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Abstract

Lipschitz continuity is a central requirement for achieving the optimalO(1/T ) rate
of convergence in monotone, deterministic variational inequalities (a setting that
includes convex minimization, convex-concave optimization, nonatomic games,
and many other problems). However, in many cases of practical interest, the
operator defining the variational inequality may exhibit singularities at the boundary
of the feasible region, precluding in this way the use of fast gradient methods
that attain this optimal rate (such as Nemirovski’s mirror-prox algorithm and its
variants). To address this issue, we propose a novel regularity condition which we
call Bregman continuity, and which relates the variation of the operator to that of a
suitably chosen Bregman function. Leveraging this condition, we derive an adaptive
mirror-prox algorithm which attains the optimal O(1/T ) rate of convergence in
problems with possibly singular operators, without any prior knowledge of the
degree of smoothness (the Bregman analogue of the Lipschitz constant). We
also show that, under Bregman continuity, the mirror-prox algorithm achieves a
O(1/

√
T ) convergence rate in stochastic variational inequalities.

1 Introduction

The seminal introduction of generative adversarial networks (GANs) [16] has ushered in a new
optimization paradigm in deep learning: instead of focusing on the minimization of an empirical loss
function, GAN training hinges on a zero-sum game between a generator and a discriminator. In fact,
in many cases GAN training goes even beyond the min-max setting, either because there are more
than two networks involved, or because the objectives of the generator and the discriminator are not
entirely opposed – e.g., as in the widely used ACGAN framework of Odena et al. [40]. In these cases,
the most compact way of representing the problem’s training landscape is by means of a variational
inequality (VI).

Tracing their origins to the work of Stampacchia [46] on the Signorini problem, variational inequalities
have since found a broad range of applications in physics, engineering, economics – and, more
recently, machine learning. One of the main reasons for their extensive applicability is that they
comprise a flexible optimization framework which can simultaneously account for loss function
minimization, saddle-point, game-theoretic, and fixed point problems. As a result, there has been
considerable interest in the literature to develop optimal algorithms for solving VI problems; for an
appetizing introduction, see [13] and references therein.
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One of the most widely studied methods for this purpose is ordinary gradient descent – also known as
the forward-backward (FB) algorithm in operator theory [6].1 In monotone, deterministic variational
inequalities, the convergence of the method is guaranteed under a condition known as cocoercivity.
By the Baillon–Haddad theorem, if the operator defining the variational inequality is a gradient
field (i.e., in loss minimization problems), this condition is equivalent to Lipschitz smoothness of
the associated loss function [4, 6]. However, cocoercivity may fail to hold even in simple, bilinear
min-max problems, in which case gradient descent provably fails to converge – see e.g., [15, 32, 33]
for a precise statement.

The first algorithm achieving convergence in (pseudo-)monotone variational inequalities without
cocoercivity is the extra-gradient (EG) algorithm of Korpelevich [22], which only requires Lipschitz
continuity of the underlying operator.2 The asymptotic convergence result of Korpelevich [22]
was subsequently extended by Nemirovski [35] who introduced the mirror-prox (MP) algorithm, a
Bregman variant of the EG algorithm with ergodic averaging. As was shown in [35], the mirror-prox
algorithm attains a O(1/T ) ergodic convergence rate in monotone variational inequalities with
Lipschitz continuous operators, and this rate cannot be improved without further assumptions.

However, in many applications and problems of practical interest, Lipschitz continuity may also fail
to hold, either because the loss profile of the problem grows too rapidly (e.g., as in support vector
machines or GAN models with Kullback-Leibler losses), or because the problem exhibits singularities
near the boundary of the feasible region (e.g., as in resource allocation and inverse problems). In
these cases, one would still want to apply a fast method like mirror-prox, but the lack of smoothness
means that there are no convergence guarantees – asymptotically, ergodically, or otherwise.

Our contributions. Our starting point is the observation that this failure stems from the fact that
Lipschitz continuity of the operator is defined relative to a global norm. Because of this, the standard
Lipschitz framework is not well-suited to problems with singularities or rapid growth: a global norm
is oblivious to the geometry of the feasible region (and, in particular, its boundary), so it cannot
capture the finer features of the problem’s loss landscape.

