Learning Cross-Context Entity Representations from Text

Anonymous authors
Paper under double-blind review

Abstract

Language modeling tasks, in which words, or word-pieces, are predicted on the basis of a local context, have been very effective for learning word embeddings and context dependent representations of phrases. Motivated by the observation that efforts to code world knowledge into machine readable knowledge bases or human readable encyclopedias tend to be entity-centric, we investigate the use of a fill-in-the-blank task to learn context independent representations of entities from the text contexts in which those entities were mentioned. We show that large scale training of neural models allows us to learn high quality entity representations, and we demonstrate successful results on four domains: (1) existing entity-level typing benchmarks, including a 64% error reduction over previous work on TypeNet (Murty et al., 2018); (2) a novel few-shot category reconstruction task; (3) existing entity linking benchmarks, where we achieve a score of 87.4% on TAC-KBP 2010 without using any alias table, external knowledge base or in domain training data and (4) answering trivia questions, which uniquely identify entities. Our global entity representations encode fine-grained type categories, such as Scottish footballers, and can answer trivia questions such as Who was the last inmate of Spandau jail in Berlin?

1 Introduction

A long term goal of artificial intelligence has been the development and population of an entity-centric representation of human knowledge. Efforts have been made to create the knowledge representation with knowledge engineers (Lenat et al., 1986) or crowdsourcers (Bollacker et al., 2008). However, these methods have relied heavily on human definitions of their ontologies, which are both limited in scope and brittle in nature. Conversely, due to recent advances in deep learning, we can now learn robust general purpose representations of words (Mikolov et al., 2013) and contextualized phrases (Peters et al., 2018) directly from large textual corpora. In particular, we observe that existing methods of building contextualized phrase representations capture a significant amount of local semantic context (Devlin et al., 2019). We hypothesize that by learning an entity encoder which aggregates all of the textual contexts in which an entity is seen, we should be able to extract and condense general purpose knowledge about that entity.

Consider the following contexts in which an entity mention has been replaced a [MASK]:

...the second woman in space, 19 years after [MASK].

...[MASK], a Russian factory worker, was the first woman in space ...

...[MASK], the first woman in space, entered politics ...

As readers, we understand that first woman in space is a unique identifier, and we are able to fill in the blank unambiguously. The central hypothesis of this paper is that, by matching entities to the contexts in which they are mentioned, we should be able to build a representation for Valentina Tereshkova that encodes the fact that she was the first woman in space, that she was a politician, etc. and that we should be able to use these representations across a wide variety of downstream entity-centric tasks.

We present RELIC (Representations of Entities Learned in Context), a table of independent entity embeddings that have been trained to match fixed length vector representations of the textual context
We apply RELIC to entity typing (mapping each entity to its properties in an external, curated, ontology); entity linking (identifying which entity is referred to by a textual context), and trivia question answering (retrieving the entity that best answers a question). Through these experiments, we show that:

- RELIC accurately captures categorical information encoded by human experts in the Freebase and Wikipedia category hierarchies. We demonstrate significant improvements over previous work on established benchmarks, including a 64% error reduction in the TypeNet low data setting. We also show that given just a few exemplar entities of a given category such as Scottish footballers we can use RELIC to recover the remaining entities of that category with good precision.

- Using RELIC for entity linking is competitive with state-of-the-art approaches that make use of non-local and non-linguistic information about entities. On the TAC-KBP 2010 benchmark RELIC achieves 87.4% accuracy, just behind the top ranked systems (Raiman & Raiman 2018; Sil et al. 2018; Yamada et al. 2017), which make use of external knowledge bases, alias tables, and task-specific hand-engineered features. RELIC is less competitive on the CoNLL-Aida benchmark, when compared to dedicated entity linking systems. However, since many of these make use of pre-trained entity embeddings, we hypothesize that RELIC could be combined with other entity-linking approaches to achieve better performances.

- RELIC learns better representations of entity properties if it is trained to match just the contexts in which entities are mentioned, and not the surface form of the mention itself. For entity linking, the opposite is true.

