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ABSTRACT

Most existing defenses against adversarial attacks only consider robustness to L,-
bounded distortions. In reality, the specific attack is rarely known in advance
and adversaries are free to modify images in ways which lie outside any fixed
distortion model; for example, adversarial rotations lie outside the set of L,-
bounded distortions. In this work, we advocate measuring robustness against a
much broader range of unforeseen attacks, attacks whose precise form is unknown
during defense design.

We propose several new attacks and a methodology for evaluating a defense
against a diverse range of unforeseen distortions. First, we construct novel ad-
versarial JPEG, Fog, Gabor, and Snow distortions to simulate more diverse adver-
saries. We then introduce UAR, a summary metric that measures the robustness
of a defense against a given distortion. Using UAR to assess robustness against
existing and novel attacks, we perform an extensive study of adversarial robust-
ness. We find that evaluation against existing L,, attacks yields redundant informa-
tion which does not generalize to other attacks; we instead recommend evaluating
against our significantly more diverse set of attacks. We further find that adversar-
ial training against either one or multiple distortions fails to confer robustness to
attacks with other distortion types. These results underscore the need to evaluate
and study robustness against unforeseen distortions.

1 INTRODUCTION

Neural networks perform well on many benchmark tasks (He et al.,|2016) yet can be fooled by ad-
versarial examples (Goodfellow et al., |2014), slightly distorted inputs designed to subvert a given
model. The adversary is frequently assumed to craft adversarial distortions under an L, constraint
(Goodfellow et al., [2014; Madry et al., 2017; |Xie et al.,|2018)), while other distortions such as adver-
sarial geometric transformations, patches, and even 3D-printed objects have also been considered
(Engstrom et al., 2017; Brown et al., 2017 |Athalye et al.,|2017). However, most work on adversar-
ial robustness assumes the adversary is fixed and known. Defenses against adversarial attacks often
leverage such knowledge when designing the defense, most commonly through adversarial training,
which minimizes the adversarial loss against a fixed distortion type (Madry et al., 2017).

In practice, adversaries can modify their attacks and construct distortions whose precise form is not
known to the defense designers. In this work, we propose a methodology for assessing robustness
to such unforeseen attacks and use it to study how adversarial robustness transfers to them. To en-
sure sufficient diversity, we introduce four novel adversarial attacks (§2)) with qualitatively different
distortion types: adversarial JPEG, Fog, Gabor, and Snow (sample images in Figure|[T).

Our methodology (§3) involves evaluating a defense against a diverse set of held-out distortions not
involved in the design of the defense; we suggest L., L1, Elastic, Fog, and Snow as an initial set
to consider. For a fixed, held-out distortion, we then evaluate the defense against the distortion for
a calibrated range of distortion sizes whose strength is roughly comparable across distortions. For
each fixed distortion, our evaluation yields the summary metric UAR, which measures robustness
of a defense against that distortion relative to a model adversarially trained on that distortion. We
provide code and calibrations to easily evaluate a defense against our suite of attacks and compute
UAR foritathttps://github.com/iclr-2020-submission/advex—uar.
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Figure 1: Attacked images (label “espresso maker”) against adversarially trained models with large
e. Each of the adversarial images above are optimized to maximize the classification loss.

Applying our method to 87 adversarially trained models and 8 different distortion types (§4), we find
weaknesses in existing defenses and evaluation practices. Our results show that existing defenses
based on adversarial training do not generalize to unforeseen adversaries, even when restricted to
the 8 distortions in Figure[T} This adds to the mounting evidence that achieving robustness against
a single distortion type is insufficient to impart robustness to unforeseen attacks
2019} Jordan et al.l 2019} [Tramer & Bonehl 2019).

Turning to evaluation, our results demonstrate that accuracy against different L,, distortions is highly
correlated relative to the other distortions we consider, suggesting that the common practice of eval-
uating only against L, distortions can give a misleading account of a model’s adversarial robustness.
Our analysis using UAR demonstrates that our full suite of attacks adds signficant diversity and re-
veals L., L1, Elastic, Fog, and Snow as a set with less correlated accuracy and UAR scores against
held-out defenses. We suggest these attacks for use when evaluating against unforeseen adversaries.

A natural next approach is to defend against multiple distortion types simultaneously in the hope that
seeing a larger space of distortions provides greater transfer to unforeseen distortions. Unfortunately,
we find that defending against even two different distortion types via joint adversarial training is
difficult (§5). Specifically, joint adversarial training leads to overfitting at moderate distortion sizes.

