or 1, j = 1, . . . , n,

where µ is a given penalty parameter. The binary variable al can be interpreted as a switch: when
aj = 0, aj(xj + 1)2 is deactivated, and there is a strong incentive for xj to be 1 (the analysis for
aj = 1 is similar). We relax aj to be a continuous variable between 0 and 1. To summarize, a BNN
can be obtained by solving the following regularized optimization problem under constraints with
respect to x and a

minimize
x,a

m∑
i=1

fi(x,yi) +
µ

4

n∑
j=1

(aj(xj + 1)2 + (1− aj)(xj − 1)2)

subject to 0 ≤ aj ≤ 1, j = 1, . . . , n. (3)
If µ is properly selected (or sufficiently large), the optimal aj will be exactly or close to 0 or 1.
Consequently, regularization and constraints offer interpretability and flexibility, which allows us to
use more accurate models to promote structures in the neural networks, and the proposed convergent
Prox-SGD algorithm ensures efficient training of such models.

2 THE PROPOSED PROX-SGD ALGORITHM

In this section, we describe the Prox-SGD algorithm to solve (1).
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Background and setup. We make the following blanket assumptions on problem (1).

• fi(x,y(i)) is smooth (continuously differentiable) but not necessarily convex.

• ∇xfi(x,y
(i)) is Lipschitz continuous with constant Li.

• r(x) is convex and lower semicontinuous (not necessarily smooth).
• X is convex and compact (closed and bounded).

We are interested in algorithms that can find a stationary point of (1). A stationary point x? satisfies
the optimality condition: at x = x?, r(x) has a subgradient ξ(x?) such that

(x− x?)T∇f(x?) + (x− x?)T ξ(x?) ≥ 0,∀x ∈ X. (4)

When r(x) = 0 and X = Rn, the deterministic optimization problem 1 can be solved by the (batch)
gradient descent method. When m, the number of training examples, is large, it is computationally
expensive to calculate the gradient. Instead, we estimate the gradient by a minibatch ofm(t) training
examples. We denote the minibatch by M(t): its elements are drawn uniformly from {1, 2, . . . ,m}
and there are m(t) elements. Then the estimated gradient is

g(t) ,
1

m(t)

∑
i∈M(t)

∇fi(x(t),y(i)) (5)

and it is an unbiased estimate of the true gradient.

The proposed algorithm. The instantaneous gradient g(t) is used to form an aggregate gradient
(momentum) v(t), which is updated recursively as follows

v(t) = (1− ρ(t))v(t− 1) + ρ(t)g(t), (6)

where ρ(t) is stepsize (the learning rate) for the momentum and ρ(t) ∈ (0, 1].

At iteration t, we solve an approximation subproblem and denote its solution as x̂(x(t),v(t), τ (t)),
or simply x̂(t)

x̂(t) , argmin
x∈X

{
(x− x(t))Tv(t) + 1

2
(x− xt)T diag(τ (t))(x− x(t)) + r(x)

}
. (7)

A quadratic regularization term is incorporated so that the subproblem (7) is strongly convex and its
modulus is the minimum element of the vector τ (t), denoted as τ(t) and τ(t) = minj=1,...,n τj(t).
Note that τ(t) should be lower bounded by a positive constant that is strictly larger than 0, so that
the quadratic regularization in (7) will not vanish.

The difference between two vectors x̂(t) and x(t) specifies a direction starting at x(t) and ending
at x̂(t). This update direction is used to refine the weight vector

x(t+ 1) = x(t) + ε(t)(x̂(t)− x(t)), (8)

where ε(t) is a stepsize (learning rate) for the weight and ε(t) ∈ (0, 1]. Note that x(t+1) is feasible
as long as x(t) is feasible, as it is the convex combination of two feasible points x(t) and x̂(t) while
the set X is convex.

The above steps (5)-(8) are summarized in Algorithm 1, which is termed proximal-type Stochastic
Gradient Descent (Prox-SGD), for the reason that the explicit constraint x ∈ X in (7) can also be
formulated implicitly as a regularization function, more specifically, the indicator function σX(x).
If all elements of τ (t) are equal, then x̂(t) is exactly the proximal operator

x̂(t) = argmin
x

{∥∥∥∥x− (x(t)− 1

τ(t)
v(t)

)∥∥∥∥2
2

+
1

τ(t)
r(x) + δX(x)

}

, Prox 1
τ(t)

r(x)+δX(x)

(
x(t)− 1

τ(t)
v(t)

)
.

