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ABSTRACT

Neural Architecture Search (NAS) is an exciting new field which promises to be
as much as a game-changer as Convolutional Neural Networks were in 2012. De-
spite many great works leading to substantial improvements on a variety of tasks,
comparison between different methods is still very much an open issue. While
most algorithms are tested on the same datasets, there is no shared experimental
protocol followed by all. As such, and due to the under-use of ablation studies,
there is a lack of clarity regarding why certain methods are more effective than
others. Our first contribution is a benchmark of 8 NAS methods on 5 datasets.
To overcome the hurdle of comparing methods with different search spaces, we
propose using a method’s relative improvement over the randomly sampled av-
erage architecture, which effectively removes advantages arising from expertly
engineered search spaces or training protocols. Surprisingly, we find that many
NAS techniques struggle to significantly beat the average architecture baseline.
We perform further experiments with the commonly used DARTS search space
in order to understand the contribution of each component in the NAS pipeline.
These experiments highlight that: (i) the use of tricks in the evaluation protocol
has a predominant impact on the reported performance of architectures; (ii) the
cell-based search space has a very narrow accuracy range, such that the seed has
a considerable impact on architecture rankings; (iii) the hand-designed macro-
structure (cells) is more important than the searched micro-structure (operations);
and (iv) the depth-gap is a real phenomenon, evidenced by the change in rankings
between 8 and 20 cell architectures. To conclude, we suggest best practices, that
we hope will prove useful for the community and help mitigate current NAS pit-
falls, e.g. difficulties in reproducibility and comparison of search methods. We
provide the code used for our experiments at link-to-come.

1 INTRODUCTION

As the deep learning revolution helped us move away from hand crafted features (Krizhevsky et al.,
2012) and reach new heights (He et al., 2016; Szegedy et al., 2017), so does Neural Architecture
Search (NAS) hold the promise of freeing us from hand-crafted architectures, which requires tedious
and expensive tuning for each new task or dataset. Identifying the optimal architecture is indeed a
key pillar of any Automated Machine Learning (AutoML) pipeline. Research in the last two years
has proceeded at a rapid pace and many search strategies have been proposed, from Reinforcement
Learning (Zoph & Le, 2017; Pham et al., 2018), to Evolutionary Algorithms (Real et al., 2017),
to Gradient-based methods (Liu et al., 2019). Still, it remains unclear which approach and search
algorithm is preferable. Typically, methods have been evaluated on accuracy alone, even though
accuracy is influenced by many other factors besides the search algorithm. Comparison between
published search algorithms for NAS is therefore either very difficult (complex training protocols
with no code available) or simply impossible (different search spaces), as previously pointed out (Li
& Talwalkar, 2019; Sciuto et al., 2019; Lindauer & Hutter, 2019).

NAS methods have been typically decomposed into three components (Elsken et al., 2019; Li &
Talwalkar, 2019): search space, search strategy and model evaluation strategy. This division is
important to keep in mind, as an improvement in any of these elements will lead to a better final per-
formance. But is a method with a more (manually) tuned search space a better AutoML algorithm?
If the key idea behind NAS is to find the optimal architecture, without human intervention, why are
we devoting so much energy to infuse expert knowledge into the pipeline? Furthermore, the lack of
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ablation studies in most works makes it harder to pinpoint which components are instrumental to the
final performance, which can easily lead to Hypothesizing After the Results are Known (HARKing;
Gencoglu et al., 2019).

Paradoxically, the huge effort invested in finding better search spaces and training protocols, has
led to a situation in which any randomly sampled architecture performs almost as well as those
obtained by the search strategies. Our findings suggest that most of the gains in accuracy in recent
contributions to NAS have come from manual improvements in the training protocol, not in the
search algorithms.

As a step towards understanding which methods are more effective, we have collected code for
8 reasonably fast (search time of less than 4 days) NAS algorithms, and benchmarked them on
5 well known CV datasets. Using a simple metric—the relative improvement over the average
architecture of the search space—we find that most NAS methods perform very similarly and rarely
substantially above this baseline. The methods used are DARTS, StacNAS, PDARTS, MANAS,
CNAS, NSGANET, ENAS and NAO. The datasets used are CIFAR10, CIFAR100, SPORT8, MIT67
and FLOWERS102.