To overcome this limitation, we introduce a novel regularity condition, which we call Bregman conti-
nuity, and which is made-to-order for the singularity landscape of the problem at hand. Specifically,
instead of defining Lipschitz continuity relative to a global norm, we define it in terms of a family of
local norms and a suitably chosen Bregman function. This leads to an intricate interplay between
different geometric notions of distance (the Bregman divergence and the local norm), but it also
introduces the flexibility required to tackle variational inequalities with singular operators.

Under this assumption, we show that the mirror-prox algorithm attains the optimal O(1/T ) conver-
gence rate in variational inequalities with (possibly) singular operators, provided that the method is
run with the same Bregman function that is used to define Bregman continuity. As in the standard Lip-
schitz framework, the method’s convergence requires a step-size of the form γ < 1/β, where β is the
Bregman constant of the operator (i.e., the Bregman analogue of the Lipschitz constant). Estimating
this constant can be fairly challenging in practice (if not downright impossible), so we also introduce
an adaptive mirror-prox (AMP) method which attains the same O(1/T ) rate without requiring any a
priori estimation of β – essentially, the Bregman constant is learned at the same time as the problem’s
landscape. Finally, we provide a variant of the method for stochastic variational inequalities, and we
establish a O(1/

√
T ) convergence rate in this setting. To the best of our knowledge, these are the

first results of this kind in the literature.

Related work. Owing to their optimal rate guarantees, the extra-gradient and mirror-prox algo-
rithms have been at the forefront of an extensive literature which is impossible to adequately review
here. As a purely indicative list of contributions in the Lipschitz continuous setting (and with no
illusion of being comprehensive), we refer the reader to Juditsky et al. [19], Chambolle and Pock [10],
Malitsky [26], Iusem et al. [18] and Mokhtari et al. [34] for some recent developments. Especially in

1When used to find a zero of a composite operator, the FB algorithm is known as a “splitting” method; see
e.g., Bruck Jr. [9], Passty [41], [11], and references therein.

2An operator A(x) is cocoercive if 〈A(x′)−A(x), x′ − x〉 ≥ (1/β)‖A(x′)−A(x)‖2 for some β > 0 and
all x, x′. Note that Lipschitz continuity is strictly weaker than cocoercivity: the operatorA(x1, x2) = (−x2, x1)
is Lipschitz continuous over R2, but it is not cocoercive; see Section 2 for a detailed discussion.
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learning theory, there has been a surge of interest motivated by the application of EG/MP methods to
GAN training, see e.g., [12, 14, 33, 48] and references therein.3

Going beyond the Lipschitz regime, Bauschke et al. [7] recently introduced a “Lipschitz-like” smooth-
ness condition for convex minimization problems and used it to establish aO(1/T ) value convergence
rate for mirror descent methods (as opposed to mirror-prox). Always in the context of loss min-
imization problems, Bolte et al. [8] subsequently extended the results of Bauschke et al. [7] to
unconstrained non-convex problems that satisfy the Kurdyka–Łojasiewicz (KL) inequality, while Lu
et al. [25] considered functions that are also relatively strongly convex and showed that mirror descent
achieves a geometric convergence rate in this context. Finally, in a very recent preprint, Hanzely et al.
[17] examined the rate of convergence of an accelerated variant of mirror descent under the same
Lipschitz-like smoothness assumption.

The condition of Bauschke et al. [7] is remarkably simple as it only posits that the problem’s
loss function f is such that βh − f is convex for some reference Bregman function h and some
β > 0. A straightforward extension of this condition to an operator setting would be to require
the monotonicity of β∇h − A, where A is the operator defining the variational inequality under
study. However, the cornerstone of this “Lipschitz-like” condition is a descent lemma which does not
carry over to variational inequalities, so it does not seem possible to extend the analysis of Bauschke
et al. [7] to an operator setting. Lu [24] also considered a “relative continuity” condition for loss
minimization problems positing that ‖∇f(x)‖ ≤ M infx′

√
2D(x′, x)/‖x′ − x‖ (where f is the

problem’s objective and D is the Bregman divergence of h). Written this way, the condition of Lu
[24] can also be extended to an operator setting, but this would provide a surrogate for operator
boundedness, not Lipschitz continuity (since A = ∇f in minimization problems). Since the optimal
O(1/T ) convergence rate of the mirror-prox algorithm is tied to the regularity of A – as opposed
to its boundedness – the condition of Lu [24] does not seem applicable to the setting under study.
Accordingly, there is no overlap in results or methodology with this particular strand of the literature.