- We can treat the RELIC embedding matrix as a store of knowledge, and retrieve answers to questions through nearest neighbor search. We show that this approach correctly answers 40% of the questions in the TriviaQA reading comprehension task (Joshi et al. 2017) despite not using the task’s evidence text at inference time. The questions answered correctly by RELIC are surprisingly complex, such as Who was the last inmate of Spandau jail in Berlin?

2 RELATED WORK

Entity linking The most widely studied entity-level task is entity linking—mapping each entity mention onto a unique entity identifier. The Wikification task (Ratinov et al. 2011; Cheng & Roth 2013), in particular, is similar to the work presented in this paper, as it requires systems to map mentions to the Wikipedia pages describing the entities mentioned. There is significant previous work that makes use of neural context and entity encoders in downstream entity linking systems (Sun et al. 2015; Yamada et al. 2016; 2017; Gupta et al. 2017; Murty et al. 2018; Kolitsas et al. 2018), but that previous work focuses solely on discriminating between entities that match a given mention according to an external alias table. Here we go further in investigating the degree to which RELIC can capture world knowledge about entities.

Mention-level entity typing Another well studied task is mention-level entity typing (e.g. Ling & Weld 2012; Choi et al. 2018). In this task, entities are labeled with types that are supported by the immediate textual context. For example, given the sentence ‘Michelle Obama attended her book signing’, Michelle Obama should be assigned the type author but not lawyer. Subsequently, mention-level entity typing systems make use of contextualized representations of the entity mention, rather than the global entity representations that we focus on here.

Entity-level typing An alternative notion of entity typing is entity-level typing, where each entity should be associated with all of the types supported by a corpus. Yaghoobzadeh & Schütze (2015) and Murty et al. (2018) introduce entity-level typing tasks, which we describe more in Section 5.2. Entity-level typing is an important task in information extraction, since most common ontologies make use of entity type systems. Such tasks provide a strong method of evaluating learned global representations of entities.
Using knowledge bases There has been a strong line of work in learning representations of entities by building knowledge base embeddings (Bordes et al. 2011; Socher et al. 2013; Yang et al. 2014; Toutanova et al. 2016; Vilnis et al. 2018), and by jointly embedding knowledge bases and information from textual mentions (Riedel et al. 2013; Toutanova et al. 2015; Hu et al. 2015). Das et al. (2017) extended this work to the SPades fill-in-the-blank task (Bisk et al. 2016), which is a close counterpart to RELIC’s training setup. However, we note that all examples in SPades correspond to a fully connected sub-graph in Freebase Bollacker et al. (2008). Subsequently, the contents are very limited in domain and Das et al. (2017) show that it is essential to use the contents of Freebase to do well on this task. We consider the unconstrained TriviaQA task (Joshi et al. 2017), introduced in Section 5.5, to be a better evaluation for open domain knowledge representations.

Fill-in-the-blank tasks There has been significant previous work in using fill-in-the-blank losses to learn context independent word representations (Mikolov et al. 2013), and context-dependent word and phrase representations (Dai & Le 2015; Peters et al. 2018; Radford et al. 2018; Devlin et al. 2019). Cloze-style tasks, in which a system must choose which of a few entities best fills a blanked out span, have also been proposed as a method of evaluating reading comprehension (Hermann et al. 2015; Long et al. 2016; Onishi et al. 2016). For entities, Long et al. (2017) consider a similar fill-in-the-blank task as ours, which they frame as rare entity prediction. Yamada et al. (2016) and Yamada et al. (2017) train entity representations using a fill-in-the-blank style loss and a bag-of-words representation of mention contexts. Yamada et al. (2016) (2017) in particular take an approach that is very similar in motivation to RELIC, but which focuses on learning entity representations for use as features in downstream classifiers that model non-linear interactions between a small number of candidate entities. In Section 5.4, we show that Yamada et al. (2017)’s entity embeddings are good at capturing broad entity types such as Tennis Player but less good at capturing more complex compound types such as Scottish Footballers. In Section 5.1 we also show that by performing nearest neighbor search over RELIC’s 5m entities we can match Yamada et al. (2017)’s performance on the TAC-KBP 2010 entity linking benchmark Ji et al. (2010). This is despite the fact that Yamada et al. massively restrict the linking search space with an externally defined alias table, and incorporate task-specific hand-engineered features.