Through a number of additional experiments on the widely used DARTS search space (Liu et al.,
2019), we will show that: (a) how you train your model has a much bigger impact than the actual
architecture chosen; (b) different architectures from the same search space perform very similarly,
so much so that (c) hyperparameters, like the number of cells, or the seed itself have a very signif-
icant effect on the ranking; and (d) the specific operations themselves have less impact on the final
accuracy than the hand-designed macro-structure of the network. Notably, we find that the 200+
architectures sampled from this search space (available at link-to-come) are all within a range of one
percentage point (top-1 accuracy) after a standard full training on CIFAR10. Finally, we include
some observations on how to foster reproducibility and a discussion on how to potentially avoid
some of the encountered pitfalls.

2 RELATED WORK

As mentioned, NAS methods have the potential to truly revolutionize the field, but to do so it is
crucial that future research avoids common mistakes. Some of these concerns have been recently
raised by the community.

For example, Li & Talwalkar (2019) highlight that most NAS methods a) fail to compare against an
adequate baseline, such as a properly implemented random search strategy, b) are overly complex,
with no ablation to properly assign credit to the important components, and c) fail to provide all
details needed for successfully reproducing their results. In our paper we go one step further and
argue that the relative improvement over the average (randomly sampled) architecture is an useful
tool to quantify the effectiveness of a proposed solution and compare it with competing methods.
To partly answer their second point, and understand how much the final accuracy depends on the
specific architecture, we implement an in-depth study of the widely employed DARTS (Liu et al.,
2019) search space and perform an ablation on the commonly used training techniques (e.g. Cutout,
DropPath, AutoAugment).

In addition, Sciuto et al. (2019) also took the important step of systematically using fair baselines,
and suggest random search with early stopping, averaged over multiple seeds, as an extremely com-
petitive baseline. They find that the search spaces of three methods investigated (DARTS, ENAS,
NAO) have been expertly engineered to the extent that any randomly selected architecture performs
very well. In contrast, we show that even random sampling (without search) provides an incredibly
competitive baseline. Our relative improvement metric allows us to isolate the contribution of the
search strategy from the effects of the search space and training pipeline. Thus, we further confirm
the authors’ claim, showing that indeed the average architecture performs extremely well and that
how you train a model has more impact than any specific architecture.

3 NAS BENCHMARK

In this section we present a systematic evaluation of 8 methods on 5 datasets using a strategy that is
designed to reveal the quality of each method’s search strategy, removing the effect of the manually-
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engineered training protocol and search space. The goal is to find general trends and highlight
common features rather than just pin-pointing the most accurate algorithm.

Understanding why methods are effective is not an easy task: most introduce variations to previous
search spaces, search strategies, and training protocols—with ablations disentangling the contribu-
tion of each component often incomplete or missing. In other words, how can we be sure that a new
state-of-the-art method is not so simply due to a better engineered search space or training protocol?
To address this issue we compare a set of 8 methods with randomly sampled architectures from their
respective search spaces, and trained with the same protocol as the searched architectures.

The ultimate goal behind NAS should be to return the optimal model for any dataset given, at least
within the limits of a certain task, and we feel that the current practices of searching almost exclu-
sively on CIFAR10 go against this principle. Indeed, to avoid the very concrete risk of overfitting
to this set of data, NAS methods should be tested on a variety of tasks. For this reason we run
experiments on 5 different datasets.

3.1 METHODOLOGY

Criteria for dataset selection. We selected datasets to cover a variety of subtasks within image
classification. In addition to the standard CIFAR10 we select CIFAR100 for a more challenging
object classification problem (Krizhevsky, 2009); SPORT8 for action classification (Li & Fei-Fei,
2007); MIT67 for scene classification (Quattoni & Torralba, 2009); and FLOWERS102 for fine-
grained object classification (Nilsback & Zisserman, 2008). More details are given in the Appendix.