In summary, we make the following contributions:

1. We propose a method UAR to assess robustness of defenses against unforeseen adversaries.

2. We introduce 4 novel attacks and apply UAR to assess how robustness transfers to these
attacks and 4 existing ones. Our results demonstrate that existing defense and evaluation
methods do not generalize well to unforeseen attacks.

3. We suggest the use of our more diverse attacks for evaluating novel defenses, highlighting
Lo, L1, Elastic, Fog, and Snow as a diverse starting point.

2 A SET OF DIVERSE AND NOVEL ADVERSARIAL ATTACKS

We consider distortions (attacks) applied to an image 2 € R3*224%224_represented as a vector of
RGB values. Let f : R3%224x224 _, R100 he 3 model mapping images to logitsﬂ, and let £(f(x),y)
denote the cross-entropy loss. For an input x with true label y and a target class 3y’ # y, our
adversarial attacks attempt to find x’ such that

1. the attacked image z’ is obtained by applying a constrained distortion to x, and
2. the loss £(f(«'),y’) is minimized (targeted attack).

"We describe the attacks for ImageNet-100, but they can also be applied to CIFAR-10.
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Figure 2: Scaled pixel-level differences between original and attacked images for each attack (label
“espresso maker”). The L1, Lo, and L, norms of the difference are shown after the attack name.
Our novel attacks display behavior which is qualitatively different from that of the L,, attacks. At-
tacked images are shown in Figure[T} and unscaled differences are shown in Figure[9} Appendix[B.T}

Adpversarial training (Goodfellow et al.l 2014) is a strong defense baseline against a fixed attack
(Madry et al.,[2017; Xie et al., 2018) which updates using an attacked image ' instead of the clean
image z at each training iteration.

We consider 8 attacks: Lo, (Goodfellow et all,[2014), L, (Szegedy et al} 2013}, [Carlini & Wagner]
2017), L1 (Chen et al} 2018), Elastic (Xiao et al, 2018), JPEG, Fog, Gabor, and Snow. We show

sample attacked images in Figure[T]and the corresponding distortions in Figure[2] The JPEG, Fog,
Gabor, and Snow attacks are new to this paper, and the L; attack uses the Frank-Wolfe algorithm to
improve on previous L; attacks. We now describe the attacks, whose distortion sizes are controlled
by a parameter €. We clamp output pixel values to [0, 255].

Existing attacks. The L, attacks with p € {1,2, 00} modify an image = to an attacked image
x' = z+6. We optimize § under the constraint ||§||, < &, where ||-||,, is the L,-norm on R3*224x221,

The Elastic attack warps the image by allowing distortions =’ = Flow(z,V’), where V

{1,...,224}?2 — R? is a vector field on pixel space, and Flow sets the value of pixel (i,7) to
the bilinearly interpolated original value at (7, j) + V' (¢, 7). We construct V' by smoothing a vector
field W by a Gaussian kernel (size 25 x 25, std. dev. 3 for a 224 x 224 image) and optimize W under

[W (i, )||oc < e foralli, j. This differs in details from Xiao et al|(2018) but is similar in spirit.

Novel attacks. As discussed in [Shin & Song| (2017) for defense, JPEG compression applies a
lossy linear transformation JPEG based on the discrete cosine transform to image space, followed
by quantization. The JPEG attack imposes the L..-constraint || JPEG(z) — JPEG(2')||c < € on the
attacked image x’. We optimize z = JPEG(2’) and apply a right inverse of JPEG to obtain z’.

Our novel Fog, Gabor, and Snow attacks are ad-
versarial versions of non-adversarial distortions
proposed in the literature. Fog and Snow in-
troduce adversarially chosen partial occlusions
of the image resembling the effect of mist and
snowflakes, respectively; stochastic versions of —3 ; 7
Fog and Snow appeared in [Hendrycks & Diet-| Original Initialization Optimized
terich| (2019). Gabor superimposes adversarially

chosen additive Gabor noise (Lagae et al;[2009)  Figure 3: Snow before and after optimization.
onto the image; a stochastic version appeared in

(2019). These attacks work by optimizing a set of parameters controlling the distortion

it
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Figure 4: Accuracies of L and Elastic attacks at different distortion sizes against a ResNet-50 model
adversarially trained against Lo at ¢ = 9600 on ImageNet-100. At small distortion sizes, the model
appears to defend well against Elastic, but large distortion sizes reveal a lack of transfer.

over an L,-bounded set. Specifically, values for the diamond-square algorithm, sparse noise, and
snowflake brightness (Figure 3 are chosen adversarially for Fog, Gabor, and Snow, respectively.