3 LEARNING FROM CONTEXT

3.1 RELIC training input

Let \(E = \{ e_0, \ldots, e_N \} \) be a predefined set of entities, and let \(V = \{ [\text{MASK}], [e_0], [e_1], w_1, \ldots, w_M \} \) be a vocabulary of words. A context \(x = [x_0, \ldots, x_j] \) is a sequence of words \(x_i \in V \). Each context contains exactly one entity start marker \(x_k = [e_0] \) and one entity end marker \(x_j = [e_1] \), where \(j - k > 1 \). The sequence of words between these markers, \([x_{k+1}, \ldots, x_{j-1}] \), is the entity mention.

Our training data is a corpus of (context, entity) pairs \(D = [(x_0, y_0) \ldots (x_N, y_N)] \). Each \(y_i \in E \) identifies an entity that corresponds to the single entity mention in \(x_i \). We train RELIC to correctly match the entities in \(D \) to their mentions. We will experiment with settings where the mentions are unchanged from the original corpus, as well as settings where with some probability \(m \) (the mask rate) all of the words in the mention have been replaced with the uninformative [MASK] symbol. We hypothesize that this parameter will play a role in the effectiveness of learned representations in downstream tasks.

For clean training data, we extract our corpus from English Wikipedia. See Section 4 for details.

3.2 CONTEXT ENCODER

We embed each context in \(D \) into a fixed length vector using a Transformer text encoder (Vaswani et al. 2017), initialized with parameters from the BERT-base model released by Devlin et al. 2019. All parameters are then trained further using the objective presented below in Section 3.4.

We take the output of the Transformer corresponding to the initial [CLS] token in BERT’s sequence representation as our context encoding, and we linearly project this into \(\mathbb{R}^d \) using a learned weight matrix \(W \in \mathbb{R}^{d \times 768} \) to get a context embedding in the same space as our entity embeddings.

\(^1\)https://en.wikipedia.org
3.3 ENTITY EMBEDDINGS

Each entity $e \in E$ has a unique and abstract Wikidata QID. RELIC maps these unique IDs directly onto a dedicated vector in \mathbb{R}^d via a $|E| \times d$ dimensional embedding matrix. In our experiments, we have a distinct embedding for every concept that has an English Wikipedia page, resulting in 5m entity embeddings overall.

3.4 RELIC TRAINING LOSS

RELIC optimizes the parameters of the context encoder and entity embedding table to maximize the compatibility between observed (context, entity) pairs. Let $g(x) \rightarrow \mathbb{R}^d$ be a context encoder, and let $f(e) \rightarrow \mathbb{R}^d$ be an embedding function that maps each entity to its d dimensional representation via a lookup operation. We define a compatibility score between the entity e and the context x as the scaled cosine similarity:

$$s(x, e) = a \cdot \frac{g(x)^T f(e)}{||g(x)|| \cdot ||f(e)||} \quad (1)$$

where the scaling factor a is a learned parameter, following [Wang et al., 2018a]. Now, given a context x, the conditional probability that e was the entity seen with x is defined as

$$p(e|x) = \frac{\exp(s(x, e))}{\sum_{e' \in E} \exp(s(x, e'))} \quad (2)$$

and we train RELIC by maximizing the average log probability

$$\frac{1}{|D|} \sum_{(x,y) \in D} \log p(y|x). \quad (3)$$

In practice, the definition of probability in Equation 2 is prohibitively expensive for large $|E|$ (we use $|E| \approx 5M$). Therefore, we use a noise contrastive loss (Gutmann & Hyvärinen, 2012; Mnih & Kavukcuoglu, 2013). We sample K negative entities from a noise distribution $p_{noise}(e)$:

$$e'_1, e'_2, \ldots, e'_K \sim p_{noise}(e) \quad (4)$$

Denoting $e'_0 := e$, we then compute our per-example loss using cross entropy:

$$l(s, x, e) = -\log \frac{\exp(s(x, e))}{\sum_{j=0}^K \exp(s(x, e'_j))} \quad (5)$$

In practice, we train our model with minibatch gradient descent and use all other entries in the batch as negatives. That is, in a batch of size 4, entities for rows 1, 2, 3 will be used as negatives for row 0. This is roughly equivalent to $p_{noise}(e)$ being proportional to entity frequency.