Criteria for method selection. We selected methods which (a) have open-source code, or pro-
vided it upon request, and (b) have a reasonable running time, specifically a search time under 4
GPU-days on CIFAR10. The selected methods are: DARTS (Liu et al., 2019), StacNAS (Doe,
2019), PDARTS (Xin Chen, 2019), MANAS (Carlucci et al., 2019), CNAS (Weng et al., 2019),
NSGANET (Lu et al., 2018), ENAS (Pham et al., 2018), and NAO (Luo et al., 2018). With the
exception of NAO and NSGANET, all methods are DARTS variants and use weight sharing.

Evaluation protocol. NAS algorithms usually consist of two phases: (i) search, producing the
best architecture according to the search algorithm used; (ii) augmentation, consisting in training
from scratch the best model found in the search phase. We evaluate methods as follows: 1. Sample
8 architectures from the search space, uniformly at random, and use the method’s code to augment
these architectures (same augment seed for all); 2. Use the method’s code to search for 8 architec-
tures and augment them (different search seed, same augment seed); 3. Report mean and standard
deviation of the top-1 test accuracy, obtained at the end of the augmentation, for both the randomly
sampled and the searched architectures;

Since both learned and randomly sampled architectures share the same search space and training
protocol, calculating a relative improvement over this random baseline as RI = 100 × (Accm −
Accr)/Accr can offer insights into the quality of the search strategy alone. Accm andAccr represent
the top-1 accuracy of the search method and random sampling strategies, respectively. A good,
general-purpose NAS method is expected to yield RI > 0 consistently over different searches and
across different subtasks. We emphasize that the comparison is not against random search, but
rather against random sampling, i.e., the average architecture of the search space. For example, in
the DARTS search space, for each edge in the graph that defines a cell we select one out of eight
possible operations (e.g. pooling or convolutions) with uniform probability 1/8.

Hyperparameters are optimized on CIFAR10, according to the values reported by the corresponding
authors. Since most methods do not include their optimization as part of the search routine, we
assumed them to be robust and generalizable to other tasks. As such, aside from scaling down the
architecture depending on dataset size, experiments on other datasets use the same hyperparameters.
Other training details and references are given in the Appendix.

3.2 RESULTS

Figure 1 shows the evaluation results on the 5 datasets, from which we draw two main conclusions.
First, the improvements over random sampling tend to be small. In some cases the average perfor-
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Figure 1: Comparison of search methods and random sampling from their respective search spaces.
Methods lying in the diagonal perform the same as the average architecture, while methods above
the diagonal outperform it. See also Table 1.
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Figure 2: Performance and computational
cost of the search phase on CIFAR10.

Table 1: Relative improvement metric, RI =
100× (Accm −Accr)/Accr (in %), where Accm
and Accr are the accuracies of the search method
and random sampling baseline, respectively.

C10 C100 S8 M67 F102
DARTS 0.32 0.23 -0.13 0.10 0.25
PDARTS 0.52 1.20 0.51 1.19 0.20
NSGANET -0.48 1.37 0.43 2.00 1.47
ENAS 0.01 -3.44 0.67 0.13 0.47
CNAS 0.74 -0.89 -1.06 -0.66 -2.48
MANAS 0.18 -0.20 0.33 1.48 0.70
StacNAS 0.43 2.87 0.38 0.05 -0.16
NAO 0.44 -0.01 -2.05 -1.53 -0.13

mance of a method is even below the average randomly sampled architecture, which suggests that
the search methods are not converging to desirable architectures. Second, the small range of accura-
cies obtained hints at narrow search spaces, where even the worst architectures perform reasonably
well. See Section 5 for more experiments corroborating this conclusion.