Finally, in a very recent paper, Bach and Levy [3] introduced a universal variant of the mirror-prox
algorithm which is model-agnostic and achieves an optimal convergence rate in stochastic and/or
smooth settings. Achieving optimal rates in the setting of Bach and Levy [3] relies crucially on the
operator being Lipschitz continuous (albeit with a possibly unknown constant) and the feasible region
having a finite Bregman diameter. The algorithm we propose in this work is not universal but it is
adaptive, and it does not require either Lipschitz continuity or a finite Bregman diameter. In this
manner, our work also provides an important first step towards extending the universal analysis of
Bach and Levy [3] to VI problems with singularities.

2 Preliminaries

Let X be a convex – but not necessarily closed or compact – subset of a d-dimensional normed space
V , and let V∗ denote the dual space of V . The variational inequality (VI) problem associated to a
continuous operator A : X → V∗ consists of finding x∗ ∈ X such that

〈A(x∗), x− x∗〉 ≥ 0 for all x ∈ X . (VI)

Following [13], we will refer to this problem as VI(X , A) and we will write X ∗ ≡ Sol(X , A) for
its set of solutions. Note also that, if X is not closed, A may exhibit a singularity at a residual point
x ∈ bd(X ) \ X in the sense that A does not admit a continuous extension to x.

In the literature, this formulation of the problem is often reffered to as a Stampacchia variational
inequality (SVI) [13] or a “strong” variational inequality [19, 37]. For illustration purposes, we
present some archetypal examples of such problems below:

Example 2.1 (Loss minimization). IfA = ∇f for some convex loss function f onX = Rd, solutions
of (VI) coincide with the global minimizers of f .

Example 2.2 (Min-max optimization). Suppose that A = (∇x1
f,−∇x2

f) for some real-valued
function f(x1, x2) with x1 ∈ X1, x2 ∈ X2. If f is convex-concave (i.e., convex in x1 and concave in

3We note here that the method is sometimes referred to as “optimistic mirror descent”. This terminology is
due to Rakhlin and Sridharan [42, 43] and may refer either to the mirror-prox method itself, or to a variant with
“gradient extrapolation from the past”, as in [14].
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x2), any solution x∗ = (x∗1, x
∗
2) of (VI) is a global saddle-point of f , i.e.,

f(x∗1, x
∗
2) ≤ f(x1, x

∗
2) and f(x∗1, x

∗
2) ≥ f(x∗1, x2) (2.1)

for all x1 ∈ X1, x2 ∈ X2. Problems of this type have attracted considerable interest in the fields of
machine learning and artificial intelligence because they constitute the basic optimization framework
for GANs [16]. For a series of recent papers focusing on the interplay between GAN and saddle-point
problems / variational inequalities, see [12, 14, 23, 33, 48] and references therein.

Example 2.3 (Resource sharing problems). Consider a set of resources r ∈ R = {1, . . . , R} serving
a stream of demands that arrive at a rate of ρ per unit of time (for instance, a GPU cluster or a
computing grid processing a stream of jobs). If the load on the r-th resource is xr, the expected
service time in the standard Kleinrock model [21] is given by the M/M/1 loss function

`r(xr) =
1

cr − xr
, (2.2)

where cr denotes the capacity of the resource. In this setting, the set of feasible resource allocations
is X ≡ {(x1, . . . , xR) : 0 ≤ xr < cr, x1 + · · · + xR = ρ},4 and we say that a resource allocation
profile x∗ ∈ X ∗ is at Nash/Wardrop equilibrium [39, 47] if

`r(x
∗
r) ≤ `r(xr) for all x ∈ X and all r ∈ R such that x∗r > 0 (2.3)

i.e., when no job would be better served by transferring it to a different priority queue. In this
case, if we let A(x) = (`1(x1), . . . , `R(xR)), a standard calculation shows that x∗ is an equilibrium
allocation if and only if it solves the associated variational inequality problem for A.

The most widely used assumption in the literature for solving VI problems is monotonicity, i.e.,
〈A(x′)−A(x), x′ − x〉 ≥ 0 for all x, x′ ∈ X . (2.4)

When A = ∇f , this condition is equivalent to f being convex; likewise, when A = (∇x1
f,−∇x2

f)
as in Example 2.2, monotonicity is equivalent to f being convex-concave [6]; finally, by direct
calculation, it is straightforward to see that the operator defined in Example 2.3 is monotone. For an
introduction to the theory of monotone operators, we refer the reader to Facchinei and Pang [13] and
Bauschke and Combettes [6].