4 EXPERIMENTAL SETUP

To train RELIC, we obtain data from the 2018-10-22 dump of English Wikipedia. We take E to be the set of all entities in Wikipedia (of which there are over 5 million). For each occurrence of a hyperlink, we take the context as the surrounding sentence, replace all tokens in the anchor text with a single [MASK] symbol with probability m (see Section 5.3 for a discussion of different masking rates) and set the ground truth to be the linked entity. We limit each context sentence to 128 tokens. In this way, we collect a high-quality corpus of over 112M (context, entity) pairs. Note in particular that an entity never co-occurs with text on its own Wikipedia page, since a page will not hyperlink to itself. We set the entity embedding size to $d = 300$.

We train the model using TensorFlow [Abadi et al., 2016] with a batch size of 8,192 for 1M steps on Google Cloud TPUs.

[3] In our experiments, we found cosine similarity to be more effective than dot product.
Table 1: RELIC achieves comparable results to best performing dedicated entity-linking systems despite using no external resources or task specific features.

5 Evaluation

We evaluate RELIC’s ability to: (1) solve the entity linking task without access to any task specific alias tables or features; (2) accurately capture entity properties that have been hand-coded into TypeNet and Wikipedia categories; (3) capture trivia knowledge specific to individual entities.

First we present results on established entity linking and entity typing tasks, to compare RELIC’s performance to established baselines and we show that the choice of masking strategy (Section 3) has a significant and opposite impact on performance on these tasks. We hypothesize that RELIC is approaching an upper bound on established entity-level typing tasks, and we introduce a much harder category completion task that uses RELIC to populate complex Wikipedia categories. We also apply RELIC’s context encoder and entity embeddings to the task of end-to-end trivia question answering, and we show that this approach can capture more than half of the answers identified by the best existing reading comprehension systems.

5.1 Entity Linking

RELIC can be used to directly solve the entity linking problem. We just need to find the single entity that maximizes the cosine similarity in Equation 1 for a given context. This differs from standard entity linking approaches, which use learned models to rank the relatively few candidate entities returned by heuristic alias tables. In Table 1, we show that RELIC is fairly competitive on TAC-KBP 2010 entity linking benchmark (Ji et al., 2010) despite searching over all 5m entities and not having access to any alias table, external knowledge base, or in domain training data. On the CoNLL-Aida benchmark, RELIC’s performance is much further behind state of the art approaches. However, CoNLL-Aida is known to be restricted and idiosyncratic domain so we also report results for a model that is initialized with parameters from RELIC and then tuned on the CoNLL-Aida training set. The performance of this tuned model are more in line with dedicated entity linking systems on CoNLL-Aida, and also marginally better than RELIC on TAC-KBP 2010.

As discussed in Section 2, Yamada et al. 2016; 2017 train context and entity embedding models using a similar approach to ours, for use in downstream entity disambiguation models. From the ablation shown in Table 1, we can see that Yamada et al. get significant gains over an embedding-only model through the introduction of simple task specific features. In Section 5.4, we will show that RELIC’s embeddings capture significantly more deep knowledge than the embeddings learned by Yamada et al. 2017 and we hypothesize that it would be possible to combine RELIC with the other components of Yamada et al.’s system to achieve significantly better linking results. Similarly, the embeddings learned from context by RELIC are complementary to the knowledge base information used by Radhakrishnan et al. 2018; Raiman & Raiman 2018 to represent entities in their systems, and we believe that a combination of these approaches could further enhance the state of the art.