We observe also that, on CIFAR10, the top half of best-performing methods (PDARTS, MANAS,
DARTS, StacNAS) all perform similarly and positively in relation to their respective search spaces,
but more variance is seen on the other datasets. This could be explained by the fact that most
methods’ hyperparameters have been optimized on CIFAR10 and might not generalize as well on
different datasets. As a matter of fact, we found that all NAS methods neglect to report the time
needed to optimize hyperparameters. In addition, Table 1 shows the relative improvement metric
RI (see intro to Section 3) for each method and dataset.
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The computational cost of searching for architectures is a limiting factor in their applicability and,
therefore, an important variable in the evaluation of NAS algorithms. Figure 2 shows the perfor-
mance as well and the computational cost of the search phase on CIFAR10.

4 COMPARISON OF TRAINING PROTOCOLS
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Figure 3: Comparison of different aug-
mentation protocols for the DARTS
search space on CIFAR10. Same col-
ored dots represent the maximum per-
formance encountered in the 8 runs.

In this section we attempt to shed some light on the sur-
prising results of the previous section. We noticed that
there was a much larger differences between the random
baselines of different methods than the actual increase in
performance of each approach. We hypothesized that how
a network is trained (the training protocol) has a larger
impact on the final accuracy than which architecture is
trained, for each search space. To test this, we performed
sensitivity analysis using the most common performance-
boosting training protocols.

4.1 METHODOLOGY

We decided to evaluate architectures from the commonly
used DARTS search space (Liu et al., 2019) on the CI-
FAR10 dataset. We use the following process: 1) sample
8 random architectures, 2) train them with different train-
ing protocols (details below) and 3) report mean, standard
deviation and maximum of the top-1 test accuracy at the
end of the training process.

Training protocols. The simplest training protocol,
which we will call Base is similar to the one used in DARTS, but with all tricks disabled: the
model is simply trained for 600 epochs. On the other extreme, our full protocol uses several tricks
which have been used in recent works (Xie et al., 2019; Nayman et al., 2019): Auxiliary Towers (A),
DropPath (D; Larsson & Shakhnarovich, 2017), Cutout (C; DeVries & Taylor, 2017), AutoAugment
(AA; Cubuk et al., 2018), extended training for 1500 epochs (1500E), and increased number of chan-
nels (50C). In between these two extremes, by selectively enabling and disabling each component,
we evaluated a further 8 intermediate training protocols. When active, drop path probability is 0.2,
cutout length is 16, auxiliary tower weight is 0.4, and AutoAugment combined with Cutout are used
after standard data pre-processing techniques previously described, as in Popien (2019).

4.2 RESULTS

As shown in Figure 3, a large difference of over 3 percentage points (p.p.) exists between the sim-
plest and the most advanced training protocols. Indeed, this is much higher than any improvement
over random sampling observed in the previous section: for example, on CIFAR10, the best im-
provement observed was 0.69 p.p. In other words, the training protocol is often far more important
than the architecture used. Note that the best accuracy of the 8 random architectures training with
the best protocol is 98.15%, which is only 0.25 p.p. below state-of-the-art (Nayman et al., 2019).

To summarize, it seems that most recent state-of-the-art results, though impressive, cannot always be
attributed to superior search strategies. Rather, they are often the result of expert knowledge applied
to the evaluation protocol.

5 STUDY OF DARTS’ SEARCH SPACE

5.1 DISTRIBUTION OF THE RANDOM SAMPLING WITHIN DARTS SEARCH SPACE

To better understand the results from the previous section, we sampled a considerable number of
architectures (200+) from the most commonly used search space (Liu et al., 2019) and fully trained
them with the matching training protocol (Cutout+DropPath+AuxiliaryTowers). This allows us to
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Figure 4: Training curves for the 214 randomly
sampled architectures. Inset plot shows the his-
togram of accuracies at different epochs.
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Figure 5: Correlation between accuracies at dif-
ferent epochs and final accuracy, using raw and
smoothed accuracies over a window w.

get a sense of how much variance exists between the different models (training statistics are made
available at link-to-come).

As we can observe from Figure 4, architectures sampled from this search space all perform similarly,
with a mean of 97.03± 0.23. The worst architecture we found had an accuracy of 96.18, while the
best achieved 97.56.