Now, drawing on Nesterov [37, 38] and Juditsky et al. [19], if A is monotone, the quality of a
candidate solution x̂ ∈ X can be assessed via the restricted gap (or merit) function

GapC(x̂) = sup
x∈C
〈A(x), x̂− x〉, (2.5a)

where C is a nonempty convex subset of X . The rationale behind this definition is that, if x∗ solves
(VI), monotonicity gives 〈A(x), x∗ − x〉 ≤ 〈A(x∗), x∗ − x〉 ≤ 0, so the quantity being maximized
in (2.5) is small if x̂ is an approximate solution of (VI). Formally, we have:
Lemma 1. Suppose that A is monotone. If x∗ solves (VI), we have GapC(x

∗) = 0 whenever x∗ ∈ C.
Conversely, if GapC(x̂) = 0 and C contains a neighborhood of x̂ in X , x̂ is a solution of (VI).

This lemma extends a similar result by Nesterov [37], so we defer its proof to the paper’s supplement.
In view of all this, we will employ the gap function GapC(x̂) as our main figure of merit and we will
use it to state our convergence rate guarantees in the sequel.

3 Bregman continuity

In addition to monotonicity, a standard assumption for solving variational inequalities is Lipschitz
continuity, i.e.,

‖A(x′)−A(x)‖∗ ≤ β‖x′ − x‖ (Lip)
for some β > 0 and for all x, x′ ∈ X . This definition involves two distinct (but related) measures of
distance: (i) the primal norm on V which measures distances between the primal points x, x′ ∈ X ; and
(ii) the dual norm on V∗ which measures the distance between the dual vectors A(x), A(x′) ∈ V∗.5

Importantly, both of these notions are global, i.e., they do not depend on the point in space at which
they are calculated; as such, Lipschitz continuity is oblivious to the geometry of X (and, in particular,
its boundary). In the sequel, we describe a way to overcome this limitation by introducing two distinct
notions of distance that are tailored to the geometry of X and the singularity landscape of A.

4For posterity, note here that X is convex but it is not necessarily closed.
5Recall here that the dual norm of v ∈ V∗ is defined as ‖v‖∗ = maxz∈V{|〈v, z〉| : ‖z‖ ≤ 1}.
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Local norms. The first measure of distance that we define is that of local norm on X :
Definition 1. Let Z = span(X − X ) denote the tangent hull of X , i.e., the subspace of V spanned
by all possible displacement vectors of the form z = x′ − x, x, x′ ∈ X . A local norm on X is a
continuous assignment of a norm ‖·‖x on Z at each x ∈ X .6 The induced dual local norm is then
defined as

‖v‖x,∗ = maxz∈Z{|〈v, z〉| : ‖z‖x ≤ 1} for all v ∈ V∗. (3.1)

For ease of presentation, we tacitly assume in what follows that ‖z‖x ≥ µ‖z‖ for some µ > 0 and
all x ∈ X , z ∈ Z . This can always be achieved by taking ‖·‖x ← ‖·‖x + µ‖·‖ so there is no loss of
generality. Note in particular that this implies that ‖v‖x,∗ ≤ (1/µ)‖v‖ for all x ∈ X and all v ∈ Z∗.
For intuition, we present some key examples below:

Example 3.1 (Euclidean geometry). Let X = Rd so Z = Rd. The Euclidean norm on X is given by
the standard expression ‖z‖22 =

∑d
j=1 z

2
j , and the associated dual norm is the same.

Example 3.2 (Shahshahani p-norm). Let X = Rd++ so, again, Z = Rd. The Shahshahani p-norm
on X is defined for all p > 1 as

‖z‖x =
(
|z1|p/x1 + · · ·+ |zd|p/xd

)1/p
for all x ∈ X , z ∈ Z. (3.2)

By a straightforward application of Hölder’s inequality, the corresponding dual norm is given by

‖v‖x,∗ =
(
xq−11 |v1|q + · · ·+ xq−1d |vd|q

)1/q
(3.3)

with the usual convention p−1 + q−1 = 1. In particular, for p→ 1+, we get the limiting expression

‖v‖x,∗ = max{x1|v1|, . . . , xd|vd|}. (3.4)

This metric plays a major role in, among others, game theory, optimal transport, machine learning,
information theory, and many other fields – see e.g., [1, 2, 20, 28, 31, 44, 45] and references therein.

