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ABSTRACT

Selecting an optimizer is a central step in the contemporary deep learning pipeline.
In this paper we demonstrate the sensitivity of optimizer comparisons to the meta-
parameter tuning protocol. Our findings suggest that the metaparameter search
space may be the single most important factor explaining the rankings obtained by
recent empirical comparisons in the literature. In fact, we show that these results
can be contradicted when metaparameter search spaces are changed. As tuning
effort grows without bound, more general update rules should never underper-
form the ones they can approximate (i.e., Adam should never perform worse than
momentum), but the recent attempts to compare optimizers either assume these
inclusion relationships are not relevant in practice or restrict the metaparameters
they tune to break the inclusions. In our experiments, we find that the inclusion
relationships between optimizers matter in practice and always predict optimizer
comparisons. In particular, we find that the popular adaptive gradient methods
never underperform momentum or gradient descent. We also report practical tips
around tuning rarely-tuned metaparameters of adaptive gradient methods and raise
concerns about fairly benchmarking optimizers for neural network training.

1 INTRODUCTION

The optimization algorithm chosen by a deep learning practitioner determines the training speed and
the final predictive performance of their model. To date, there is no theory that adequately explains
how to make this choice. Instead, our community relies on empirical studies (Wilson et al., 2017) and
benchmarking (Schneider et al., 2019). Indeed, it is the de facto standard that papers introducing new
optimizers report extensive comparisons across a large number of workloads. Therefore, to make
scientific progress today, we must have confidence in our ability to make empirical comparisons
between optimization algorithms.

Although there is no theory guiding us when comparing optimizers, the popular first-order optimiz-
ers form a natural inclusion hierarchy. For example, ADAM (Kingma and Ba, 2015) and RMSPROP
(Tieleman and Hinton, 2012) can approximately simulate MOMENTUM (Polyak, 1964) if the ε term
in the denominator of their parameter updates is allowed to grow very large. However, these re-
lationships may not matter in practice. For example, the settings of ADAM’s metaparameters that
allow it to match the performance of MOMENTUM may be too difficult to find (for instance, they
may be infinite).

In this paper, we demonstrate two important and interrelated points about empirical comparisons
of neural network optimizers. First, we show that the inclusion relationships between optimizers
actually matter in practice; in our experiments more general optimizers never underperform special
cases. Despite conventional wisdom (Wilson et al., 2017; Balles and Hennig, 2017), we find that
when carefully tuned, ADAM and other adaptive gradient methods never underperform MOMENTUM
or SGD. Second, we demonstrate the sensitivity of optimizer comparisons to the metaparameter tun-
ing protocol. By comparing to previous experimental evaluations, namely Wilson et al. (2017) and
Schneider et al. (2019), we show how easy it is to change optimizer rankings on a given workload
(model and dataset pair) by changing the metaparameter tuning protocol, with optimizer rankings
stabilizing according to inclusion relationships as we spend more and more effort tuning. Our find-
ings raise serious questions about the practical relevance of conclusions drawn from these sorts of
empirical comparisons.
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The remainder of this paper is structured as follows. In Section 2, we review related work, focusing
on papers that make explicit claims about optimizer comparisons in deep learning and application
papers that provide evidence about the tuning protocols of practitioners. We develop our definition of
first-order optimizers in Section 3 along with a notion of inclusion relationships between optimizers.
In Section 4 we present our experimental results. Despite thorny methodological issues over how to
avoid biases in comparisons due to search spaces that favor one optimizer over another, we believe
that our experimental methodology is an acceptable compromise and has substantial practical rele-
vance; we use hypercubes of finite volume for metaparameter search spaces, uniform quasi-random
tuning within those search spaces, and large, but realistic, computational budgets. Among other re-
sults, we show that the inclusion hierarchy of update rules is almost entirely predictive of optimizer
comparisons. In particular, NADAM (Dozat, 2016) achieves the best top-1 validation accuracy on
ResNet-50 on ImageNet in our experiments. The 77.1% we obtain with NADAM, although not as
good as the 77.6% obtained using learned data augmentation by Cubuk et al. (2018), is better than
the best existing published results using any of the more standard preprocessing pipelines (76.5%,
due to Goyal et al. (2017) using MOMENTUM).

2 BACKGROUND AND RELATED WORK

Our work was inspired by the recent studies of neural network optimizers by Wilson et al. (2017) and
Schneider et al. (2019). Wilson et al. (2017) constructed a simple classification problem in which
adaptive gradient methods (e.g. Adam) converge to provably worse solutions than standard gradient
methods. However, crucially, their analysis ignored the ε parameter in the denominator of some
adaptive gradient methods. Wilson et al. (2017) also presented experiments in which Adam produced
worse validation accuracy than SGD across all deep learning workloads considered. However they
only tuned over the learning rate and learning rate decay scheme in their experiments, leaving all
other parameters of Adam at fixed default values. Despite these findings, adaptive gradient methods
continue to be popular since the work of Wilson et al. (2017). Schneider et al. (2019) presented a
benchmark suite (DEEPOBS) for deep learning optimizers and reported that there was no single best
optimizer across the workloads they considered. Yet Schneider et al. (2019) only tuned the learning
rate of each optimizer and left all other metaparameters at some fixed default values.

As we will discuss in Section 4.3, the choices of metaparameter tuning protocols in Wilson et al.
(2017) and Schneider et al. (2019) may be the most important factor preventing their results from
being relevant to practical choices about which optimizer to use. Metaparameter tuning is a crucial
step of the deep learning pipeline (Bergstra and Bengio, 2012; Snoek et al., 2012; Sutskever et al.,
2013; Smith, 2018), so it is critical for papers studying optimizers to match as closely as possible the
tuning protocols of an ideal practitioner. Tuning protocols can vary widely and often differ between
work studying neural net optimizers and work concerned with actually training neural nets to solve
specific problems.

Recent papers that study or introduce optimization algorithms tend to compare to Adam and RM-
SProp without tuning ε, presumably to simplify their experiments. It is standard to leave ε at the
common default value of 10−8 for Adam and 10−10 for RMSProp (Tieleman and Hinton, 2012;
Kingma and Ba, 2015; Dozat, 2016; Balles and Hennig, 2017; Loshchilov and Hutter, 2017; Zou
and Shen, 2018; Ma and Yarats, 2018; Bernstein et al., 2018; Chen et al., 2019; Zou et al., 2019).
Others do not even report the value of ε used (Balles and Hennig, 2017; Zhang and Mitliagkas, 2017;
Keskar and Socher, 2017; Chen et al., 2018; Zhou et al., 2018; Aitchison, 2018; Reddi et al., 2019;
Luo et al., 2019). There are exceptions. Zaheer et al. (2018) and Liu et al. (2019) note that there is
something to be gained by considering ε values orders of magnitude larger than the standard default.
However, the experiments in both papers gave only a limited consideration to ε, testing at most two
values while tuning Adam. De et al. (2018) is the only work we found that considered a broad range
of values for ε. Both Zaheer et al. (2018) and De et al. (2018) found that non-default values of ε
outperformed the default.