To put this into perspective, many methods using the same training protocol, fall within (or very
close to) the standard deviation of the average architecture. Furthermore, as we can observe in
Figure 7, the number of cells (a human-picked hyperparameter) has a much larger impact on the
final accuracy.

In Figure 5 we used the training statistics of the 214 models to plot the correlation between test
accuracies at different epochs: it grows slowly in an almost linear fashion. We note that using the
moving average of the accuracies yields a stronger correlation, which could be useful for methods
using early stopping.

5.2 OPERATIONS

To test whether the results from the previous section were due to the choice of available operations,
we developed an intentionally sub-optimal search space containing 4 plain convolutions (1×1, 3×3,
7× 7, 11× 11), 2 max pooling operators (3× 3, 5× 5) plus the none and skip connect operations.
This proposed search space is clearly more parameter inefficient compared to the commonly used
DARTS one (which uses both dilated and separable ones), and we expect it to perform worse.

We sampled 56 architectures from this new search space and trained them with the DARTS train-
ing protocol (Cutout+DropPath+AuxiliaryTowers), for fair comparison with the results from the
previous section. Figure 6 shows the resulting histogram, together with the one obtained from the
classical DARTS space of operations. The two distributions are only shifted by 0.18 accuracy points.
Given the minor difference in performance, the specific operations are not a key ingredient in the
success of this search space. Very likely, it’s the well engineered cell structure that allows the model
to perform as well as it does.

5.3 DOES CHANGING SEED AND NUMBER OF CELLS AFFECT RANKING?

A necessary practice for many weight-sharing methods (Liu et al., 2019; Pham et al., 2018) is to
restart the training from scratch after the search phase, with a different number of cells. Recent
works have warned that this procedure might negatively affect ranking; similarly, the role of the
seed has been previously recognized as as a fundamental element in reproducibility (Li & Talwalkar,
2019; Sciuto et al., 2019).

To test the impact of seed, we randomly sampled 32 architectures and trained them with two different
seeds (Figure 8). Ranking is heavily influenced, as the Kendall tau correlation between the two sets
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of training is 0.48. On average, the test accuracy changes by 0.13%± 0.08 (max change is 0.39%),
which is substantial considering the small gap between random architectures and NAS methods.

To test the depth-gap we trained another 32 with different number of cells (Figure 9). The corre-
lation between the two different depths is not very strong as measured by Kendall Tau (0.54), with
architectures shifting up and down the rankings by up to 18 positions (out of 32). Methods employ-
ing weight sharing (WS) would see an even more pronounced effect as the architectures normally
chosen at 8 cells would have been training sub-optimally due to the WS itself (Sciuto et al., 2019).

These findings point towards two issues. The first is that since the seed has such a large effect on
ranking, it stands to reason that the final accuracy reported should be averaged over multiple seeds.
The second is that, if the lottery ticket hypothesis holds—so that specific sub-networks are better
mainly due to their lucky initialization; Frankle & Carbin., 2018—together with our findings, this
could be an additional reason why methods searching on a different number of cells than the final
model, struggle to significantly improve on the average randomly sampled architecture.

6 DISCUSSION AND BEST PRACTICES

As shown in the previous section, there are many pitfalls related to NAS research. In this section we
offer some suggestions on how to mitigate the most common issues.

Augmention tricks: while achieving higher accuracies is clearly a desirable goal, we have shown
in section 4, that using well engineered training protocols can hide the contribution of the search al-
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gorithm. We therefore suggest that both results, with and without training tricks, should be reported.
An example of best practice is found in Hundt et al. (2019).

Search Space: it is difficult to evaluate the effectiveness of any given proposed method without a
measure of how good randomly sampled architectures are. This is not the same thing as performing
a random search which is a search strategy in itself; random sampling is simply used to establish how
good the average model is. A simple approach to measure the variability of any new given search
space could be to randomly sample k architectures and report mean and standard deviation. We hope
that future works will attempt to develop more expressive search spaces, capable of producing both
good and bad network designs. Restricted search spaces, while guaranteeing good performance and
quick results, will inevitably be constrained by the bounds of expert knowledge (local optima) and
will be incapable of reaching more truly innovative solutions (closer to the global optima).