Optimization. To handle L., and L constraints, we use randomly-initialized projected gradient
descent (PGD), which optimizes the distortion § by gradient descent and projection to the L., and
L balls (Madry et al., [2017). For Ly constraints, this projection is more difficult, and previous
L, attacks resort to heuristics (Chen et al., 2018} Tramer & Boneh, 2019). We use the randomly-
initialized Frank-Wolfe algorithm (Frank & Wolfe, |1956), which replaces projection by a simpler
optimization of a linear function at each step (pseudocode in Appendix [B.2)).

3  MOTIVATION AND DESCRIPTION OF OUR METHODOLOGY

We now propose a method to assess robustness against unforeseen distortions, which relies on eval-
uating a defense against a diverse set of attacks that were not used when designing the defense. Our
method must address the following issues:

e The range of distortion sizes must be wide enough to avoid the misleading behavior in which
robustness appears to transfer at low distortion sizes but not at high distortion sizes (Figure [));

e The set of attacks considered must be sufficiently diverse.

We first provide a method to calibrate distortion sizes and then use it to define a summary metric
that assesses the robustness of a defense against a specific unforeseen attack. Using this metric, we
are able to assess diversity and recommend a set of attacks to evaluate against.

Calibrate distortion size using adversarial training.  As shown in Figure ] the correlation
between adversarial robustness against different distortion types may look different for different
ranges of distortion sizes. It is therefore critical to evaluate on a wide enough range of distortion
size e. We choose the minimum and maximum distortion sizes ¢ using the following principles;
sample images at €y, and ey, are shown in Figure@

1. The minimum distortion size e, is the largest ¢ for which the adversarial validation ac-
curacy against an adversarially trained model is comparable to that of a model trained and
evaluated on unattacked data.

2. The maximum distortion size e,y 1S the smallest € which either (a) yields images which
confuse humans when applied against adversarially trained models or (b) reduces accuracy
of adversarially trained models to below 25.

In practice, we select eyin and e« according to these criteria from a sequence of € which is geomet-
rically increasing with ratio 2. We choose to evaluate against adversarially trained models because
attacking against strong defenses is necessary to produce strong visual distortions (Figure [5a). We
introduce the constraint that humans recognize attacked images at £.,,x because we find cases for
L, Fog, and Snow where adversarially trained models maintain non-zero accuracy for distortion
sizes producing images incomprehensible to humans. An example for Snow is shown in Figure [5b]

UAR: an adversarial robustness metric. = We measure a model’s robustness against a specific
distortion type by comparing it to adversarially trained models, which represent an approximate
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model and models adversarially trained against Lo, versarially trained models at €min and emax. Distortions
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against larger € produces greater visual distortion. barely recognizable by humans at €pa.

Figure 5: Varying distortion size against adversarially trained models reveals full attack strength.

ceiling on performance with prior knowledge of the distortion type. For distortion type A and size ¢,
let the Adversarial Training Accuracy ATA(A, €) be the best adversarial accuracy on the validation
set that can be achieved by adversarially training a specific architecture (ResNet-50 for ImageNet-
100, ResNet-56 for CIFAR-10) against AEl Even when evaluating a defense using an architecture
other than ResNet-50 or ResNet-56, we recommend using the ATA values computed with these
architectures to allow for uniform comparisons.

Given a set of distortion sizes {e1,...,&,}, we propose the summary metric UAR (Unforeseen
Attack Robustness) normalizing the accuracy of a model M against adversarial training accuracy:

UAR(A, M) := 100 - <iiAcc(A, ak,M)>/ (iiATA(A,gQ) . )
k=1

k=1

Here Acc(A, e, M) is the accuracy of M against distortions of type A and magnitude £. We expect
most UAR scores to be lower than 100 against held-out distortion types, as an UAR score greater than
100 means that a defense is outperforming an adversarially trained model on that distortion. The
normalizing factor in (1) is required to keep UAR scores roughly comparable between distortions, as
different distortions can have different strengths as measured by ATA at the chosen distortion sizes.