Our finetuned CoNLL result uses the standard alias table at inference time.

The full ablation is not given for Yamada et al. 2017 but even in that later work simple string match features account for a 2 point gain on both tasks.
Table 2: Performance on FIGMENT. We report P@1 (proportion of entities whose top ranked types are correct), Micro F1 aggregated over all (entity, type) compatibility decisions, and overall accuracy of entity labeling decisions. RELIC outperforms prior work, even with only 5% of the training data.

<table>
<thead>
<tr>
<th>System</th>
<th>F1</th>
<th>P@1</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaghoobzadeh et al. 2018</td>
<td>82.3</td>
<td>91.0</td>
<td>56.5</td>
</tr>
<tr>
<td>RELIC</td>
<td>87.9</td>
<td>94.8</td>
<td>68.3</td>
</tr>
<tr>
<td>RELIC with 5% of FIGMENT training data</td>
<td>83.3</td>
<td>90.9</td>
<td>59.3</td>
</tr>
</tbody>
</table>

Table 3: Mean Average Precision on TypeNet tasks. RELIC’s gains are particularly striking in the low data setting from Murty et al. (2018).

<table>
<thead>
<tr>
<th>System</th>
<th>TypeNet</th>
<th>TypeNet - Low Data (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murty et al. 2018</td>
<td>78.6</td>
<td>58.8</td>
</tr>
<tr>
<td>RELIC</td>
<td>90.1</td>
<td>85.3</td>
</tr>
</tbody>
</table>

Figure 1: TypeNet entity-level typing mAP on the development set for RELIC models trained with different masking rates. A higher mask rate leads to better performance, both in low and high-data situations.

Figure 2: Entity linking accuracy for RELIC models trained with different masking rates. No alias table nor in-domain fine-tuning is used. Higher mask rates lead to worse downstream performance in entity-linking tasks.

5.2 ENTITY-LEVEL FINE TYPING

We evaluate RELIC’s ability to capture entity properties on the FIGMENT (Yaghoobzadeh & Schütze, 2015) and TypeNet (Murty et al., 2018) entity-level fine typing tasks which contain 102 and 1,077 types drawn from the Freebase ontology (Bollacker et al., 2008). The task in both datasets is to predict the set of fine-grained types that apply to a given entity. We train a simple 2-layer feed-forward network that takes as input RELIC’s embedding $f(e)$ of the entity e and outputs a binary vector indicating which types apply to that entity.

Tables[2][3] show that RELIC significantly outperforms prior results on both datasets. For FIGMENT, Yaghoobzadeh et al. (2018) is an ensemble of several standard representation learning techniques: word2vec skip-gram contexts (Mikolov et al., 2013), structured skip-gram contexts (Ling et al., 2015), and FastText representations of the entity names (Bojanowski et al., 2017). For TypeNet, Murty et al. (2018) aggregate mention-level types and train with a structured loss based on the TypeNet hierarchy, but is still outperformed by our flat classifier of binary labels. We expect that including a hierarchical loss is orthogonal to our approach and could improve our results further.

The most striking results in Tables[2][3] are in the low data settings. On the low-data TypeNet setting of Murty et al. (2018), RELIC achieves a 63% error reduction over previous work, while RELIC also matches Yaghoobzadeh et al. (2018)’s results on FIGMENT with 5% of the training data.
Table 4: Mean average precision on exemplar-based category completion (Section 5.4). The Yamada subset is filtered to only contain entities that are covered by Yamada et al. 2017, and categories are filtered to those which contain at least 300 entities (131 categories). For the "All Entities" setting, we use all Wikipedia entities covered by RELIC, and filter to categories which contain at least 1000 entities (1083 categories). The embeddings learned by Yamada et al. 2017 are competitive with RELIC on the task of populating TypeNet categories, but they are much worse at capturing the complex, and compound, typing information present in Wikipedia categories.