Multiple datasets: as the true goal of AutoML is to minimize the need for human experts, focusing
the research efforts on a single dataset will inevitably lead to algorithmic overfitting and/or methods
heavily dependant on hyperparameter tuning. The best solution for this is likely to test NAS algo-
rithms on a battery of datasets, with different characteristics: image sizes, number of samples, class
granularity and learning task.

Investigating hidden components: as our experiments in Sections 4 and 5.2 show, the DARTS
search space is not only effective due to specific operations that are being chosen, but in greater part
due to the overall residual, graph based, cell structure, and to the specific training protocol being
used. We suggest that proper ablation studies can lead to better understanding of the contributions
of each element of the pipeline.

The importance of reproducibility: reproducibility is of extreme relevance in all sciences. To
this end, it is very important that authors release not only their best found architecture but also
the corresponding seed (if they did not average over multiple ones), as well as the code and the
detailed training protocol (including hyperparameters). All code used for this paper can be obtained
at the following link: github-link. We also make open-source the 200+ trained architectures used in
Section 5.

Hyperparameter tuning cost: tuning hyperparameters in NAS is an extremely costly component.
Therefore, we argue that either (i) hyperparameters are general enough so that they do not require
tuning for further tasks, or (2) the cost is included in the search budget.

7 CONCLUSIONS

AutoML, and NAS in particular, have the potential to truly democratize the use of machine learning
for all, and could bring forth very notable improvements on a variety of tasks. To truly step forward,
a principled approach, with a focus on fairness and reproducibility is needed.

In this paper we have shown that, for many NAS methods, the search space has been engineered
such that all architectures perform similarly well and that their relative ranking can easily shift. We
have furthermore showed that the training protocol itself has a higher impact on the final accuracy
than the actual network. Finally, we have provided some suggestions on how to make future research
more robust to these issues.

We hope that our findings will help the community focus their efforts towards a more general
approach to automated neural architecture design. Only then can we expect to learn from NAS-
generated architectures as opposed to the current paradigm where search spaces are heavily influ-
enced by our current (human) expert knowledge.
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A APPENDIX

This section details the datasets and the hyperparameters used for each method on each dataset.
Search spaces were naturally left unchanged. Hyperparameters were chosen as close as possible to
the original paper and occasionally updated to more recent implementations. The network size was
tuned similarly for all methods for SPORT8, MIT67 and FLOWERS102. All experiments were run
on NVIDIA Tesla V100 GPUs.

A.1 METHODS AND HYPERPARAMETERS

During search, models are trained/validated on the training/validation subsets, respectively During
the final evaluation, the model is trained on the training+validation subsets and tested on the test
subset.

Common hyperparameters. All 8 methods share a common number of hyperparameters precised
here. When SGD optimizer is used, momentum is .9 while when Adam is used, momentum is
β = (0.5, 0.999). Gradient clipping is set at 5.

DARTS, StacNAS, PDARTS, MANAS, CNAS common hyperparameters. These methods are
inspired by DARTS code-wise and consequently share a common number of hyperparameters,
which we precise in table 1.
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Table 2: Hyperparameters for different NAS methods. “S” denotes search stage and “A” denotes
augmentation stage. For learning rates, a ↓ b means cosine annealing from a to b.

Method
DARTS StacNAS PDARTS MANAS CNAS

batch size S 64 64 96 64 64
batch size A 96 96 128 128 64
init channels S 16 16 16 16 16
init channels A 36 36 36 36 36
epochs S 50 100+100 25+25+25 50 60
epochs A 600 600 600 600 200
optimizer S/A SGD SGD SGD SGD Adam
learning rates S .025 ↓ .001 .025 ↓ .001 .025 ↓ .0 .025 ↓ .001 .025–.003
learning rates A .025 ↓ .0 .025 ↓ .0 .025 ↓ .0 .025 ↓ .0 .025–.001
weight decay S/A 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

optimizer arch Adam Adam Adam — Adam
learning rates arch 3× 10−4 3× 10−4 6× 10−4 — 3× 10−4

weight decay arch 10−3 10−3 10−3 — 10−3

nb cells S CIFAR 8 14/20 5/11/17 8 6
nb cells A CIFAR 20 20 20 20 20
nb cells S other datasets 8 8/8 8/8/8 8 6
nb cells A other datasets 8 8 8 8 8
nb intermediate nodes 4 4 4 4 6