Having too many or too few € values in a certain range may cause an attack to appear artificially
strong or weak because the functional relation between distortion size and attack strength (measured
by ATA) varies between attacks. To make UAR roughly comparable between distortions, we evaluate
at ¢ increasing geometrically from ey, to emax by factors of 2 and take the subset of £ whose ATA
values have minimum ¢, -distance to the ATA values of the L., attack at geometrically increasing .

For our 8 distortion types, we provide reference values of ATA(A, €) on this calibrated range of 6
distortion sizes on ImageNet-100 (Table [I] §4) and CIFAR-10 (Table[3] Appendix [C.3.2). This al-
lows UAR computation for a new defense using 6 adversarial evaluations and no adversarial training,
reducing computational cost from 1924 to 6 NVIDIA V100 GPU-hours on ImageNet-100.

Evaluate against diverse distortion types. Since robustness against different distortion types may
have low or no correlation (Figure [6b), measuring performance on different distortions is important
to avoid overfitting to a specific type, especially when a defense is constructed with it in mind (as
with adversarial training). Our results in §4|demonstrate that choosing appropriate distortion types to
evaluate against requires some care, as distortions such as L1, Lo, and L, that may seem different
can actually have highly correlated scores against defenses (see Figure[6). We instead recommend
evaluation against our more diverse attacks, taking the L., L1, Elastic, Fog, and Snow attacks as a
starting point.

2As explained in Figure (Appendix , this usually requires training at distortion size €’ > € because
the typical distortion seen during adversarial training is sub-maximal.
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Table 1: Calibrated distortion sizes and ATA values for different distortion types on ImageNet-100.
ATA values for CIFAR-10 are shown in Table (Appendix (C.3.2).

Attack €1 E2 €3 €4 €5 €6 ATA1 ATA2 ATA3 ATA4 ATA5 ATAG
Lo 1 2 4 8 16 32 84.6 82.1 762 669 40.1 129
Lo 150 300 600 1200 2400 4800 85.0 835 79.6 726 59.1 199
Ly 9562.5 19125 76500 153000 306000 612000 84.4 82.7 76.3 689 564 36.1

Elastic 0.250 0.500 2 4 8 16 859 832 781 756 57.0 225
JPEG 0.062 0.125 0.250 0.500 1 2 850 832 793 728 348 1.1
Fog 128 256 512 2048 4096 8192 858 83.8 79.0 684 679 647
Snow 0.062 0.125 0.250 2 4 8 84.0 81.1 77.7 656 595 412

Gabor 6.250 12.500 25 400 800 1600 84.0 79.8 79.8 662 447 14.6

4 UAR REVEALS THE NEED TO EVALUATE AGAINST MORE DIVERSE ATTACKS

We apply our methodology to the 8 attacks in §2] using models adversarially trained against these
attacks. Our results reveal that evaluating against the commonly used L,,-attacks gives highly corre-
lated information which does not generalize to other unforeseen attacks. Instead, they suggest that
evaluating on diverse attacks is necessary and identify a set of 5 attacks with low pairwise robustness
transfer which we suggest as a starting point when assessing robustness to unforeseen adversaries.

Dataset and model. We use two datasets: CIFAR-10 and ImageNet-100, the 100-class subset of
ImageNet-1K containing every 10" class by WordNet ID order. We use ResNet-
56 for CIFAR-10 and ResNet-50 as implemented in torchvision for ImageNet-100
[2016). We give training hyperparameters in Appendix [A]

Adversarial training and evaluation procedure. We construct hardened models using adversarial
training (Madry et al.|[2017). To train against attack A, for each mini-batch of training images, we
select a uniform random (incorrect) target class for each image. For maximum distortion size €, we
apply the targeted attack A to the current model with distortion size &’ ~ Uniform(0, €) and update
the model with a step of stochastic gradient descent using only the resulting adversarial images (no
clean images). The random size scaling improves performance especially against smaller distortions.
We use 10 optimization steps for all attacks during training except for Elastic, where we use 30 steps
due to its more difficult optimization problem. When PGD is used, we use step size £//steps, the
optimal scaling for non-smooth convex functions (Nemirovski & Yudin| [1978};[1983).

We adversarially train 87 models against the 8 attacks from §2| at the distortion sizes described in
§3]and evaluate them on the ImageNet-100 and CIFAR-10 validation sets against 200-step targeted
attacks with uniform random (incorrect) target class. This uses more steps for evaluation than train-
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(a) UAR scores for adv. trained defenses (rows)  (b) Correlations between UAR scores in Figure@ for
against attacks (columns) on ImageNet-100. See each attack (rows and columns). Correlation was com-
Figure [12] for more ¢ values and Appendix [C.3.2]  puted over adversarial defenses in Figure [6a] trained
for CIFAR-10 results. without knowledge of the attacks (6 total per pair).