While it is extremely common in applications to use a default value of ε, some notable papers tuned
ε and selected values up to eight orders of magnitude away from the common defaults. Szegedy
et al. (2016) used ε = 1 for RMSProp; Liu et al. (2019) reported that their results were sensitive to ε
and set ε = 10−6 for Adam; Tan et al. (2019) and Tan and Le (2019) set ε = 10−3 for RMSProp, the
latter achieving state-of-the-art ImageNet top-1 accuracy. In reinforcement learning, Hessel et al.
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(2017) set ε = 1.5× 10−4. Although our discussion above centered entirely on ε in Adam and
RMSProp, we suspect these trends hold for other rarely tuned metaparameters as well.

3 WHAT IS AN OPTIMIZER?

Optimization algorithms are typically controlled by metaparameters that determine their behavior
(e.g. the learning rate). An optimization algorithm therefore represents a potentially infinite family
of update rules until all metaparameters have been specified. Practitioners generally tune a subset of
the metaparameters to maximize performance over a validation set, while often leaving some other
metaparameters at fixed default values. We define an optimizer to be an update rule together with a
list of metaparameters to tune. In other words, someone using ADAM and tuning ε is using a “dif-
ferent” optimizer than someone using ADAM with the default ε. We focus on first-order optimizers
within the following standard model of iterative methods for optimization (Nesterov, 2018).

Consider a differentiable loss function ` : Rd → R whose vector of first partial derivatives, or
gradient, is given by ∇`(θ). In our context, ` generally represents the loss function computed over
an entire dataset by a neural network on a specific task. The optimization problem is to find a point
θ? ∈ Rd such that `(θ?) ≤ `(θ) for all θ ∈ Rd, but in practice we content ourselves with points that
are locally optimal, `(θ?) ≤ `(θ) for all θ in a non-empty neighbourhood of θ?. First-order methods
for optimization (Nesterov, 2018) use queries to ` and ∇` locally at θ ∈ Rd to solve this problem.
In most deep learning applications, the cost of evaluating ∇` scales linearly with the data set size
and it is usually more effective to use a stochastic estimator of∇`, whose cost is constant in the data
set size (Bottou, 2010). We assume that ∇`(θ) is a stochastic estimate of the true gradient for the
remainder of this section.

Algorithm 1 First-order optimization method.

Require: update ruleM, initialization θ0 ∈ Rd,
metaparameters φ : N→ Rn
t, I−1 = 0, ∅
while stopping criteria on It−1 not met do

It = It−1 ∪ {θt, `(θt),∇`(θt)}
θt+1 =M(It, φt)
t = t+ 1

end while
return θt

The stochastic gradient descent (SGD; Rob-
bins and Monro, 1951) algorithm is one of the
simplest methods used for training neural net-
works. SGD is initialized with θ0 ∈ Rd and
produces a sequence of iterates θt ∈ Rd ac-
cording to the rule θt+1 = θt−ηt∇`(θt), where
ηt > 0 is an iteration-dependent “learning rate”
or “step size”. Recently, there has been an ex-
plosion new methods in deep learning based
on SGD, all of which fall into the first-order
scheme, Algorithm 1.

This scheme is a slight modification of Nesterov’s (2018) and includes all of the modern first-order
methods popular in deep learning. As an example, the metaparameter of SGD is a step-size sched-
ule η : N → (0,∞) and its update rule is given by SGD(It, ηt) = θt − ηt∇`(θt). The momentum
method (MOMENTUM) due to Polyak (1964) generalizes the gradient method by linearly combining
the gradient direction with some constant multiple of the previous parameter update. Its metaparam-
eters are a step-size schedule η : N→ (0,∞) and a momentum parameter γ ∈ [0,∞),

MOMENTUM(It, ηt, γ) = θt − ηt∇`(θt) + γ(θt − θt−1).

The difference between optimizers is entirely captured by the choice of update ruleM and metapa-
rameters φ. Thus, in analogy to (overloaded) function declarations in C++, we identify optimizers
by an update rule “signature,” the update rule name together with the free metaparameter arguments.
MOMENTUM(·, ηt, γ) is not the same optimizer as MOMENTUM(·, ηt, 0.9), because the latter has
two free metaparameters while the former only has one. The two concerns of a practitioner are
choosingM and φ. We consider each in turn.

3.1 THE PRACTICE OF CHOOSING METAPARAMETERS

In the theory of convex optimization, metaparameter choices are well-understood for the most com-
mon methods on many classes of convex functions (Rockafellar, 1970; Nesterov, 2018; Boyd and
Vandenberghe, 2004). For example, for smooth convex loss functions, the learning rate of gradient
descent should be the inverse of the smoothness constant. This stands in sharp contrast to non-
convex neural network optimization, for which the interactions between metaparameters and loss
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function classes are not well understood. Many of the most popular neural network optimization
methods have a panoply of metaparameters whose provenance is sometimes accidental and whose
importance is disputed. Despite ADAM’s ε metaparameter being introduced solely to prevent di-
vision by zero and often being ignored in practice1, some practitioners have nonetheless found it
helpful to tune ε (see Section 2). If ADAM is interpreted as an empirical, diagonal approximation to
natural gradient descent (Kingma and Ba, 2015), ε can be viewed as a multi-purpose damping term
whose role is to improve the conditioning of the Fisher, in analogy to the approximate second-order
method considered by Becker and Le Cun (1988). We can also view ε as setting a trust region radius
(Martens and Grosse, 2015; Adolphs et al., 2019) and controlling an interpolation between momen-
tum and diagonal natural gradient descent, by either diminishing or increasing the effect of vt on
the update direction. Under either interpretation, the best value for ε will be problem-dependent and
likely benefit from tuning.

Since the roles of optimizer metaparameters on neural network loss functions are not well-
understood, most practitioners treat metaparameters as nuisance parameters and optimize them away
for each new workload via a tuning protocol. These protocols vary widely, but all contemporary pro-
tocols require a hand-designed search space as input, including partially automated procedures using
Bayesian optimization (Snoek et al., 2012). Good search spaces are hard-won treasures: they tend
to be refined over many experiments and across many workloads, representing the sum total of a
practitioner’s experience. Even given a search space, the best way to tune is still an open research
question that depends on the computational budget of the user. Grid search is inefficient (Bergstra
and Bengio, 2012), and random search and Bayesian optimization algorithms tend to use priors
oblivious to the meanings of different metaparameters (Snoek et al., 2012). For budgets that allow
dozens or hundreds of trials and multiple rounds of experiments, the current state of the art for
tuning metaparameters is to iteratively use human judgment to design a search space and use some
black-box algorithm to tune within that space.

3.2 THE TAXONOMY OF FIRST-ORDER METHODS AND CHOOSING THE UPDATE RULE

The basic observation of this section is that some optimizers can approximately simulate others,
i.e. optimizer A might be able to approximately simulate the trajectory of optimizer B for any
particular setting of B’s metaparameters. This is important knowledge because, as a metaparameter
tuning protocol approaches optimality, a more expressive optimizer will never underperform any
of its specializations. To capture these concepts more precisely, we define the following inclusion
relationship between optimizers, which captures the idea that one optimizer can approximate another
arbitrarily well.
Definition (Inclusion relationship). LetM,N be update rules for use in a first-order optimization
method. M is a subset or specialization of N , if for all φ : N → Rn, there exists a sequence
ψi : N→ Rm, such that for all t ∈ [0,∞) and information sets It,

lim
i→∞

N (It, ψ
i
t) =M(It, φt)

This is denotedM⊆ N , with equalityM = N iffM⊆ N and N ⊆M.