Local Bregman functions and the associated divergence. The notion of a dual local norm pre-
sented above will be our principal measure of distance in V∗. To proceed, we will also need to adapt
the notion of a Bregman (or distance-generating) function on X :

Definition 2. Let ‖·‖x be a local norm on X . We say that h : V → R is a Bregman function on X if:

1. h is proper, l.s.c., convex, and cl(domh) = cl(X ).

2. The subdifferential of h admits a continuous selection, i.e., a continuous function ∇h such
that∇h(x) ∈ ∂h(x) for all x ∈ X ◦ ≡ dom ∂h.

3. h is strongly convex relative to the underlying local norm, i.e.,

h(p) ≥ h(x) + 〈∇h(x), p− x〉+ 1
2K‖p− x‖

2
x (3.5)

for some K > 0 and all p ∈ X , x ∈ X ◦.

The Bregman divergence induced by h is then defined for all p ∈ X , x ∈ X ◦ as

D(p, x) = h(p)− h(x)− 〈∇h(x), p− x〉. (3.6)

As an immediate consequence of the above, we have:
Lemma 2. A Bregman function h is K-strongly convex relative to ‖·‖x if and only if

D(p, x) ≥ 1
2K‖p− x‖

2
x for all p ∈ X and all x ∈ X ◦. (3.7)

The main difference between Definition 2 and the standard assumptions in the literature [7, 19, 27,
29, 30, 36–38] is the strong convexity requirement relative to the local norm ‖·‖x (whose choice,
in turn, is aimed to capture the singularity landscape of the operator). We illustrate this with two
examples below:

6By that, we have in mind the definition of an absolutely homogeneous Finsler metric [5]. Specifically, a
local norm is viewed here as continuous nonnegative function F : X × V → R+ with the following propoerties:
for all x ∈ X and all z1, z2 ∈ V , we have (i) F (x, z1 + z2) ≤ F (x, z1) + F (x, z2); (ii) F (x, λz) = |λ|z; and
(iii) F (x, z) > 0 for all z ∈ V \ {0}. The local norm of z at x is then defined as ‖z‖x = F (x, z).
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Example 3.3. Suppose that X = Rd is endowed with the Euclidean norm as in Example 3.1.
Then, setting h(x) = (1/2)‖x‖22, we get the standard expression D(p, x) = (1/2)‖p− x‖22 for the
associated Bregman divergence. Obviously, h is 1-strongly convex relative to ‖·‖2.

Example 3.4. Let X = [0, 1)d (so X is neither open nor closed), and consider the local norm
‖z‖2x =

∑d
i=1|z|2i /(1− xi)2 for x ∈ X , z ∈ Rd (cf. Example 3.2 above). If we set

h(x) =
∑d
i=1 1/(1− xi) (3.8)

a straightforward calculation gives

D(p, x) =

d∑
i=1

(pi − xi)2

(1− pi)(1− xi)2
≥

d∑
i=1

(pi − xi)2

(1− xi)2
= ‖p− x‖2x, (3.9)

i.e., h is strongly convex relative to ‖·‖x. Importantly, since ‖·‖x ≥ ‖·‖2, this Bregman function is
also strongly convex relative to the standard Euclidean norm. However, even though the Euclidean
regularizer of Example 3.3 is strongly convex relative to any global norm on X , it cannot be strongly
convex relative to the local norm ‖·‖x because of the singularity of the latter when xi → 1−.