Prox-SGD in Algorithm 1 bears a similar structure as several SGD algorithms, without and with
momentum, see Table 1, and it allows to interpret some existing algorithms as special cases of the
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Algorithm 1 Proximal-type Stochastic Gradient Descent (Prox-SGD) Method
Input: x(0) ∈ X, v(−1) = 0, t = 0, T , {ρ(t)}Tt=0, {ε(t)}Tt=0.
for t = 0 : 1 : T do

1. Compute the instantaneous gradient g(t) based on the minibatch M(t):

g(t) =
1

m(t)

∑
i∈M(t)

∇xfi(x(t),y
(i)).

2. Update the momentum: v(t) = (1− ρ(t))v(t− 1) + ρ(t)g(t).
3. Compute x̂(t) by solving the approximation subproblem:

x̂(t) = argmin
x∈X

{
(x− x(t))Tv(t) + 1

2
(x− x(t))T diag(τ (t))(x− x(t)) + µ · r(x)

}
.

4. Update the weight: x(t+ 1) = x(t) + ε(t)(x̂(t)− x(t)).
end for

Algorithm momentum weight quadratic gain in subproblem regularization constraint set

Prox-SGD ρ(t) ε(t) τ (t) convex convex
compact

SGD 1 ε(t) 1 0 Rn

AdaGrad 1 ε
√

r(t) + δ1† 0 Rn

RMSProp 1 ε
√

r(t) + δ1
‡

0 Rn

ADAM ρ ε
1−ρt

√
r(t)

1−ρt2
+ δ1‡ 0 Rn

AMSGrad ρ ε

√
r̂(t)

r̂(t) = max(r̂(t− 1), r(t))‡
0 Rn

ADABound ρ 1 1

clip(ε(t)/
√
r(t),ηl(t),ηu(t))

‡ 0 Rn

Table 1: Connection between the proposed framework and existing methods, where ρ, β, ε and δ are
some predefined constants. †r(t) = r(t− 1)+g(t)�g(t), ‡r(t) = βr(t− 1)+ (1−β)g(t)�g(t).

proposed framework. For example, no momentum is used in SGD, and this amounts to setting
ρ(t) = 1 in Algorithm 1. In ADAM, the learning rate for momentum is a constant ρ and the learning
rate for the weight vector is given by ε/(1 − ρt) for some ε, and this simply amounts to setting
ρ(t) = ρ and ε(t) = ε/(1−ρt) in Algorithm 1. This interpretation also implies that the convergence
conditions to be proposed shortly later are also suffcient for existing algorithms.

Solving the approximation subproblem (7). Since (7) is strongly convex, x̂(t) is unique. Gener-
ally x̂(t) in (7) does not admit a closed-form expression and should be solved by a generic solver.
However, some important special cases that are frequently used in practice can be solved efficiently.

• The trivial case is X = Rn and r = 0, where

x̂(t) = x(t)− v(t)
τ (t)

, (9)

where the vector division is understood to be element-wise. When X = Rn and r(x) = µ‖x‖1,
x̂(t) has a closed-form expression that is known as the soft-thresholding operator

x̂(t) = S µ1
τ(t)

(
x(t)− v(t)

τ (t)

)
, (10)

where Sa(b) , max(b− a,0)−max(−b− a,0) (Bach et al., 2011).

• If X = Rn and r(x) = µ‖x‖2 and τ (t) = τI for some τ , then (Parikh & Boyd, 2014)

x̂(t) =

{
(1− µ/‖τx(t)− v(t)‖2) (x(t)− v(t)/τ), if ‖τx(t)− v(t)‖2 ≥ µ
0, otherwise. (11)

4



Under review as a conference paper at ICLR 2020

If x is divided into blocks x1,x2, . . ., the `2-regularization is commonly used to promote block
sparsity (rather than element sparsity by `1-regularization).

•When there is a bound constraint l ≤ x ≤ u, then x̂(t) can simply be obtained by first solving the
approximation subproblem (7) without the bound constraint and then projecting the optimal point
onto the interval [l,u]. For example, when X = Rn and r = 0,

x̂(t) =

[
x(t)− v(t)

τ (t)

]u
l

, (12)

with [x]ul = clip(x, l,u) , min(max(x, l),u).

• If the constraint function is quadratic: X = {x : ‖x‖22 ≤ 1}, x̂(t) has a semi-analytical expression
(up to a scalar Lagrange multiplier which can be found efficiently by the bisection method).