Evidently SGD ⊆ MOMENTUM, since SGD(It, ηt) = MOMENTUM(It, ηt, 0). Many well-known
optimizers fall naturally into this taxonomy. In particular, we consider RMSPROP(It, ηt, γ, ρ, ε)
with momentum (Tieleman and Hinton, 2012), ADAM(It, αt, β1, β2, ε) (Kingma and Ba, 2015) and
NADAM(It, αt, β1, β2, ε) (Dozat, 2016) in the appendix and show the following inclusions.2

SGD ⊆ MOMENTUM ⊆ RMSPROP

SGD ⊆ MOMENTUM ⊆ ADAM

SGD ⊆ NESTEROV ⊆ NADAM

(1)

At first glance, the taxonomy of optimizer inclusions appears to resolve many optimizer comparison
questions. Optimally-tuned SGD cannot outperform optimally-tuned MOMENTUM, because setting

1The Keras documentation previously referred to ε as a “fuzz factor” and now doesn’t mention it at all
(https://git.io/no-epsilon).

2The transformation that generalizes MOMENTUM into RMSPROP can also be applied to NESTEROV. So,
in the appendix we define RMSTEROV, a novel variant satisfying SGD ⊆ NESTEROV ⊆ RMSTEROV.
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γ = 0 recovers SGD. Although, from this perspective, a more general optimizer is never worse,
additional metaparameters still impose a tuning cost for the practitioner, so we should have a theo-
retical or experimental reason to justify using (or creating) a more general optimizer. For example,
MOMENTUM improves local convergence rates over SGD on twice-differentiable functions that are
smooth and strongly convex (Polyak, 1964), and NESTEROV has globally optimal convergence rates
within the class of smooth and strongly convex functions (Nesterov, 1983; 2018).

However, for a deep learning practitioner, there is no guarantee that the inclusion hierarchy is at
all meaningful in practice (e.g. that the metaparameters that allow ADAM to match (or outperform
MOMENTUM are accessible). They might exist only in the limit of very large values, or be so
difficult to find that only practitioners with huge computational budgets can hope to discover them.
Indeed, empirical studies and conventional wisdom hold that the inclusion hierarchy does not predict
optimizer performance for many practical workloads (Wilson et al., 2017; Balles and Hennig, 2017;
Schneider et al., 2019). Either these experimental investigations are too limited or the taxonomy of
this section is of limited practical interest and provides no guidance about which optimizer to use
on a real workload. In the following section we attempt to answer this question experimentally and
show that these inclusion relationships are meaningful in practice.

4 EXPERIMENTS

An empirical comparison of optimizers should aim to inform a careful practitioner. Accordingly,
we model our protocol on a practitioner that is allowed to vary all optimization metaparameters for
each optimizer (e.g. αt, β1, β2, ε for ADAM) in addition to a parameterized learning rate decay
schedule, in contrast to studies that fix a subset of the optimization metaparameters to their default
values (e.g. Wilson et al., 2017; Schneider et al., 2019). There is no standard method for selecting
the values of these metaparameters, but most practitioners tune at least a subset of the optimization
metaparameters by running a set of trials to maximize performance over the validation set. In our
experiments, we run hundreds—but not thousands—of individual trials per workload. Given the
variety of workloads we consider, this trial budget covers a wide range of computational budgets.

Selecting the search space for each optimizer is a key methodological ingredient of any empirical
comparison of optimizers. Prior studies have attempted to treat each optimizer fairly by using the
“same” search space for all optimizers (e.g. Wilson et al., 2017; Schneider et al., 2019). However,
this requires the implicit and unjustified assumption that similarly-named metaparameters should
take similar values between optimizers. For example, MOMENTUM and NESTEROV both have
similar-looking momentum and step-size metaparameters, but NESTEROV tolerates larger values
of its momentum metaparameter (Sutskever et al., 2013), which nearly guarantees that any fixed
search space will be more favorable for one of the two. The situation worsens with less closely
related optimizers, and designing a search space that is equally appropriate for optimizers with in-
commensurate metaparameters is almost impossible. Despite coming with its own set of challenges,
it is most meaningful to compare optimizers assuming the practitioner is allowed to tune metapa-
rameters for different optimizers independently by way of optimizer-specific search spaces.

In our experiments, we chose the search space for each optimizer by running an initial set of ex-
periments over a relatively large initial search space. In a typical case, we ran an initial set of 100
trials per optimizer to select the final search space. However, in some cases we chose the initial
search space poorly, so we ran another set of experiments to select the final search space. The effort
required to choose each search space cannot simply be quantified by the number of initial trials;
the provenance of each search space is difficult to trace exactly. In some cases, our search spaces
were informed by published results or prior experience with particular models and optimizers. We
validated our search spaces by checking that that the optimal metaparameter values were away from
the search space boundaries for all optimizers in all experiments (see Figure 6 in Appendix E); we
provide our final search spaces for all experiments in Appendix D. The fact that our final error rates
on our workloads compare favorably to prior published results – including reaching state-of-the-art
for our particular configuration of ResNet-50 on ImageNet (see Section 4.2) – further supports our
claim that our methodology is highly competitive with expert tuning procedures.
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Table 1: Summary of workloads used in experiments.

Task Evaluation
Metric Model Dataset Target Batch

size Budget

Image
classification

Classification
error

Simple CNN Fashion MNIST 6.6% 256 10k steps

ResNet-32 CIFAR-10 7% 256 50k steps

CNN CIFAR-100 – 256 350 epochs

VGG-16 CIFAR-10 – 128 250 epochs

ResNet-50 ImageNet 24% 1024 150k steps

Language
modeling

Classification
error LSTM War and Peace – 50 200 epochs

Cross entropy Transformer LM1B 3.45 256 750k steps
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Figure 1: Validation performance of the best trial mostly converges with as few as 24 metaparameter
tuning trials. Shaded regions indicate 5 and 95 percentile estimated with bootstrap sampling (see
Appendix C). The search spaces can be found in Appendix D.4. For additional workloads, see
Figure 9 and Figure 10 in Appendix E.

4.1 OVERVIEW OF WORKLOADS AND EXPERIMENTAL DETAILS

We investigated the relative performance of optimizers across a variety of image classification and
language modeling tasks. For image classification, we trained a simple convolutional neural network
(Simple CNN) on Fashion MNIST (Xiao et al., 2017); ResNet-32 (He et al., 2016a) on CIFAR-10
(Krizhevsky, 2009); a CNN on CIFAR-100; VGG-16 (Simonyan and Zisserman, 2014) on CIFAR-
10; and ResNet-50 on ImageNet (Russakovsky et al., 2015). For language modeling, we trained a
2-layer LSTM model (Hochreiter and Schmidhuber, 1997) on Tolstoy’s War and Peace; and Trans-
former (Vaswani et al., 2017) on LM1B (Chelba et al., 2014). We use a linear learning rate decay
schedule parameterized the same way as Shallue et al. (2019) for all workloads. Table 1 summarizes
these workloads and Appendix B provides the full details.