Bregman continuity. We are now in a position to introduce the notion of Bregman continuity:
Definition 3. Let h be a local Bregman function relative to some local norm ‖·‖x on X . We say that
the operator A : X → V∗ is β-Bregman continuous if

‖A(x′)−A(x)‖x,∗ ≤ β
√

2D(x, x′) for all x, x′ ∈ X . (BC)

Of course, in the case of a global norm with Bregman function h(x) = (1/2)‖x‖2 (cf. Example 3.3),
we recover the standard Lipschitz continuity condition: ‖A(x′) − A(x)‖∗ ≤ β

√
2D(x′, x) =

β‖x′− x‖. On the other hand, the example below shows that an operator can be Bregman continuous
without being Lipschitz continuous relative to any global norm:
Example 3.5. Consider the operator A(x) = (cr · (1 − xr/cr)

−1)r∈R defined in Example 2.3.
Renormalizing cr to 1 for clarity and using the Bregman data of Examples 3.2 and 3.4, we get:

‖A(x′)−A(x)‖2x,∗ =

d∑
i=1

(x′i − xi)2

(1− x′i)2
≤

d∑
i=1

(x′i − xi)2

(1− xi)(1− x′i)2
= D(x, x′) (3.10)

i.e., A is (1/
√

2)-Bregman continuous relative to h. However, given the singularity of A(x) as
xi → 1−, we see that A cannot be Lipschitz continuous relative to any global norm on X .

Importantly, this example suggests the following rule of thumb: if the Jacobian of A exhibits a
singularity of the form O(φ(x)) near the residual set cl(X ) \ X of X , taking ‖·‖x = Θ(φ(x)) and
h(x) = Θ(φ(x)) allows A to be Bregman continuous, despite this singularity. This heuristic provides
a principled choice of Bregman data under which A satisfies (BC).

4 The mirror-prox algorithm

In this section, we present the main algorithmic method that we will use to solve (VI) under Bregman
continuity. Our core assumptions in that regard will be:
Assumption 1. The solution set X ∗ ≡ Sol(X , A) of (VI) is nonempty.
Assumption 2. A is monotone and β-Bregman continuous.

In addition to the above, we assume that the optimizer gains access to A via an oracle which, when
called at the t-th stage of a sequence Xt ∈ X , returns (possibly imperfect) feedback of the form

Vt = A(Xt) + Ut, (4.1)

where Ut ∈ V∗ is an additive noise variable. The two cases of interest that we consider here are
(i) when Ut = 0 for all t; and (ii) when Ut satisfies the statistical hypotheses:

a) Zero-mean: E[Ut | Ft] = 0. (4.2a)
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b) Finite variance: E[‖Ut‖2∗ | Ft] ≤ σ2. (4.2b)

with Ft denoting the history (natural filtration) of Xt. For obvious reasons, we will refer to the first
case (Ut = 0) as a perfect oracle, and to the second one as a stochastic oracle.

Following Nemirovski [35] and Juditsky et al. [19], the mirror-prox (MP) algorithm can be stated in
recursive form as follows:

Xt+1/2 = PXt(−γtVt)
Xt+1 = PXt

(−γtVt+1/2)
(MP)

where γt > 0 is a variable step-size sequence (discussed in detail below), and the so-called “prox-
mapping” P : X ◦ × V∗ → X is defined as

Px(y) = arg min
x′∈X

{〈y, x− x′〉+D(x′, x)} (4.3)

withD(·, ·) denoting the divergence of an underlying Bregman function h : X → R. For concreteness,
we also assume in what follows that (MP) is initialized at the so-called “prox-center” of X , i.e.,

X1 = xc ≡ arg minx∈X h(X ). (4.4)

Remark 1. In general, calculating mirror steps can be computationally expensive – just like Euclidean
projections in several cases. In what follows, we tacitly assume that our setting is “prox-friendly”
[19, 35, 37] in the sense that the update (4.3) can be computed efficiently. For instance, it is
straightforward to check that Example 3.4 is prox-friendly.

Heuristically, the main idea behind (MP) is that, at each t = 1, 2, . . . , the oracle is called at the
algorithm’s base state Xt to generate an intermediate, leading state Xt+1/2; subsequently, the base
state is updated with oracle information from the leading state Xt+1/2 and the process repeats. In
this way, (MP) essentially tries to “anticipate” the change of A along a prox-step, and to exploit
this “forward” information in order to achieve a faster convergence rate than ordinary forward-
backward/gradient descent schemes. For this anticipatory scheme to work, the variation of the
operator A must be sufficiently gradual, hence the need for Lipschitz continuity in the classical
analysis of the algorithm [19, 35, 37]. If this variation is unbounded (e.g., if A exhibits singularities),
this look-ahead mechanism could break down completely and the algorithm might fail to converge
altogether. Our first result below is that, despite such singularities, Bregman continuity allows us to
recover the optimal convergence rate of (MP):