5.3 Effect of Masking

In Section 3 we introduced the concept of masking entity mentions, and predicting on the basis of the context in which they are discussed, not the manner in which they are named. Figures 1 and 2 show the effect of training RELIC with different mask rates. It is clear that masking mentions during training is beneficial for entity typing tasks, but detrimental for entity linking. This is in accordance with our intuitions. Modeling mention surface forms is essential for linking, since these mentions are given at test time and names are extremely discriminative. However, once the mention is known the model only needs to distinguish between different entities with the same name (e.g. President Washington, University of Washington, Washington State) and this distinction rarely requires deep knowledge of each entity’s properties. Subsequently, our best typing models are those that are forced to capture more of the context in which each entity is mentioned, because they are not allowed to rely on the mention itself.

5.4 Few-Shot Category Completion

The entity-level typing tasks discussed above involve an in-domain training step. Furthermore, due to the incompleteness of the FIGMENT and TypeNet type systems, we also believe that RELIC’s performance is approaching the upper bound on both of these supervised tasks. Therefore, to properly measure RELIC’s ability to capture complex types from fill-in-the-blank training alone, we propose:

1. a new category completion task that does not involve any task specific optimization,
2. a new Wikipedia category based evaluation set that contains much more complex compound types, such as Scottish footballers,

We use this new task to compare RELIC to the embeddings learned by Yamada et al. 2017.

In the new category completion task, we represent each category by randomly sampling three exemplar entities, and calculating the centroid of their RELIC embeddings. We then rank all other entities according to their dot-product with this centroid, and report the mean average precision (MAP) of the resultant ranking.

First, we apply this evaluation to the TypeNet type system introduced in Murty et al., 2018. These types are well-curated, but tend to represent high-level categories. To measure the degree to which our entity embeddings capture finer grained type information, we construct an additional dataset based on Wikipedia categories. These tend to be compound types, such as Actresses from London, which capture many aspects of an entity—in this case gender, profession, and place of birth.

From Table 4 we can see that the embeddings introduced by Yamada et al. 2017 approach RELIC’s performance on the TypeNet completion task, but they significantly underperform RELIC in com-
Table 5: TriviaQA results. RELIC simply embeds the question and finds the closest entity. The other two approaches have access to evidence documents at top rows build representations from (entity, context) pairs. The bottom two rows have access to evidence documents at test time.

<table>
<thead>
<tr>
<th></th>
<th>Web EM</th>
<th>Web F1</th>
<th>Web verified EM</th>
<th>Web verified F1</th>
<th>Wiki EM</th>
<th>Wiki F1</th>
<th>Wiki verified EM</th>
<th>Wiki verified F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>24.0</td>
<td>28.4</td>
<td>30.2</td>
<td>34.7</td>
<td>22.5</td>
<td>26.5</td>
<td>27.3</td>
<td>31.4</td>
</tr>
<tr>
<td>SLQA</td>
<td>68.7</td>
<td>73.1</td>
<td>82.4</td>
<td>85.4</td>
<td>66.6</td>
<td>71.4</td>
<td>74.8</td>
<td>78.7</td>
</tr>
<tr>
<td>RELIC</td>
<td>39.9</td>
<td>43.4</td>
<td>44.3</td>
<td>47.6</td>
<td>38.3</td>
<td>41.8</td>
<td>40.6</td>
<td>44.5</td>
</tr>
</tbody>
</table>

pleting the more complex Wikipedia categories. Figure 3a shows example reconstructions for randomly sampled Wikipedia categories, two from TypeNet and three from Wikipedia. Both models achieve high precision on TypeNet categories, but on the finer-grained Wikipedia categories, the Yamada et al. (2017) model tends to produce more broadly-related entities, whereas the RELIC embeddings capture entities which are much closer to the exemplars. In fact, we identify several false negatives in these examples.

5.5 Trivia Question Answering

Our final experiment tests RELIC’s ability to answer trivia questions – which can be considered high precision categories that only apply to a single entity – using retrieval of encoded entities. TriviaQA (Joshi et al., 2017) is a question-answering dataset containing questions sourced from trivia websites, and the answers are usually entities with Wikipedia pages. The standard TriviaQA setup is a reading comprehension task, where answers are extracted from evidence documents. Here, we answer questions in TriviaQA without access to the evidence at test time.