Given a (hypercube-shaped) search space, our tuning protocol sought to model a practitioner with a
fixed budget of trials trying to achieve the best outcome using tens of feasible trials (either 50 or 100
depending on the workload). A feasible trial is any trial that achieves finite training loss. We used
quasi-random uniform search (Bousquet et al., 2017), and continued the search until we obtained a
fixed number of feasible trials. From those trials we considered two statistics. The first, in order to
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Figure 2: The relative performance of optimizers is consistent with the inclusion relationships, re-
gardless of whether we compare final validation error (top) or test error (bottom). For all workloads,
we tune the metaparameters of each optimizer separately, and select the trial that achieved the lowest
final validation error.
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Figure 3: The relative training speed of optimizers is consistent with the inclusion relationships.
We measured (idealized) training speed as the number of training steps required to reach a target
validation error (see Table 1 for the error targets).

characterize the best outcome, is a metric of interest (e.g. test accuracy) corresponding to the trial
achieving the optimum of some other metric (e.g. validation accuracy). The second, in order to
characterize the speed of training, is the number of steps required to reach a fixed validation target
conditional on at least one trial in the search having reached that target. We chose the target for
each workload based on initial experiments and known values from the literature. Each workload
used a fixed batch size and a fixed budget of training steps independent of the optimizer (see Table 1
for a summary). We estimated means and uncertainties using the bootstrap procedure described in
Appendix C.

Although we used a budget of tens of independent tuning trials throughout this section, in retrospect
we can see that the best validation error across tuning trials converged quite quickly for our search
spaces, producing good results after 24 trials in many cases. Figure 1 shows a bootstrap estimate
of the minimum validation error for Simple CNN on CIFAR-10 using both initial and final search
spaces. For other workloads, see Appendix E.

4.2 INCLUSION RELATIONSHIPS MATTER IN PRACTICE

Figure 2 shows the final predictive performance of six optimizers on four different workloads after
tuning metaparameters to minimize validation error. Regardless of whether we compare final val-
idation error or test error, the inclusion relationships hold in all cases – a more general optimizer
never underperforms any of its specializations within the error bars. Similar results hold for training
error (see Figure 8 in Appendix E). Of course, predictive performance is not the only concern when
selecting an optimizer – training speed is also an important consideration. Figure 3 demonstrates
that the inclusion relationships also hold (within error bars) when we compare the number of steps
required to reach a target validation error. Moreover, these results confirming the relevance of opti-
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mizer inclusion relationships do not depend on the exact step budgets or error targets we chose (see
Figure 7 in Appendix E), although large changes to these values would require new experiments.

Of course, just because a more general optimizer is no worse than any of its specializations doesn’t
mean the choice of optimizer makes a large difference on all workloads. For some workloads in Fig-
ures 2 and 3, all optimizers perform about the same, while other workloads have a clear ranking or
even dramatic differences. For example, the choice of optimizer seems to make little difference for
ResNet-32 on CIFAR-10; all optimizers achieve similar predictive performance and training speed.
On the other hand, Transformer on LM1B exhibits a clear ranking in terms of predictive perfor-
mance and training speed. For this workload, ADAM needs roughly half the steps that MOMENTUM
requires to reach a good result, and, although not shown in Figure 3, roughly six times fewer steps
to get the same result as SGD. These differences are clearly significant enough to matter to a prac-
titioner and highlight the practical importance of choosing the right optimizer for some workloads.

The most general optimizers we considered were NADAM, ADAM, and RMSPROP, which do not
include each other as special cases, and whose relative performance is not predicted by inclusion
relationships. Across the workloads we considered, none of these optimizers emerged as the clear
winner, although ADAM and NADAM generally seemed to have an edge over RMSPROP. For all
of these optimizers, we sometimes had to set the ε parameter orders of magnitude larger than the
default value in order to get good results. In particular, we achieved a validation accuracy of 77.1%
for ResNet-50 on ImageNet using NADAM with ε = 9475, a result that exceeds the 76.5% achieved
by Goyal et al. (2017) using MOMENTUM. Across just these 4 workloads, the range of the optimal
values of the ε parameter spanned 10 orders of magnitude. Faced with this reality, a practitioner
might reasonably doubt their ability to find a value near the optimum. However, we found that we
could reasonably expect to find a suitable value with only tens of trials (see Figure 1). When tuning
ε for ADAM or NADAM over a large range, we also found it more efficient to search over (ε, α0/ε)
instead of (ε, α0); see Appendix D for more details.

4.3 RECONCILING DISAGREEMENTS WITH PREVIOUS WORK

In order to confirm that differences in metaparameter tuning protocols explain the differences be-
tween our conclusions and those of Wilson et al. (2017) and Schneider et al. (2019), we reproduced a
representative subset of their results and then inverted, or at least collapsed, the ranking over update
rules just by expanding the metaparameter search space.

The left pane of Figure 4 shows our experiments on VGG on CIFAR-10 using code released by
Wilson et al. (2017). When we match their protocol and perform their grid search over the initial
learning rate and no other tuning, we reproduce their original result showing worse test error for
RMSPROP and ADAM. However, when we tune the momentum parameter and ε with random
search, all four optimizers reach nearly identical test error rates.3 With our learning rate schedule
search space, merely tuning the learning rate schedule was enough to make all update rules reach
the same test error within error bars. When we additionally tuned the optimization metaparameters
and weight decay in our setup we also get similar results for all update rules, removing any evidence
the inclusion relationships might be violated in practice.

Figure 5 shows our results with different tuning protocols on CIFAR-100 with a CNN and an LSTM
language model trained on War and Peace to match the experiments in Schneider et al. (2019).
As reported by Schneider et al. (2019), if we only tune the learning rate without tuning the decay
schedule or other optimizer metaparameters, ADAM does worse than MOMENTUM for the CNN
and SGD performs slightly better than ADAM and MOMENTUM on the War and Peace dataset,
although Schneider et al. (2019) found a larger advantage for SGD. However, once we tune the all
the optimizer metaparameters, ADAM does better than MOMENTUM which does better than SGD,
as predicted by the inclusion relationships.

We conclude that the reason both Schneider et al. (2019) and Wilson et al. (2017) observed a ranking
that, at first glance, contradicts the inclusion relationships is because they were not tuning enough
of the metaparameters. If we recast their results in our terminology where ADAM with default ε

3Wilson et al. (2017) selected trials to minimize the training loss and then report test set results. As Figure 4
shows, removing this somewhat non-standard choice and tuning on a validation set and reporting test set results
does not change anything.
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Figure 4: Tuning more metaparameters removes the differences in test error between optimizers
observed by Wilson et al. (2017). Tuning a subset of optimizer metaparameters and the initial
learning rate is sufficient to equalize performance between all optimizers (left). More extensive
metaparameter tuning, including the learning rate schedule, in our setup improves results for all
optimizers and still does not produce any differences between optimizer performances (right).
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Figure 5: Tuning more metaparameters changes optimizer rankings from Schneider et al. (2019)
to rankings that are consistent with the inclusion relationships. The leftmost columns for each
workload reproduce the rankings from Schneider et al. (2019), while the remaining columns tune
over increasingly general search spaces. All columns use our random search tuning protocol.

is a different optimizer than ADAM with ε tuned then there is no contradiction with our results
and it becomes clear immediately that they do not consider the most interesting form of ADAM for
practitioners.