Theorem 1. Assume that A satisfies Assumptions 1 and 2, and let GapH denote the restricted gap
function for the Bregman zone CH = {x ∈ X : D(x, xc) ≤ H}. Suppose further that (MP) is run
with a K-strongly convex Bregman function and oracle feedback of the form (4.1). Then, for all
H > 0, the averaged sequence X̄T =

∑T
t=1 γtXt+1/2

/∑T
t=1 γt enjoys the following gap bounds:

a) If σ2 = 0 and the algorithm’s step-size satisfies

0 < γmin ≡ inft γt ≤ supt γt ≡ γmax ≤
√
K/β, (4.5)

we have
GapH(X̄T ) ≤ H

γmin

1

T
(4.6)

b) Otherwise, if σ2 > 0 and γt ≤
√
K/2/β, we have

E[GapH(X̄T )] = O
(
H+σ2 ∑T

t=1 γ
2
t∑T

t=1 γt

)
(4.7)

In particular, if γt ∝ 1/
√
T , we get E[GapH(X̄t)] = O(1/

√
T ).

Remark. We should stress here that the above rates are attained even if X is unbounded and/or the
“Bregman content” HX ≡ supxD(x, xc) = suph− inf h of X is infinite.

As we show in the supplement, the key step in the proof of the deterministic part of Theorem 1 is the
following energy inequality for an arbitrary target point p ∈ CH :

D(p,Xt+1) ≤ D(p,Xt)− γt〈A(Xt+1/2), Xt+1/2 − p〉 −
(

1− β2γ2t
K

)
D(Xt+1/2, Xt) (4.8)
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Algorithm 1: adaptive mirror-prox (AMP)

Require: local norm ‖·‖x, K-strongly convex Bregman function h, shrink ratio θ ∈ (0, 1)

1: take X1 = argminh, γ1 > 0 # initialization
2: for t = 1, 2, . . . do
3: get oracle feedback Vt at Xt # base state query
4: set Xt+1/2 = PXt(−γtVt) # leading state update
5: get oracle feedback Vt+1/2 at Xt+1/2 # leading state query
6: set Xt+1 = PXt(−γtVt+1/2) # base state update

7: set βt =
‖Vt+1/2 − Vt‖Xt+1/2,∗√

2D(Xt+1/2, Xt)
# estimate Bregman constant

8: set γt+1 = min{γt, θ
√
K/βt} # update step-size

9: end for

There are two points where the Bregman structure of the algorithm can be seen in (4.8): in the energy
iterates D(p,Xt), but also in the comparison of the algorithm’s base and leading state in the term
D(Xt+1/2, Xt). In the “vanilla” setting, Lipschitz continuity is used to obtain a comparison of these
successive states in terms of a global norm difference of the form ‖Xt+1/2 −Xt‖2. However, this
step also requires A to vary gradually relative to ‖·‖, which is of course impossible if A exhibits
singularities. The key novelty in our setting is the use of the Bregman divergence as a comparator
for the algorithm’s successive states: it is at this point that the triple interplay between the operator,
the local norm and the chosen Bregman function is made manifest, and it is what makes Bregman
continuity particularly well-suited for tackling singular problems of this kind. This requires a careful
treatment of the various Bregman differences involved, so we defer the details to the supplement.

5 The adaptive mirror-prox algorithm

A crucial assumption underlying the analysis of the previous section is that the optimizer must know
in advance – or be otherwise able to estimate – the Bregman constant β. In practice, this can be
difficult to achieve, so it is important to be able to run (MP) with an adaptive step-size policy. Our
starting point is the observation that, with accurate feedback, one can estimate β by setting

βt =
‖A(Xt+1/2)−A(Xt)‖Xt+1/2,∗√

2D(Xt+1/2, Xt)
(5.1)

whenever Xt+1/2 6= Xt; obviously, if A is β-Bregman continuous, we have βt ≤ β. However, the
fact that the Bregman constant is being under-estimated means that a step-size policy of the form
γt ∝

√
K/βt would over-estimate the inverse Bregman constant 1/β, so the resulting step-size

policy would have no reason to satisfy (4.5). To overcome this obstacle, we introduce the following
comparison mechanism: first, at each t = 1, 2, . . . , we use the estimation (5.1) to test the step-size
γ̄t =

√
K/βt. Then, to avoid the growth phenomenon outlined above, we shrink γ̄t by a constant

factor of θ and, to avoid running into vanishing step-size issues, we take the previous step-size
employed if the shrunk one would be smaller. Formally, we consider the adaptive step-size policy:

γt+1 =

{
min{γt, θ

√
K/βt} if Xt 6= Xt+1/2,

γt otherwise,
(5.2)

with βt defined as in (5.1) and θ ∈ (0, 1) chosen arbitrarily.