DARTS. We used the following repository : https://github.com/khanrc/pt.darts. It notably up-
dates the official implementation to a pytorch version posterior to 0.4. Additional enhancements
include cutout of size 16 (DeVries & Taylor, 2017), path dropout of probability 0.2 (Larsson &
Shakhnarovich, 2017), and auxiliary tower with weight 0.4.

StacNAS. We used an unofficial implementation provided by the authors. The search process con-
sists of 2 stages, of which the details are given in table 1. Additional enhancements are the same as
DARTS.

PDARTS. We used the official implementation : https://github.com/chenxin061/pdarts. The search
process consists of 3 stages, of which general details are given in table 1. At stage 1, 2 and 3
respectively, the number of operations decreases from 8 to 5 to 3, and the dropout probability on
skip-connect increases from 0.0 to 0.4 to 0.7 for CIFAR10, SPORT8, MIT67 and FLOWERS102
(0.1 to 0.2 to 0.3 for CIFAR100). Discovered cells are restricted to keep at most 2 skip-connect
operations. Additional enhancements include cutout of size 16 (DeVries & Taylor, 2017), drop path
of probability 0.3 (Larsson & Shakhnarovich, 2017) and auxiliary tower with weight 0.4.

MANAS. We used an unofficial implementation provided by the authors. The reward baseline is
5, gamma is 0.1 (0.07 for SPORT8, 0.05 for FLOWERS102, 0.01 for MIT67) and the Boltzmann
temperature decays from 1000 to 200 (300 to 100 for SPORT8, 5000 to 2000 for MIT67). Additional
enhancements are the same as DARTS.

CNAS. We used the official implementation : https://github.com/tianbaochou/CNAS. Label
Smoothing is used with epsilon 0.1. Other additional enhancements include cutout of size 16 (De-
Vries & Taylor, 2017), drop path of probability 0.25 (Larsson & Shakhnarovich, 2017).

NSGANET. We used the official implementation: https://github.com/ianwhale/nsga-net. The search
is done in the micro search space (with 2 cells to search, 9 operations in the search space, 5 blocks in
each cell) on 8 layers networks. The population size is 40, the number of generations is 30 and the
number of offsprings created by generation is 20. Networks are trained for 20 epochs, with batch size
128, and the initial number of channels is 16. For architecture evaluation, the network is composed
of 20 cells for CIFAR10 and CIFAR100, and 8 cells for SPORT8, MIT67 and FLOWERS102. The
final selected models are trained for 600 epochs with batch size 96 and the initial number of channels
34. Momentum SGD is used with initial learning rate ηw = 0.025 (annealed down to zero following
a cosine schedule), and weight decay 3 × 10−4. The filter increment is set to 4, and squeeze and
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excitation is used. Additional enhancements include cutout of size 16 (DeVries & Taylor, 2017),
drop path of probability 0.2 (Larsson & Shakhnarovich, 2017) and auxiliary tower with weight 0.4.