Approximation subproblem. We explain why we update the weights by solving an approxi-
mation subproblem (7). First, we denote f̃ as the smooth part of the objective function in
(7). Clearly it depends on x(t) and v(t) (and thus M(t)), while x(t) and v(t) depend on
the old weights x(0), . . . ,x(t − 1) and momentum and v(0), . . . ,v(t − 1). Define F(t) ,
{x(0), . . . ,x(t),M(0), . . . ,M(t)} as a shorthand notation to denote the past history of the proposed
algorithm. We formally write f̃ as

f̃(x;F(t)) , (x− x(t))Tv(t) + 1

2
(x− x(t))T diag(τ (t))(x− x(t)). (13)

It follows from the optimality of x̂(t) that

f̃(x(t);F(t)) + r(x(t)) ≥ f̃(x̂(t);F(t)) + r(x̂(t)).

After inserting (13) and reorganizing the terms, the above inequality becomes

(x̂(t)− x(t))Tv(t) + r(x̂(t))− r(x(t)) ≤ −τ(t)‖x̂(t)− x(t)‖22. (14)

Since∇f(x) is Lipschitz continuous with constant L, it readily follows that

f(x(t+ 1)) + r(x(t+ 1))− (f(x(t)) + r(x(t)))

≤ (x(t+ 1)− x(t))T∇f(x(t)) + L

2
‖x(t+ 1)− vx(t)‖22 + r(x(t+ 1))− r(x(t)) (15)

≤ ε(t)
(
(x̂(t)− x(t))T∇f(x(t)) + r(x̂(t)− r(x(t))) + L

2
ε(t)‖x̂(t)− x(t)‖22

)
, (16)

where the first inequality follows from the descent lemma and the second inequality follows from
the Jensen’s inequality of the convex function r and the update rule (8).

If v(t) = ∇f(x(t)) (which is true asymptotically as we show shortly later), by replacing∇f(x(t))
in (16) by v(t) and inserting (14) into (16), we obtain

f(x(t+ 1)) + r(x(t+ 1))− (f(x(t)) + r(x(t))) ≤ ε(t)
(
L

2
ε(t)− τ(t)

)
‖x̂(t)− x(t)‖22. (17)

The right hand side (RHS) will be negative when ε(t) < 2τ(t)
L : this will eventually be satisfied as

we shall use a decaying ε(t). This implies that the proposed algorithm will decrease the objective
value of (1) after each iteration.

Gradient averaging and algorithm convergence. It turns out that the gradient averaging (momentum)
step in (6) is essential for the convergence of Prox-SGD. Under some technical assumptions, the
aggregate gradient v(t) will converge to the true gradient. This remark is made rigorous in the
following theorem.
Theorem 1. Assume that the unbiased gradient g(t) has a bounded second moment

E
[
‖g(t)‖22 |F(t)

]
≤ C, (18)

for some finite and positive constant C, and the sequence of stepsizes {ρ(t)} and {ε(t)} satisfy
∞∑
t=0

ρ(t) =∞,
∞∑
t=0

ρ(t)2 <∞,
∞∑
t=0

ε(t) =∞,
∞∑
t=0

ε(t)2 <∞, ε(t)/ρ(t)→ 0. (19)

Then every limit point of the sequence {x(t)} is a stationary point of (1) w.p.1.

5



Under review as a conference paper at ICLR 2020

Proof. Under the assumptions (18) and (19), it follows from Lemma 1 of Ruszczyński (1980) that
v(t) → ∇f(x(t)). Since the descent direction x̂(t) − x(t) is a descent direction in view of (14)
(and in the spirit of (A8) in Ruszczyński (1980)), the claim in the theorem can be obtained by
following the same line of analysis in Theorem 2 of Ruszczyński (1980). We omit the details to
avoid duplicating results from known works.

The bounded second moment assumption on the gradient g in (18) and decreasing stepsizes in (19)
are standard assumptions in stochastic optimization and SGD. What is noteworthy is that ε(t) should
decrease faster than ρ(t) to ensure that v(t) → ∇f(x(t)). But this is more of an interest from the
theoretical perspective, and in practice, we observe that ε(t)/ρ(t) = a for some constant a that is
smaller than 1 usually yields satisfactory performance, as we show numerically in the next section.
Furthermore, the quadratic gain τ(t) in the approximation subproblem (7) should be lower bounded
by some positive constant. In practice, there are different rationales to define it, see Table 1.

3 SIMULATION RESULTS

In this section, we first train a SNN to compare the proposed Prox-SGD algorithm with ADAM
(Kingma & Ba, 2015) and two other adaptive optimization algorithms, namely AMSGrad (Reddi
et al., 2018) and ADABound (Luo et al., 2019), on the MNIST and CIFAR-10 datasets. Then we
train a BNN to illustrate the merit of regularization and constraints.