5 CONCLUSIONS

Inspired by the recent efforts of Wilson et al. (2017) and Schneider et al. (2019), we set out to
provide a detailed empirical characterization of the optimizer selection process in deep learning. Our
central finding is that inclusion relationships between update rules are meaningful in practice. When
tuning all available metaparameters under a realistic protocol at scales common in deep learning,
we find that more general update rules never underperform their special cases. In particular, we
found that RMSPROP, ADAM, and NADAM never underperformed SGD or MOMENTUM under our
most exhaustive tuning protocol. We did not find consistent trends when comparing optimizers that
could not approximate each other. We also found workloads for which there was not a statistically
significant separation in the optimizer ranking.

Our experiments have some important limitations and we should be careful not to overgeneralize
from our results. The first major caveat is that we did not measure the effects of varying the batch
size. Recent empirical work (Shallue et al., 2019; Zhang et al., 2019) has shown that increasing
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the batch size can increase the gaps between training times for different optimizers, with the gap
from SGD to MOMENTUM (Shallue et al., 2019) and from MOMENTUM to ADAM (Zhang et al.,
2019) increasing with the batch size. Nevertheless, we strongly suspect that the inclusion relations
would be predictive at any batch size under a tuning protocol similar to the one we used. The
second important caveat of our results is that they inevitably depend on the tuning protocol and
workloads that we considered. Although we made every attempt to conduct realistic experiments,
we should only expect our detailed findings to hold for similar workloads under similar protocols,
namely uniform quasi-random tuning for tens to hundreds of trials, over hypercube search spaces,
and with our specific learning rate schedule parameterization. Nevertheless, these caveats reinforce
our central point: all empirical comparisons of neural network optimizers depend heavily on the
metaparameter tuning protocol, perhaps far more than we are used to with comparisons between
model architectures.

If we were to extract “best practices” from our findings, then we suggest the following. If we
can afford tens or more runs of our code, we should tune all of the metaparameters of the popular
adaptive gradient methods. Just because two metaparameters have a similar role in two different
update rules doesn’t mean they should take similar values— optimization metaparameters tend to
be coupled and the optimal value for one may depend on how the others are set. Our results also
confirm that the optimal value of Adam’s ε is problem-dependent, so the onus is on empirical studies
that fix ε = 10−8 to defend that choice. Finally, we should be skeptical of empirical comparisons
of optimizers in papers, especially if an optimizer underperforms any of its specializations. When
we do inevitably compare optimizers, we should report search spaces and highlight decisions about
what metaparameters were tuned when interpreting results.
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A OPTIMIZATION SCHEMES AND THEIR INCLUSIONS

A.1 OPTIMIZATION SCHEMES

Table 2 summarizes the update rules for the optimizers we consider in this work. We assume update
rules as implemented in Tensorflow. RMSPROP includes momentum.

Table 2: Update rules for the optimizers considered in this paper. For x ∈ Rd, x2 is a component-
wise power function. SGD is due to Robbins and Monro (1951), MOMENTUM to Polyak (1964),
NESTEROV to Nesterov (1983), RMSPROP to Tieleman and Hinton (2012), RMSTEROV is our
own, ADAM to Kingma and Ba (2015), and NADAM to Dozat (2016).

SGD(It, ηt)

θt+1 = θt − ηt∇`(θt)

MOMENTUM(It, ηt, γ) NESTEROV(It, ηt, γ)

v0 = 0

vt+1 = γvt +∇`(θt)
θt+1 = θt − ηtvt+1

v0 = 0

vt+1 = γvt +∇`(θt)
θt+1 = θt − ηt (γvt+1 +∇`(θt))

RMSPROP(It, ηt, γ, ρ, ε) RMSTEROV(It, ηt, γ, ρ, ε)

v0 = 1,m0 = 0

vt+1 = ρvt + (1− ρ)∇`(θt)2

mt+1 = γmt +
ηt√

vt+1 + ε
∇`(θt)

θt+1 = θt −mt+1

v0 = 1,m0 = 0

vt+1 = ρvt + (1− ρ)∇`(θt)2

mt+1 = γmt +
ηt√

vt+1 + ε
∇`(θt)

θt+1 = θt −
[
γmt+1 +

ηt√
vt+1 + ε

∇`(θt)
]

ADAM(It, αt, β1, β2, ε) NADAM(It, αt, β1, β2, ε)

m0 = 0, v0 = 0

mt+1 = β1mt + (1− β1)∇`(θt)
vt+1 = β2vt + (1− β2)∇`(θt)2

bt+1 =

√
1− βt+1

2

1− βt+1
1

θt+1 = θt − αt
mt+1√
vt+1 + ε

bt+1

m0 = 0, v0 = 0

mt+1 = β1mt + (1− β1)∇`(θt)
vt+1 = β2vt + (1− β2)∇`(θt)2

bt+1 =

√
1− βt+1

2

1− βt+1
1

θt+1 = θt − αt
β1mt+1 + (1− β1)∇`(θt)√

vt+1 + ε
bt+1

A.2 OPTIMIZATION INCLUSIONS: WHICH OPTIMIZERS CAN IMPLEMENT OTHER
OPTIMIZERS?

MOMENTUM can exactly implement SGD

SGD(It, ηt) = MOMENTUM(It, ηt, 0) thus SGD ⊆ MOMENTUM.

NESTEROV can exactly implement SGD

SGD(It, ηt) = NESTEROV(It, ηt, 0) thus SGD ⊆ NESTEROV.

RMSPROP with momentum can exactly implement MOMENTUM
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Consider RMSPROP(It, ηt, γ, ρ = 1, ε = 0), so that

mt+1 = γmt + ηt∇`(θt) ,
θt+1 = θt −mt+1 .

This is equivalent to MOMENTUM if we identify

m(RMSPROP)
t+1 = ηtv

(MOMENTUM)
t+1 .

Thus RMSPROP(It, ηt, γ, 1, 0) = MOMENTUM(It, ηt, γ), therefore MOMENTUM ⊆ RMSPROP.

RMSTEROV can exactly implement NESTEROV

Consider RMSTEROV(It, ηt, γ, ρ = 1, ε = 0), so that

mt+1 = γmt + ηt∇`(θt) ,
θt+1 = θt − [γmt+1 + ηt∇`(θt)] .

This is equivalent to MOMENTUM if we identify

m(RMSPROP)
t+1 = ηtv

(NESTEROV)
t+1 .

Thus RMSTEROV(It, ηt, γ, 1, 0) = MOMENTUM(It, ηt, γ), and MOMENTUM ⊆ RMSTEROV.

ADAM can implement MOMENTUM for large ε

Consider ADAM(It, αt, β1 = γ, β2 = 0, ε) then its update rule becomes:

mt+1 = γmt + (1− γ)∇`(θt) ,

bt+1 =
1

1− γt+1
,

θt+1 = θt −
αt

ε(1− γ)

[
mt+1

|∇`(θt)|/ε+ 1

]
bt .

Consider taking the limit ε→∞ such that |∇`(θt)|ε � 1, we obtain

mt+1 = γmt + (1− γ)∇`(θt) ,

θt+1 = θt −
αtbt
ε

mt+1

1− γ
.