NAO. We used the official Pytorch implementation: https://github.com/renqianluo/NAO pytorch.
The LSTM model used to encode architecture has a token embedding size of 48 and a hidden state
size of 96. The LSTM model used to decode architecture has a hidden state size of 96. The encoder
and decoder are trained using Adam for 1000 epochs with a learning rate of 0.001. The trade-off
parameters is λ = 0.9. The step size to perform continuous optimization is η = 10. The number
of nodes is fixed to 5, normal cell is stacked 3 (2 for SPORT8, MIT67 and FLOWERS102) times to
form the CNN architecture, which corresponds to a 11 (8 for SPORT8, MIT67 and FLOWERS102)
cells network and the initial number of channels is 20. Networks are trained for 100 epochs with
batch size 64 for training, and validated for 20 epochs with batch size 500. For architecture evalua-
tion, the final CNN architecture is a 20 cells network (8 cells network). This network is trained for
600 epochs with batch size 128 for the training set (96 for both for SPORT8, MIT67 and FLOW-
ERS102), 500 for the validation set (128 for both for SPORT8, MIT67 and FLOWERS102) and the
initial number of channels is 36. Momentum SGD is used with initial learning rate ηw = 0.025 (an-
nealed down to zero following a cosine schedule) and weight decay 3× 10−4. Additional enhance-
ments include cutout of size 16 (DeVries & Taylor, 2017), drop path of probability 0.2 (Larsson &
Shakhnarovich, 2017), dropout of probability 0.4 (Srivastava et al., 2014), and auxiliary tower with
weight 0.4.

ENAS. We used the official tensorflow implementation for experiments on CIFAR10
and CIFAR100: https://github.com/melodyguan/enas Experiments on SPORT8, MIT67 and
FLOWERS102 are done using a more recent version in Pytorch for the search :
https://github.com/MengTianjian/enas-pytorch. Because only the search process is implemented
there, the evaluation code used is the same as DARTS. During the search, networks are composed
of 8 cells. The shared parameters w are trained with Nesterov momentum (Nesterov, 1983), weight
decay 10−4, gradient clipping 5, batch size 160, 20 output filters, and a cosine learning rate schedule
with lmax = 0.05, lmin = 0.001, T0 = 10, Tmul = 2 (Loshchilov & Hutter, 2017). Each archi-
tecture search is run for 150 epochs. w are initialized with He initialization (He & Sun, 2015). The
policy parameters θ are initialized uniformly in [-0.1, 0.1], and trained with Adam at a learning rate
of 0.00035. A tanh constant of 1.10 and a temperature of 2.5 is applied to the controllers logits, and
the controller entropy is added to the reward with weight 0.1. For the evaluation, the architecture
searched is extended to 17 cells (8 for SPORT8, MIT67 and FLOWERS102), trained for 630 epochs,
with batch size 144, and a cosine learning rate schedule with lmax = 0.05, lmin = 0.001, T0 = 10,
Tmul = 2.

A.2 DATASETS

We present here the datasets used and how they are pre-processed.

CIFAR10. The CIFAR10 dataset (Krizhevsky, 2009) is a dataset of 10 classes and consists of
50, 000 training images and 10, 000 test images of size 32×32.

CIFAR100. The CIFAR100 dataset (Krizhevsky, 2009) is a dataset of 100 classes and consists of
50, 000 training images and 10, 000 test images of size 32×32.

Each of these datasets is split into a training, validation and testing subsets of size 25, 000, 25, 000
and 10, 000 respectively. For both these datasets, we use standard data pre-processing and augmen-
tation techniques, i.e. subtracting the channel mean and dividing by the channel standard deviation;
centrally padding the training images to 40×40 and randomly cropping them back to 32×32; and
randomly clipping them horizontally.

SPORT8. This is an action recognition dataset containing 8 sport event categories and a total of
1579 images (Li & Fei-Fei, 2007). The tiny size of this dataset stresses the generalization capabilities
of any NAS method applied to it.

MIT67. This is a dataset of 67 classes representing different indoor scenes and consists of 15, 620
images of different sizes (Quattoni & Torralba, 2009).

FLOWERS102. This is a dataset of 102 classes representing different species of flowers and
consists of 8, 189 images of different sizes (Nilsback & Zisserman, 2008).
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Each of these datasets is split into a training, validation and testing subsets with proportions
40/40/20 (%). For each one, we use use standard data pre-processing and augmentation tech-
niques, i.e. subtracting the channel mean and dividing the channel standard deviation, cropping the
training images to random size and aspect ratio, resizing them to 224×224, and randomly changing
their brightness, contrast, and saturation, while resizing test images to 256×256 and cropping them
at the center.
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