3.1 EXPERIMENT: DEEP NEURAL NETWORK ON MNIST

To compare the convergence of the proposed Prox-SGD method with state-of-the-art algorithms, we
train a 6-layer fully-connected deep neural network (DNN) for the MNIST multiclass classification
problem. The chosen setup is particularly suited to evaluate the merit of our method, since deep
fully-connected networks are prone to overfitting without regularization, even on a simple dataset
such as MNIST. The exact settings of our DNN are shown in Table 2.

Table 2: DNN Settings

Parameter Value
Dataset MNIST
Size of train set 60000
Size of test set 10000
Number of input nodes 28×28
Number of hidden layers 6
Number of nodes per hidden layer 200
Number of output nodes 10
Activation function in hidden layers ReLU
Activation function in output layer Softmax
Regularization function `1-Norm
Loss function Cross entropy

Following the parameter configurations of ADAM in Kingma & Ba (2015), AMSGrad in Reddi et al.
(2018), and ADABound in Luo et al. (2019), we set ρ = 0.9, β = 0.999 and ε = 0.001, which are
uniform for all the algorithms and commonly used for ADAM in practice. Note that we have also
incorporated `1-regularization in these algorithms by the built-in function in Tensorflow/Pytorch,
which amounts to adding the subgradient of the `1-norm to the gradient of the loss function. For the
proposed Prox-SGD, ρ(t) and ε(t) decrease over the iterations as follows,

ρ(t) =
0.9

(t+ 4)0.5
, ε(t) =

0.06

(t+ 4)0.5
. (20)

Recall that the `1-norm in the approximation subproblem naturally leads to the soft-thresholding
proximal mapping, see (10). The regularization parameter µ in the soft-thresholding then permits
controlling the sparsity of the parameter variable x.
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Figure 1: Performance comparison for DNN on MNIST with ReLU.

In Fig. 1, adopting ReLU in each hidden layer, we compare the four algorithms in terms of three
metrics. From Fig. 1 (a) and (b), Prox-SGD achieves the lowest loss value and best predicted
accuracy with fast convergence compared to the other three algorithms. The sparsity of the trained
model is measured by the cumulative distribution function (CDF) of the weights, which specifies the
percentage of weights before any given value. From Fig. 1 (c), we can observe around 0 in the x-axis
the abrupt change of the CDF, which implies that more than 90% of the weights are exactly zero. We
also observe that Prox-SGD with the soft-thresholding proximal mapping achieves a similar sparsity
as the other algorithms based on stochastic subgradient, so the proposed Prox-SGD does not have a
clear advantage in this numerical example.

In Fig. 2, we test that the effect of the regularization parameter µ and the effect of `1-regularization
in overcoming overfitting. To this end, we create an artificial DNN that overfits the training data,
and we test Prox-SGD with and without the `1-regularization. The smallest training loss is achieved
when there is no `1-regularization, but its test accuracy is also low: this is a clear sign of overfitting.
Although `1-regularization increases the training loss, the test accuracy is significantly improved.
From Fig. 2(c) we see that when there is no regularization, all weights are nonzero and many of them
are very small, while more than 90% of all weights are exactly zero by the Prox-SGD algorithm.
Note that the regularization parameter µ constitutes another hyperparameter and requires tuning.
In practice we find that it is sufficient to find a range as all values in the range yield comparable
performance.
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Figure 2: Performance comparison with different regularization parameter µ for DNN on MNIST with ReLU.

3.2 EXPERIMENT: CONVOLUTION NEURAL NETWORK ON CIFAR-10

To evaluate the performance of Prox-SGD for a larger and more complex dataset and network, we
consider the multiclass classification problem on the standard CIFAR-10 dataset with convolution
neural network (CNN). The network has 6 convolutional layers and each of them is followed by a
max-pooling layer. While the CNN parameter settings are shown in Table 3 while the algorithm
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Table 3: CNN Settings

Parameter Value
Data set CIFAR-10
Size of train set 50000
Size of test set 10000
Number of input nodes 32×32×3 (RGB)
Number of convolution layers 6
Size of convolution kernels 3×3

Number of convolution channels
32 (convolution 1-2)
64 (convolution 3-4)
128 (convolution 5-6)

Type of pooling layer Max pooling
Size of pooling 2×2

Activation function Elu (for convolution)
Softmax (for output)

Regularization function `1-norm
Loss function Cross entropy

parameter settings are identical to the MNIST, we emphasize that `1-regularization is used in the
benchmark algorithms and its subgradient is added to the gradient of the loss function.
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Figure 3: Performance comparison for CNN on CIFAR-10.