If we identify m(ADAM)
t = (1 − γ) v(MOMENTUM)

t and relate following metaparameters such that
αtbt/ε = ηt, we obtain the MOMENTUM updates.

Thus limε→∞ ADAM(It, ε ηt(1− γt), γ, 0, ε) = MOMENTUM(It, ηt, γ).

NADAM can implement NESTEROV for large ε

Consider NADAM(It, αt, β1 = γ, β2 = 0, ε) then its update rule becomes:

mt+1 = γmt + (1− γ)∇`(θt) ,

bt+1 =
1

1− γt+1
,

θt+1 = θt −
αt

ε(1− γ)

[
γmt+1 + (1− γ)∇`(θt)
|∇`(θt)|/ε+ 1

]
bt .

Consider taking the limit ε→∞ such that |∇`(θt)|ε � 1, we obtain

mt+1 = γmt + (1− γ)∇`(θt) ,

θt+1 = θt −
αtbt
ε

[
γmt+1

1− γ
+∇`(θt)

]
.

If we identify m(NADAM)
t = (1 − γ) v(NESTEROV)

t and relate following metaparameters such that
αtbt/ε = ηt, we obtain the NESTEROV updates.

Thus limε→∞ NADAM(It, ε ηt(1− γt), γ, 0, ε) = NESTEROV(It, ηt, γ).
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B WORKLOAD DETAILS

This section details the datasets and models summarized in Table 1.

B.1 DATASET DESCRIPTIONS

For each of Fashion MNIST, CIFAR-10, ImageNet, and LM1B, our dataset setup was identical to
that of Shallue et al. (2019), with details on image pre-processing provided here.

CIFAR-10/100 We pre-processed images by subtracting the average value across all pixels and
channels and dividing by the standard deviation.4 For experiments with ResNet-32 and CNN, we
followed the standard data augmentation scheme used in He et al. (2016a): 4 pixels padded on each
side with single random crop from padded image or its horizontal flip. We did not include random
cropping For the experiments with VGG, because we were aiming to compare with Wilson et al.
(2017).

ImageNet We augmented images at training time by resizing each image, taking a random crop of
224 × 224, and randomly horizontally reflecting the cropped images. We randomly distorted the
image colors. At evaluation time, we performed a single central crop of size (224, 224). In both
training and evaluation, we then subtracted the global mean RGB value from each pixel using the
values computed by Simonyan and Zisserman (2014).5

Tolstoy’s War and Peace is a text dataset of the novel by Tolstoy, the same as in Schneider et al.
(2019). We used character level preprocessing with vocabulary size of 82.

B.2 MODEL DESCRIPTIONS

Simple CNN base model in Shallue et al. (2019) was used. It consists of 2 convolutional layers with
max pooling followed by 1 fully connected layer. The convolutional layers use 5 × 5 filters with
stride 1, “same” padding and ReLU activation function. Max pooling uses 2× 2 window with stride
2. Convolutional layers have 32 and 64 filters each and fully connected layer has 1024 units. No
batch normalization layer was used.

CNN We followed the All-CNN-C model from Springenberg et al. (2014) for comparison
with Schneider et al. (2019). The model consists of 3 convolutional layer blocks with max pooling.
The convolutional layer block use 5 × 5 filters with stride 1, “same” padding and ReLU activation
function. Max pooling uses 2 × 2 window with stride 2. Convolutional layer blocks have 96, 192
and 192 filters each. L2 regularization of 5e-4 was used.

ResNet We used the model described in He et al. (2016a) with the improved residual block de-
scribed by He et al. (2016b). For ResNet-32 we used the model with normalization (Ioffe and
Szegedy, 2015) layers. For ResNet-50, we replaced batch normalization with ghost batch normal-
ization (Hoffer et al., 2017) with ghost batch size of 32.

VGG is a convolutional network based on the model referred to as “model C” in Simonyan and
Zisserman (2014). It consists of 13 convolutional layers followed by 3 fully connected hidden
layers. We followed the modification used in Wilson et al. (2017) with batch normalization layers.

LSTM is a two hidden-layer LSTM model (Hochreiter and Schmidhuber, 1997) used in Schneider
et al. (2019) with 128 embedding dimensions, 128 hidden units.

Transformer is a self-attention model that was originally presented for machine translation
(Vaswani et al., 2017). We used it as an autoregressive language model by applying the decoder
directly to the sequence of word embeddings for each sentence. We used the base model described
by Vaswani et al. (2017). Unlike typical convention, we used separate weight matrices for the input
embedding layer and the final, pre-softmax linear transformation.

4We used the TensorFlow op tf.image.per image standardization.
5See https://gist.github.com/ksimonyan/211839e770f7b538e2d8#description

for the mean RGB values used.
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C ESTIMATING TRIAL OUTCOMES VIA BOOTSTRAP

For each optimizer, a single run of our tuning protocol corresponds to generating quasi-random
uniform points in the search space until K ∈ {50, 100} feasible trials are obtained. A feasible trial
is any trial that achieves finite training loss. From those K trials we considered two statistics. The
first is some metric used to characterize the best outcome, which is selected using the optimal value
of another metric. For example, we may consider the test accuracy of the trial selected according
to best final validation accuracy. The second, in order to characterize the speed of training, is the
number of steps required to reach a fixed validation target conditional on at least one trial having
reached that target. We chose the target for each workload based on initial experiments and known
values from the literature. A budget of training steps and batch size were fixed across all optimizers
on a workload, see Table 1 for a summary.

To estimate means and uncertainties we used the following bootstrap procedure. We ran N ∈
{100, 250, 500} trials, with N depending on the workload. Then for each bootstrap sample, we re-
sampled the dataset ofN trials with replacement and computed one of the above mentioned statistics
on the first K trials of the resampled dataset. We collected B = 100 such bootstrap samples, and
from those computed the means, 5th percentiles, and 95th percentiles of the bootstrap distribution.

Transformer on LM1B used (N,K) = (100, 50); ResNet-50 on ImageNet used (250, 50); LSTM on
War and Peace used (50, 10) for tuning just the learning rate, and (500, 100) for tuning the learning
rate schedule and γ, β1, β2, ε. The rest of the tasks used (500, 100).

D METAPARAMETER SEARCH SPACES

When tuning metaparameters over a large range, we found that our search was more efficient if we
parametrized the search spaces in a way that decorrelated the axes of the space. For example, with
MOMENTUM and NESTEROV we observed a clear relationship between the initial learning rate η0
and the momentum parameter γ; smaller values of η0 require larger values of γ for good perfor-
mance, and vice versa. Indeed, Shallue et al. (2019) suggested that these optimizers are governed
by the “effective learning rate” ηeff = η0/(1−γ), and inspired by this, we found that searching over
(η0, ηeff) instead of (η0, γ) led to a more efficient metaparameter search. Similarly, with ADAM and
NADAM we observed a clear relationship between the initial learning rate α0 and the ε parameter;
larger values of α0 require larger values of ε for good performance, and vice versa. This is not
surprising given the analysis in Appendix A that showed that, for large ε, α0/ε is analogous to the
effective learning rate of ADAM and NADAM. We found that searching over (ε, α0/ε) was more
efficient than searching over (ε, α0).