Model and training. Given a question, we apply the context encoder g from Section 3.4, and retrieve 1 out of 5M entities using cosine similarity. For training, we initialize both g and f from RELIC training. We tune only g’s parameters by optimizing the loss in Equation 5 applied to (question, answer entity) pairs, rather than the (context, entity) pairs seen during RELIC’s training.

Results. TriviaQA results are shown in Table 5. We mainly compare to the Classifier system from Joshi et al. (2017), which trains a classifier on text spans from the evidence documents, and also compare to the best published results (Wang et al., 2018b) as an upper bound. It is important to note that, at test time, reading comprehension models like Classifier only need to select from the small set of entities that occur in the evidence documents, whereas RELIC must select one answer from the full set of 5M Wikipedia entities. Even in this difficult retrieval setting, RELIC significantly outperforms the Classifier baseline although this end-to-end approach is still nowhere near outperforming the most performant reading comprehension systems. We show some of RELIC’s predictions on the TriviaQA task in Figure 3b. We note that even when the top 1 prediction is incorrect, the model is able to retrieve entities that are semantically similar to the ground truth. These results imply that there may be an opportunity to use RELIC along with more established approaches in open domain question answering (Chen et al., 2017).

6 Conclusion

In this paper, we demonstrated that the RELIC fill-in-the-blank task allows us to learn context independent representations of entities with their own latent ontology. We show successful entity-level typing results on FIGMENT (Yaghoobzadeh & Schütze, 2015) and TypeNet (Murty et al., 2018), even when only training on a small fraction of the task-specific training data. We then introduce a novel few-shot category reconstruction task and when comparing to Yamada et al. (2017), we found that RELIC is better able to capture complex compound types. Our method also proves successful for entity linking, where we fare similarly to the best systems in TAC-KBP 2010 despite not using an alias tables, any information from external knowledge bases, or hand crafted task specific features. Finally, we show that our RELIC embeddings can be used to answer trivia questions directly, without access to any evidence documents. We encourage researchers to further explore the properties of our entity representations and BERT context encoder, which we will release publicly.
<table>
<thead>
<tr>
<th>Category and Exemplars</th>
<th>RELIC</th>
<th>Yamada et al. [2017]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number One Singles in Germany</td>
<td>Lady Marmalade, Just Give Me a Reason, I'd Do Anything for Love (But I Won't Do That)</td>
<td>1. Billboard Hot 100, 2. Grammy Award for Best Female Pop Vocal Performance, 3. Dance Club Songs, 4. Pop 100, 5. Hot Latin Songs</td>
</tr>
</tbody>
</table>

(a) Top 5 predictions for a set of randomly selected categories, given 3 exemplars. The first two categories come from TypeNet, and the second two from our Wikipedia categorization dataset. Correct predictions are bolded. Predictions which are judged by the authors to be false negatives (predictions which properly belong to the target category) are indicated with asterisks**.

Q: Who was the last inmate of Spandau jail in Berlin?

Q: Which fashionable London thoroughfare, about three quarters of a mile (1.2 km) long, runs from Hyde Park Corner to Marble Arch, along the length of the eastern side of Hyde Park?

Q: In which Lake District town would you find the Cumberland Pencil Museum?

Q: The Wimbledon tennis tournament is held at which tennis club in London?

(b) TriviaQA predictions from retrieval. Questions are randomly sampled, and top 5 ranking answers are shown. Correct answer in bold. Note that even when the model is wrong, the predictions are all of the correct type.

Figure 3: Random example predictions drawn from category completion, and TriviaQA tasks.
REFERENCES

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. Overview of the tac 2010 knowledge base population track. In In Third Text Analysis Conference (TAC), 2010.

Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algorithms for disambiguation to wikipedia. In *ACL*, 2011.

Yadollah Yaghoobzadeh and Hinrich Schütze. Corpus-level fine-grained entity typing using contextual information. In EMNLP, 2015.