For concreteness, we call the resulting algorithm adaptive mirror-prox (AMP) and we provide a
pseudocode implementation in Algorithm 1 above. In terms of performance, we have:
Theorem 2. Assume that A satisfies Assumptions 1 and 2, and (MP) is run with perfect oracle
feedback and the adaptive step-size policy (5.2). Then, with notation as in Theorem 1, the algorithm’s
ergodic average X̄T =

∑T
t=1 γtXt+1/2

/∑T
t=1 γt enjoys the gap bound GapH(X̄T ) = O(1/T ).

We find this result particularly appealing because it yields the optimal O(1/T ) convergence rate of
the mirror-prox algorithm, even for possibly singular operators, and even if the operator’s Bregman
constant is unknown. Its proof relies on using the specific form of the step-size policy (5.2) to control
the second term in the energy inequality (4.8); we provide the detailed arguments in the supplement.
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Figure 1: Different variants of the mirror-prox algorithm in the resource sharing problem of Example 2.3. The
algorithm labeled “extra-gradient” refers to Euclidean regularization and a constant step size as indicated in the
legend; “mirror-prox” was run with the Bregman function of Example 3.4 and step-sizes as in the legend; finally,
“adaptive mirror-prox” corresponds to Algorithm 1, i.e., mirror-prox with the adaptive step-size (5.2).

6 Numerical experiments
We performed a series of numerical experiments on the resource sharing problem described in
Example 2.3 with a set of R = 1000 servers being shared by N = 100 commodities, each with a
demand drawn uniformly at random from [0, 1]; the capacity cr of each server r = 1, . . . , R was
also drawn randomly from [0, 100]. Subsequently, we ran two variants of the mirror-prox method:
(MP) with Euclidean regularization, and (MP) with the Bregman function defined in Example 3.4.
For all methods, we ran a range of different constant step-sizes (we present the most representative
values, namely γ = 0.001, γ = 0.005, and γ = 0.010). Subsequently, we also ran Algorithm 1 and
we plotted the distance from the solution to the induced variational inequality problem as a function
of the number of iterations. The main conclusions that can be drawn are as follows:

1. The Euclidean version of the mirror-prox algorithm (i.e., the extra-gradient algorithm) is
unstable and does not converge; this is due to the fact that the gradients received are very
large (recall that the problem is not Lipschitz continuous), so the algorithm does not exhibit
descent or convergence.

2. The MP variant with the non-Euclidean regularizer of Example 3.4 behaves much better
and converges (since the VI problem under study is Bregman continuous relative to this
Bregman function). However, depending on the method’s step-size, the convergence is
relatively slow, and there is no easy way to estimate the problem’s Bregman constant in
order to choose a “good” step-size.

3. By contrast, the adaptive version of the method (Algorithm 1) converges significantly
faster than variants with a constant step-size. Importantly, the method’s step-size changes
significantly from one iteration to the next, at least for the first few thousand iterations,
eventually converging to a value close to γinf ≈ 0.0057. However, running the method with
this constant step-size is significantly slower in the warm-up period of the method, and leads
to worse results overall. This is due to the fact that, initially, a greedier step-size is able to
take larger steps towards the problem’s solution.

7 Concluding remarks
In this work, we introduced a novel regularity condition to account for variational inequalities (both
deterministic and stochastic) with possible singularities. This condition, which we call Bregman
continuity, is tailored to the operator’s singularity landscape and, as such, provides the necessary
bedrock to achieve optimal convergence rates via a properly chosen version of the mirror-prox
algorithm (with or without knowledge of the problem’s Bregman constant). This opens up several
interesting research directions: First, an appealing extension would be to develop a “model-agnostic”
version of the method (which would concurrently provide optimal rates in stochastic and deterministic
settings) or to combine it with backtracking / linesearch to accelerate convergence. Finally, it would
also be interesting to examine the method’s local convergence properties in non-monotone problems
(deterministic or stochastic). We relegate these questions to future work.
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