Below we report the search spaces used for our experiments; we include both the initial and final
spaces, which are used to generate the plots. When only one round of search-space refining was
done, we denote the initial space as final. η0, 1 − γ, 1 − β1, 1 − β2, and ε are always tuned on a
log scale. A linear decay was used for the learning rate schedule for all experiments. The number of
learning rate decay steps was tuned to be between [0.5, 1.0] times the number of training steps. The
learning rate decay factor was chosen from f in the tables below.

17



Under review as a conference paper at ICLR 2020

D.1 CNN ON FASHION MNIST

The learning rate decay factor f was chosen from {10−3, 10−2, 10−1}. No L2 regularization or
weight decay was used.

η

initial [10−2, 102]

final [10−2, 101]

Table 3: SGD

η 1− γ
initial [10−4, 102] [10−4, 1]

final [10−5, 101] [10−4, 1]

Table 4: MOMENTUM

η 1− γ
initial [10−4, 102] [10−4, 1]

final [10−4, 101] [10−4, 1]

Table 5: NESTEROV

η 1− γ 1− ρ ε

initial [10−4, 101] [10−2, 1] [10−4, 1] [10−5, 101]

final [10−5, 1] [10−2, 1] [10−3, 1] [10−10, 10−5]

Table 6: RMSPROP

α 1− β1 1− β2 ε

initial [10−4, 10−1] [10−3, 5× 10−1] [10−4, 10−1] [10−9, 10−5]

final [10−5, 10−1] [10−3, 1] [10−4, 1] [10−10, 10−5]

Table 7: ADAM

α
ε 1− β1 1− β2 ε

initial [10−2, 104] [10−3, 1] [10−4, 1] [10−10, 1010]

final [10−1, 101] [10−3, 1] [10−4, 1] [10−6, 10−2]

Table 8: NADAM
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D.2 RESNET-32 ON CIFAR-10

L2 regularization was tuned using the ranges in λL2 in the tables below.

η λL2 f

final [10−2, 102] {10−5, 10−4, 10−3, 10−2} {10−4, 10−3, 10−2, 10−1}

Table 9: SGD

η 1− γ λL2 f

final [10−4, 102] [10−3, 1] {10−5, 10−4, 10−3, 10−2} {10−4, 10−3, 10−2, 10−1}

Table 10: MOMENTUM

η 1− γ λL2 f

initial [10−4, 102] [10−4, 101] 10−4 {10−3, 10−2, 10−1}
final [10−4, 101] [10−4, 1] {10−5, 10−4, 10−3, 10−2} {10−4, 10−3, 10−2, 10−1}

Table 11: NESTEROV

η 1− γ 1− ρ ε λL2 f

initial [10−4, 101] [10−2, 1] [10−4, 1] [10−5, 101] 10−4 {10−3, 10−2, 10−1}

final [10−4, 101] [10−3, 1] [10−4, 1] [10−5, 101]
{10−5, 10−4

10−3, 10−2}
{10−4, 10−3

10−2, 10−1}

Table 12: RMSPROP

α 1− β1 1− β2 ε λL2 f

initial [10−4, 10−1] [10−3, 5× 10−1] [10−4, 10−1] [10−9, 10−5] 10−4
{10−3, 10−2

10−1}

final [10−3, 101] [10−3, 1] [10−4, 10−1] [10−5, 101]
{10−5, 10−4

10−3, 10−2}
{10−4, 10−3

10−2, 10−1}

Table 13: ADAM

α
ε 1− β1 1− β2 ε λL2 f

initial [10−2, 104] [10−3, 1] [10−4, 1] [10−10, 1010]
{10−5, 10−4

10−3, 10−2}
{10−4, 10−3

10−2, 10−1}

final [10−2, 1] [10−3, 1] [10−4, 1] [1, 104]
{10−5, 10−4

10−3, 10−2}
{10−4, 10−3

10−2, 10−1}

Table 14: NADAM
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D.3 RESNET-50 ON IMAGENET

Weight decay is represented as λwd, and label smoothing by τ . A virtual batch size of 32 was used
for all experiments, as well as a batch normalization EMA decay of 0.9.

η λwd τ f

initial [10−2, 101] [10−5, 10−2] {0, 10−2, 10−1} {10−4, 10−3, 10−2, 10−1}
final [1, 102] [10−4, 10−3] 10−1 {10−4, 10−3, 10−2, 10−1}

Table 15: SGD

η 1− γ λwd τ f

initial [10−3, 1] [10−3, 1] [10−5, 10−2] {0, 10−2, 10−1} {10−4, 10−3, 10−2, 10−1}
final [10−2, 1] [10−2, 1] [10−4, 10−3] 10−2 {10−4, 10−3, 10−2, 10−1}

Table 16: MOMENTUM

η 1− γ λwd τ f

initial [10−3, 1] [10−3, 1] [10−5, 10−2] {0, 10−2, 10−1} 10−3

final [10−2, 1] [10−3, 1] [10−4, 10−3] 0 {10−4, 10−3, 10−2, 10−1}

Table 17: NESTEROV

η√
ε

1− γ 1− ρ ε λwd τ f

initial [10−2, 104] 0.1 [10−4, 1] [10−10, 1010] [10−5, 10−2] {0, 10−2, 10−1} 10−3

final [10−2, 1] 0.1 [10−2, 1] [10−8, 10−3] [10−4, 10−3] 0
{10−4, 10−3

10−2, 10−1}

Table 18: RMSPROP

α
ε 1− β1 ε λwd τ f

initial [1, 102] [10−3, 1] [1, 104] [10−5, 10−3] {0, 10−2, 10−1} 10−3

final [1, 102] [10−2, 1] [10−2, 102] 10−4 10−1
{10−4, 10−3

10−2, 10−1}

Table 19: ADAM

α
ε 1− β1 ε λwd τ f

initial [10−1, 103] [10−3, 1] [10−2, 1010] [10−5, 10−2] {0, 10−2, 10−1} 10−3

final [1, 102] [10−3, 1] [103, 107] 10−4 10−1 10−3

Table 20: NADAM
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D.4 TRANSFORMER ON LM1B

The learning rate decay factor f was chosen from {10−3, 10−2, 10−1, 1}. We did not use dropout
for any of the layers in any experiments.

η

final [10−4, 10−1]

Table 21: SGD

η 1− γ
final [10−4, 10−1] [10−4, 1]

Table 22: MOMENTUM

η 1− γ
final [10−4, 10−1] [10−4, 1]

Table 23: NESTEROV

η 1− γ 1− ρ ε

initial [10−4, 101] [10−2, 1] [10−2, 1] [10−12, 1010]

final [10−6, 10−2] [10−2, 1] [10−3, 1] [10−7, 10−1]

Table 24: RMSPROP

α 1− β1 1− β2 ε

final [10−5, 10−2] [10−3, 5× 10−1] [10−4, 10−1] [10−9, 10−5]

final [10−4, 10−2] [10−3, 1] [10−5, 10−1] [10−7, 10−2]

Table 25: ADAM

α 1− β1 1− β2 ε

final [10−5, 10−2] [10−3, 1] [10−5, 10−1] [10−9, 10−5]

Table 26: NADAM

21



Under review as a conference paper at ICLR 2020

D.5 VGG ON CIFAR-10 USING CODE FROM WILSON ET AL. (2017)

D.5.1 GRID SEARCH OVER LEARNING RATE

We use the same grid of learning rate values as Wilson et al. (2017) and a fixed decay scheme of
decaying by 0.5 every 25 epochs. A fixed L2 regularization constant of 0.0005 was used.