Figure 6: UAR scores demonstrate the need to evaluate against diverse attacks.
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ing per best practices (Carlini et al,2019). We use UAR to analyze the results in the remainder of
this section, directing the reader to Figures [I0]and [IT] (Appendix [C.2) for exhaustive results and to
Appendix [D]for checks for robustness to random seed and number of attack steps.

Existing defense and evaluation methods do not generalize to unforeseen attacks. The many
low off-diagonal UAR scores in Figure[6a]make clear that while adversarial training is a strong base-
line against a fixed distortion, it only rarely confers robustness to unforeseen distortions. Notably,
we were not able to achieve a high UAR against Fog except by directly adversarially training against
it. Despite the general lack of transfer in Figure@ the fairly strong transfer between the L, -attacks
is consistent with recent progress in simultaneous robustness to them (Croce & Heinl, [2019).

Figure |6b| shows correlations between UAR scores of pairs of attacks A and A’ against defenses
adversarially trained without knowledgeﬂ of A or A’. The results demonstrate that defenses trained
without knowledge of L,-attacks have highly correlated UAR scores against the different L,, attacks,
but this correlation does not extend to their evaluations against other attacks. This suggests that L,,-
evaluations offer limited diversity and may not generalize to other unforeseen attacks.

The L., L1, Elastic, Fog, and Snow attacks offer greater diversity. Our results on L,-evaluation
suggest that more diverse attack evaluation is necessary for generalization to unforeseen attacks. As
the unexpected correlation between UAR scores against the pairs (Fog, Gabor) and (JPEG, L;) in
Figure [6b| demonstrates, even attacks with very different distortions may have correlated behaviors.
Considering all attacks in Figure [6] together results in signficantly more diversity, which we suggest
for evaluation against unforeseen attacks. We suggest the 5 attacks (L, L1, Elastic, Fog, and Snow)
with low UAR against each other and low correlation between UAR scores as a good starting point.

5 JOINT ADVERSARIAL TRAINING: DEFENDING AGAINST TWO DISTORTIONS

A natural idea to improve robustness against unforeseen adversaries is to adversarially train the same
model against two different types of distortions simultaneously, with the idea that this will cover a
larger portion of the space of distortions. We refer to this as joint adversarial training
[2019; [Tramer & Boneh, [2019). For two attacks A and A’, at each training step, we compute the
attacked image under both A and A’ and backpropagate with respect to gradients induced by the
image with greater loss. This corresponds to the “max” loss described in [Tramer & Boneh| (2019).
We jointly train models for (Lo, L2), (Loo, L1), and (Lo, Elastic) using the same setup as before

NSERIErE 7 17 22 0 31 Normal Training -[RAREYA» RN Normal Training -JRANENAPYRRVICH)

Loo e =1, Ly ¢ = 300 {GICIEIEY
N AR (B 65 7353 41 43
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Loo e =1, Ly & = 38250
Lo =2, Ly & = 76500
Loo € =4, Ly & = 153000
Lo =8, Ly & = 306000
Leo €= 16, Ly £ = 612000
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Figure 7: UAR scores for jointly adv. trained defenses (rows) against distortion types (columns).

Transfer for jointly trained models. Figure[7]reports UAR scores for jointly trained models using
ResNet-50 on ImageNet-100; full evaluation accuracies are in Figure [I9] (Appendix [E). Comparing
to Figure[6aland Figure[I2](Appendix[E), we see that, relative to training against only Lo, joint train-
ing against (L«, Lo) slightly improves robustness against L; without harming robustness against
other attacks. In contrast, training against (Lo, L1) is worse than either training against L1 or L
separately (except at small € for L;). Training against ( L., Elastic) also performs poorly.

Joint training and overfitting. Jointly trained models achieve high training accuracy but poor
validation accuracy (Figure[8) that fluctuates substantially for different random seeds (Table ] Ap-
pendix . Figure [8|shows the overfitting behavior for (L, Elastic): L, validation accuracy de-
creases significantly during training while training accuracy increases. This contrasts with standard
adversarial training (Figure 8], where validation accuracy levels off as training accuracy increases.