Fig. 3 shows the performance of Prox-SGD and the other three algorithms on CIFAR-10 dataset. On
the one hand, Fig. 3(a) shows that Prox-SGD outperforms ADAM, AMSGrad and ADABound in the
achieved loss value. On the other hand, the accuracy achieved by different algorithms is comparable,
see Fig. 3(b). From the CDF of the weights in Fig. 3, we see again that the proposed prox-SGD
achieves a much sparser network: around 90% of the weights are exactly zero. By comparison, only
40%-50% are exactly zero by other algorithms. Therefore, in this numerical example, the proposed
Prox-SGD with soft-thresholding proximal mapping has a clear and substantial advantage than other
stochastic subgradient-based algorithms.

3.3 EXPERIMENT: TRAINING BINARY NEURAL NETWORKS

In this subsection, we evaluate the proposed algorithm Prox-SGD in training the BNN by solving
problem (3). The simulation setup is as same as in Sec. 3.1 with µ = 2 · 10−4, except that we use a
tanh activation function to promote a binary activation output.

After customizing the general description in Algorithm 1 to problem (3), the approximation sub-
problem is

(x̂(t), â(t)) = argmin
0≤a≤1

{
(x− x(t))Tvx(t) + 1

2 (x− x(t))
T diag(τx(t))(x− x(t))

+(a− a(t))Tva(t) + 1
2 (a− a(t))

T diag(τa(t))(a− a(t))

}
.
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Figure 4: Performance comparison for BNN on MNIST

Both x̂(t) and â(t) have a closed-form expression (cf. (9) and (12))

x̂(t) = x(t)− vx(t)
τx(t)

, and â(t) =
[
a(t)− va(t)

τa(t)

]1
0

, (21)

where vx(t) and va(t) are the momentum updated in the spirit of (6), with the gradients given by

gx(t) =
1

m(t)

∑
i∈M(t)

∇fi(x(t),y(i)) +
µ

2
(x(t) + 2a(t)− 1), and ga(t) = µx(t).

The training loss is shown in Fig. 4 (a). We remark that during the training process of the proposed
Prox-SGD, the weights are not binarized, for the reason that the penalty should regularize the prob-
lem in a way such that the optimal weights (to which Prox-SGD converges) are exactly or close to
1 or -1. After training is completed, the CDF of the learned weights is summarized in Fig. 4(c), and
then the learned weights are binarized to generate a full BNN whose test accuracy is in Fig. 4 (b).
On the one hand, we see from Fig. 4 (a)-(b) that the achieved training loss and test accuracy by BNN
is worse than the standard full-precision DNN (possibly with soft-thresholding). This is expected
as BNN imposes regularization and constraints on the optimization problem and reduces the search
space. However, the difference in test accuracy is quite small. On the other hand, we see from Fig.
4(c) that the regularization in the proposed formulation (3) is very effective in promoting binary
weights: 15% of weights are in the range (-1,-0.5) and 15% of weights are in the range (0.5,1), and
all the other weights are either -1 or 1. As all weights are exactly or close to 1 or -1, we could just bi-
narize the weights to exactly 1 or -1 only once, after the training is completed, and thus the incurred
performance loss is small (98% versus 95% for test accuracy). In contrast, the weights generated by
the full-precision DNN (that is, without regularization) are smoothly distributed in [−2, 2].
Even though the proposed formulation (3) doubles the number of parameters to optimize (from
x in full-precision DNN to (x,a) in BNN Prox-SGD), the convergence speed is equally fast. In
comparison with the algorithm in Courbariaux et al. (2016), the proposed Prox-SGD converges
much faster and achieves a much better training loss and test accuracy (95% versus 89%). The
notable performance improvement is due to the regularization and constraints. Naturally we should
make an effort of searching for a proper regularization parameter µ, but this effort is very well paid
off. Furthermore, we observe in the simulations that the performance is not sensitive to the exact
value of µ, as long as it is in an appropriate range.

4 CONCLUDING REMARKS

In this paper, we proposed Prox-SGD, a proximal-type stochastic gradient descent algorithm with
momentum, for constrained optimization problems where the smooth loss function is augmented
by a nonsmooth and convex regularization. We considered two applications, namely the stochas-
tic training of SNN and BNN, to show that regularization and constraints can effectively promote
structures in the learned network. More generally, incorporating regularization and constraints al-
lows us to use a more accurate and interpretable model for the problem at hand and the proposed
convergent Prox-SGD algorithms ensures efficient training. Numerical tests showed that Prox-SGD
outperforms state-of-the-art algorithms, in terms of convergence speed, achieved training loss and/or
the desired structure in the learned neural networks.
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