D.5.2 TUNING LEARNING RATE & {γ, ε}

η

initial [10−3, 1]

initial [10−1, 101]

Table 27: SGD

η 1− γ
initial [10−3, 1] [10−3, 1]

final [10−1, 101] [10−1, 1]

Table 28: MOMENTUM

ε α√
ε

initial [10−10, 1010] [10−2, 104]

final [10−2, 102] [10−1, 101]

Table 29: RMSPROP

ε α
ε

initial [10−10, 1010] [10−2, 104]

final [106, 1010] [10−1, 101]

Table 30: ADAM
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D.6 VGG ON CIFAR-10 USING OUR CODE

The learning rate decay factor f was chosen from {10−4, 10−3, 10−2, 10−1}, unless otherwise spec-
ified to be fixed.

D.6.1 TUNING LEARNING RATE SCHEDULE

We fixed all optimizer metaparameters excluding the learning rate to match those specified in Wilson
et al. (2017). A fixed L2 regularization constant of 0.0005 was used.

SGD MOMENTUM RMSPROP ADAM

initial [10−3, 101] [10−3, 101] [10−5, 10−1] [10−5, 10−1]

final 1.0 [10−2, 1] [10−4, 10−2] [10−5, 10−1]

Table 31: Learning rate search ranges.

D.6.2 TUNING LEARNING RATE SCHEDULE & {γ, β1, β2, ε, λwd}

η λwd

initial [10−3, 101] [10−5, 10−2]

final [10−1, 1] [10−4, 10−2]

Table 32: SGD

η 1− γ λwd

initial [10−3, 101] [10−3, 1] [10−5, 10−2]

final [10−2, 1] [10−1, 1] [10−4, 10−3]

Table 33: MOMENTUM

α√
ε

1− γ 1− ρ ε λwd f

initial [10−2, 104] [10−3, 1] 0.99 [10−10, 1010] [10−5, 10−2] 10−3

final [10−3, 1] [10−1, 1] 0.99 [10−1, 103] [10−4, 10−3] 10−3

Table 34: RMSPROP

α
ε 1− β1 1− β2 ε λwd f

initial [10−2, 104] [10−3, 1] 0.999 [10−10, 1010] [10−5, 10−2] 10−3

final [10−2, 1] [10−3, 10−1] 0.999 [1, 104] [10−4, 10−3] 10−3

Table 35: ADAM
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D.7 CNN ON CIFAR-100

L2 regularization of 0.0005 was used. If the learning schedule was tuned, the decay factor f was
chosen from {10−4, 10−3, 10−2, 10−1}.

D.7.1 TUNING CONSTANT LEARNING RATE

We fixed all optimizer metaparameters excluding the learning rate to match those specified in
Schneider et al. (2019).

SGD MOMENTUM ADAM

initial [10−2, 1] [10−4, 1] [10−5, 10−2]

final [10−1, 1] [10−3, 10−2] [10−4, 10−3]

Table 36: Learning rate search ranges.

D.7.2 TUNING LEARNING RATE SCHEDULE

SGD MOMENTUM ADAM

initial [10−2, 1] [10−4, 1] [10−5, 10−2]

final [10−1, 1] [10−3, 10−1] [10−4, 10−3]

Table 37: Learning rate search ranges.

D.7.3 TUNING CONSTANT LEARNING RATE & {γ, β1, β2, ε}

η 1− γ
final [10−4, 1] [10−3, 1]

Table 38: MOMENTUM

α
ε 1− β1 1− β2 ε

initial [10−2, 10−2] [10−3, 1] [10−4, 10−1] [10−10, 10−10]

final [10−1, 10−1] [10−2, 1] [10−4, 10−1] [102, 106]

Table 39: ADAM

D.7.4 TUNING LEARNING RATE SCHEDULE & {γ, β1, β2, ε}

η 1− γ
initial [10−4, 1] [10−2, 1]

final [10−3, 10−1] [10−3, 10−1]

Table 40: MOMENTUM
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α
ε 1− β1 1− β2 ε

initial [10−1, 101] [10−3, 1] [10−4, 10−1] [102, 106]

final [10−1, 101] [10−3, 1] [10−5, 10−2] [102, 106]

Table 41: ADAM
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D.8 LSTM ON TOLSTOY

.

D.8.1 TUNING CONSTANT LEARNING RATE

.

η

initial [10−2, 101]

Table 42: SGD

η 1− γ
initial [10−4, 1] 0.99

Table 43: MOMENTUM

η
ε 1− β1 1− β2 ε

initial [10−5, 10−2] 0.9 0.999 10−8

Table 44: ADAM

D.8.2 TUNING LEARNING RATE SCHEDULE & {γ, β1, β2, ε}

.

η f

initial [10−3, 101] {10−4, 10−3, 10−2, 10−1}
final [1, 101] {10−4, 10−3, 10−2, 10−1}

Table 45: SGD

η 1− γ f

initial [10−4, 1] [10−3, 1] {10−4, 10−3, 10−2, 10−1}
final [10−1, 101] [10−2, 1] {10−4, 10−3, 10−2, 10−1}

Table 46: MOMENTUM

η
ε 1− β1 1− β2 ε f

initial [10−2, 104] [10−3, 1] [10−4, 10−1] [10−10, 1010] {10−4, 10−3, 10−2, 10−1}
final [1, 102] [10−2, 1] 0.999 [1, 104] 10−3

Table 47: ADAM

26



Under review as a conference paper at ICLR 2020

E ADDITIONAL PLOTS

10-4 10-3 10-2 10-1 100

Learning rate

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Fi
n
a
l 
V

a
lid

a
ti

o
n
 E

rr
o
r

10-3 10-2 10-1 100

1− γ

CNN on CIFAR-100 with Momentum

Figure 6: Example plot of final validation error over metaparameter values. We consider this search
space to be appropriate because the optimal values are away from the search space boundaries.
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Figure 7: Our results confirming the relevance of optimizer inclusion relationships do not depend
on the exact step budgets or error targets we chose.
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Figure 8: The relative performance of optimizers is consistent with the inclusion relationships when
we select for lowest training loss. Note that SGD, ADAM, and NADAM for ResNet-50 on ImageNet
used label smoothing, which makes their loss values incommensurate with the other optimizers. This
is because their search spaces were optimized to minimize validation error—if we had optimized
their search spaces to minimize training error instead, we would not have used label smoothing and
we expect their training loss values would be consistent with the inclusion relationships.
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Figure 9: Test performance of the best trial mostly converges with as few as 23 metaparameter tuning
trials for a 2-layer LSTM on War and Peace. Shaded regions indicate 5 and 95 percentile estimated
with bootstrap sampling (see Appendix C). The search spaces can be found in D.8.2.
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Figure 10: Validation performance of the best trial mostly converges with as few as 24 metaparam-
eter tuning trials for ResNet-50 in ImageNet. Shaded regions indicate 5 and 95 percentile estimated
with bootstrap sampling (see Appendix C). The search spaces can be found in D.3.
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