3We exclude defenses adversarially trained against A and A’ to ensure that attacks are unforeseen.
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Figure 8: Left: train and validation curves for joint training against L., € = 8 and Elastic, ¢ = 4,
Right: train and val curves for standard adversarial training for L., ¢ = 8. The joint validation
accuracy of L., decreases as training progresses, indicating overfitting.

Overfitting primarily occurs when training against large distortions. We successfully trained against
the (Loo, L1) and (Lo, Elastic) pairs for small distortion sizes with accuracies comparable to but
slightly lower than observed in Figure [TT] for training against each attack individually (Figure [T8]
Appendix [E)). This agrees with behavior reported by [Tramér & Boneh| (2019) on CIFAR-10. Our
intuition is that harder training tasks (more diverse distortion types, larger €) make overfitting more
likely. We briefly investigate the relation between overfitting and model capacity in Appendix
validation accuracy appears slightly increased for ResNet-101, but overfitting remains.

6 DISCUSSION AND RELATED WORK

We have seen that robustness to one attack provides limited information about robustness to other
attacks, and moreover that adversarial training provides limited robustness to unforeseen attacks.
These results suggest a need to modify or move beyond adversarial training. While joint adversarial
training is one possible alternative, our results show it often leads to overfitting. Even ignoring this,
it is not clear that joint training would confer robustness to attacks outside of those trained against.

Evaluating robustness has proven difficult, necessitating detailed study of best practices even for a
single fixed attack (Papernot et al.,[2017; |Athalye et al.,2018]). We build on these best practices by
showing how to choose and calibrate a diverse set of unforeseen attacks. Our work is a supplement to
existing practices, not a replacement—we strongly recommend following the guidelines in (Papernot;
et al.L 2017) and (Athalye et al.,2018)) in addition to our recommendations.

Some caution is necessary when interpreting specific numeric results in our paper. Many previous
implementations of adversarial training fell prone to gradient masking (Papernot et al., 2017} [En-
gstrom et al., 2018]), with apparently successful training occurring only recently (Madry et al., 2017}
Xie et al.}[2018)). While evaluating with moderately many PGD steps (200) helps guard against this,
(Qian & Wegman, 2019) shows that an L,-trained model that appeared robust against Lo actually
had substantially less robustness when evaluating with 105 PGD steps. If this effect is pervasive,
then there may be even less transfer between attacks than our current results suggest.

For evaluating against a fixed attack, DeepFool Moosavi-Dezfooli et al.| (2015) and CLEVER |Weng
et al.[(2018) can be seen as existing alternatives to UAR. They work by estimating “empirical ro-
bustness”, which is the expected minimum ¢ needed to successfully attack an image. However, these
apply only to attacks which optimize over an L,-ball of radius €, and CLEVER can be susceptible
to gradient masking |Goodfellow| (2018). In addition, empirical robustness is equivalent to linearly
averaging accuracy over €, which has smaller dynamic range than the geometric average in UAR.

Our results add to a growing line of evidence that evaluating against a single known attack type
provides a misleading picture of the robustness of a model (Sharma & Chen| [2017; Engstrom et al.,
2017; Jordan et al., |2019; [Tramer & Bonehl 2019; Jacobsen et al., 2019). Going one step further,
we believe that robustness itself provides only a narrow window into model behavior; in addition to
robustness, we should seek to build a diverse toolbox for understanding machine learning models,
including visualization (Olah et al.|[2018};[Zhang & Zhu, 2019), disentanglement of relevant features
(Geirhos et al., |2018)), and measurement of extrapolation to different datasets (Torralba & Efros|
2011) or the long tail of natural but unusual inputs (Hendrycks et al.,|2019). Together, these windows
into model behavior can give us a clearer picture of how to make models reliable in the real world.
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A  TRAINING HYPERPARAMETERS

For ImageNet-100, we trained on machines with 8 NVIDIA V100 GPUs using standard data aug-
mentation He et al| (2016). Following best practices for multi-GPU training |Goyal et al.| (2017),
we ran synchronized SGD for 90 epochs with batch size 32x8 and a learning rate schedule with 5
“warm-up” epochs and a decay at epochs 30, 60, and 80 by a factor of 10. Initial learning rate after
warm-up was 0.1, momentum was 0.9, and weight decay was 10~%. For CIFAR-10, we trained on a
single NVIDIA V100 GPU for 200 epochs with batch size 32, initial learning rate 0.1, momentum
0.9, and weight decay 10~%. We decayed the learning rate at epochs 100 and 150.

B FURTHER ATTACK DETAILS

B.1 FURTHER EXAMPLES OF ATTACKS

We show the images corresponding to the ones in Figure [2] with the exception that they are not
scaled. The non-scaled images are shown in Figure 9]

B.2 L; ATTACK

We chose to use the Frank-Wolfe algorithm for optimizing the L; attack, as Projected Gradient
Descent would require projecting onto a truncated L, ball, which is a complicated operation. In
contrast, Frank-Wolfe only requires optimizing linear functions ¢ ' = over a truncated L; ball; this
can be done by sorting coordinates by the magnitude of g and moving the top k coordinates to the
boundary of their range (with k chosen by binary search). This is detailed in Algorithm T}

C FULL EVALUATION RESULTS

C.1 L1-JPEG AND L5-JPEG ATTACKS

We will present results with two additional versions of the JPEG attack which impose L; or Lo
constraints on the attack in JPEG-space instead of the L, constraint discussed in Section[2} To avoid
confusion, in this appendix, we denote the original JPEG attack by L..-JPEG and these variants by
L+1-JPEG and L,-JPEG, respectively. Comparing the L;-JPEG and L»-JPEG attacks in Figure
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Figure 9: Differences of the attacked images and original image for different attacks (label “espresso
maker”). The L1, Lo, and L, norms of the difference are shown in parentheses. As shown, our

novel attacks display qualitatively different behavior and do not fall under the L,, threat model.
These differences are not scaled and are normalized so that no difference corresponds to white.
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Algorithm 1 Pseudocode for the Frank-Wolfe algorithm for the L attack.

DN =

25:
26:
27:
28:
29:
30:
31:
32:

Input: function f, initial input z € [0, l}d, L1 radius p, number of steps 7.
Output: approximate maximizer Z of f over the truncated L; ball By (p;z) N [0, 1] centered
at x.

20 « RandomInit(z) > Random initialization
fort=1,...,Tdo
g« V(D) > Obtain gradient
fork=1,...,ddo
), + index of the coordinate of g by with k" largest norm
end for
Sk < {81,. . .,Sk}.

fori=1,...,ddo > Compute move to boundary of [0, 1] for each coordinate.
if g; > 0 then
by +—1—ux;
else
b; «— —x;
end if
end for
My 3¢ Sk |b;] > Compute L, -perturbation of moving k largest coordinates.
k* « max{k | My < p} > Choose largest k satisfying L constraint.
fori=1,...,ddo > Compute & maximizing g x over the L; ball.
if i € Sy~ then
else if i = sy« then
Ti < i+ (p — My~ ) sign(g;)
else
T; < x;
end if
end for
z® (1= Hzt-D 4 13 > Average & with previous iterates
end for
z <« x(T)

Table 2: ATA values for L;-JPEG and L.-JPEG on ImageNet-100.

Attack 1 €2 €3 €4 €5 £6 ATA; ATA: ATA3 ATA, ATAs ATAg
L2-JPEG 8 16 32 64 128 256 84.8 825 789 723 475 34
L1-JPEG 256 1024 4096 16384 65536 131072 84.8 81.8 762 67.1 464 41.8

we find that they have extremely similar results, so we omit L;-JPEG in the full analysis for brevity
and visibility. Calibration values for these attacks are shown in Table [2]

C.2 FULL EVALUATION RESULTS AND ANALYSIS FOR IMAGENET-100

We show the full results of all adversarial attacks against all adversarial defenses for ImageNet-100
in Figure [T} As described, the L,, attacks and defenses give highly correlated information on held-
out defenses and attacks respectively. Thus, we recommend evaluating on a wide range of distortion
types. Full UAR scores are also provided for ImageNet-100 in Figure[12]

We further show selected results in Figure[T3] As shown, a wide range of ¢ is required to see the full
behavior.
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training has size smaller than ¢’.

C.3 FULL EVALUATION RESULTS AND ANALYSIS FOR CIFAR-10

C.3.1

FULL RESULTS FOR CIFAR10

We show the results of adversarial attacks and defenses for CIFAR-10 in Figure[T4] We experienced
difficulty training the Lo and L; attacks at distortion sizes greater than those shown and have omitted
those runs, which we believe may be related to the small size of CIFAR-10 images.

C.3.2 ATA AND UAR FOR CIFAR-10

The ¢ calibration procedure for CIFAR-10 was similar to that used for ImageNet-100. We started
with the perceptually small ey, values in Table 3] and increased ¢ geometrically with ratio 2 until
adversarial accuracy of an adversarially trained model dropped below 40. Note that this threshold
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Table 3: Calibrated distortion sizes and ATA values for ResNet-56 on CIFAR-10

Attack £1 () €3 €4 €5 €6 ATA{ ATA; ATA3 ATA, ATA; ATAg
Lo 1 2 4 8 16 32 91.0 87.8 81.6 713 46.5 23.1
Lo 40 80 160 320 640 2560 90.1 86.4 79.6 67.3 499 173
Ly 195 390 780 1560 6240 24960 92.2 90.0 83.2 73.8 474 353
Loo-JPEG 0.03125 0.0625 0.125 0.25 0.5 1 89.7 87.0 83.1 78.6 69.7 354
L1-JPEG 2 8 64 256 512 1024 914 88.1 80.2 68.9 56.3 37.7

Elastic ~ 0.125 025 05 1 2 8 874 813 72.1 582 454 278

is higher for CIFAR-10 because there are fewer classes. The resulting ATA and UAR values for
CIFAR10 are shown in Table [3| and Figure We omitted calibration for the L,-JPEG attack
because we chose too small a range of ¢ for our initial training experiments, and we plan to address
this issue in the future.

D ROBUSTNESS OF OUR RESULTS

D.1 REPLICATION

We replicated our results for the first three rows of Figure [IT] with different random seeds to see the
variation in our results. As shown in Figure deviations in results are minor.

D.2 CONVERGENCE
We replicated the results in Figure [IT] with 50 instead of 200 steps to see how the results changed

based on the number of steps in the attack. As shown in Figure |17} the deviations are minor.

E FURTHER RESULTS FOR JOINT TRAINING

E.1 FULL EXPERIMENTAL RESULTS

We show the evaluation accuracies of jointly trained models in Figure

We show all the attacks against the jointly adversarially trained defenses in Figure [T9]

E.2 DEPENDENCE ON RANDOM SEED

In Table [ we study the dependence of joint adversarial training to random seed. We find that at
large distortion sizes, joint training for certain pairs of distortions does not produce consistent results
over different random initializations.

Table 4: Train and val accuracies for joint adversarial training at large distortion are dependent on
seed. For train and val, £’ is chosen uniformly at random between 0 and ¢, and we used 10 steps for
L and L; and 30 steps for elastic. Single adversarial training baselines are also shown.

Training parameters (ResNet-50) Lo train  other train Lo, val  other val
Lo € = 8,Elastic e = 4, Seed 1 90 89 35 74

Lo € = 8, Elastic € = 4, Seed 2 89 90 47 44

Lo € = 8, Elastic € = 4, Seed 3 90 89 29 63
Looe=16,L1e =612000,Seed 1 86 87 22 16
Looe =16,L1 e = 612000, Seed2 88 87 16 24
Looe=8 81 - 74 -
Loe=16 68 - 63 -
Elastice = 4 - 88 - 76
Lie=612000 - 75 - 59
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Table 5: Training and validation numbers for ResNet-101 and ResNet-50 for joint training against
Lo, e = 8 and elastic, ¢ = 4.

Training parameters Lo train  other train Lo, val  other val
L € = 8, Elastic € = 4, ResNet-50 Seed 1 90 89 35 74
L € = 8, Elastic € = 4, ResNet-50 Seed 2 89 90 47 44
L, ¢ = 8,Elastic ¢ = 4 ResNet-101 90 91 49 46

E.3 OVERFITTING AND MODEL CAPACITY

As a first test to understand the relationship between model capacity and overfitting, we trained
ResNet-101 models using the same procedure as in Section[5] Briefly, overfitting still occurs, but
ResNet-101 achieves a few percentage points higher than ResNet-50.

We show the training curves in Figure 20]and the training and validation numbers in Table 3]
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Figure 15: UAR scores on CIFAR-10. Displayed UAR scores are multiplied by 100 for clarity.
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Figure 16: Replica of the first three block rows of Figurewith different random seeds. Deviations

in results are minor.
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Figure 18: Evaluation accuracies of jointly trained models. Attack and training € values are equal.
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Figure 19: All attacks (columns) vs. jointly adversarially trained defense (rows).
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Figure 20: Train and validation curves for joint training against L., € = 4 and elastic, ¢ = 8
using ResNet-101. As shown, the validation accuracies decrease as training progresses, indicating
overfitting.
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