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ABSTRACT

Learning to disentangle the hidden factors of variations within a set of observa-
tions is a key task for artificial intelligence. We present a unified formulation for
class and content disentanglement and use it to illustrate the limitations of current
methods. We therefore introduce LORD, a novel method based on Latent Opti-
mization for Representation Disentanglement. We find that latent optimization,
along with an asymmetric noise regularization, is superior to amortized inference
for achieving disentangled representations. In extensive experiments, our method
is shown to achieve better disentanglement performance than both adversarial and
non-adversarial methods that use the same level of supervision. We further in-
troduce a clustering-based approach for extending our method for settings that
exhibit in-class variation with promising results on the task of domain translation.

1 INTRODUCTION

Objects in the real world encompass many different attributes mixed together. Some of the attributes
are permanent i.e. the class identity of the object, whereas others are transitory e.g. the pose of
the object. Humans can often effectively separate between the class identity of the object, and the
transitory pose of the object, even from a single observation. A key task for artificial intelligence is
to empower computers to learn to separate between different attributes of observed data, often re-
ferred to as disentanglement. In this paper, we present a new method for achieving disentanglement
between the class of an object and the sample-specific content. We restrict our attention to images,
however some of our ideas may carry over to other modalities.

There are multiple settings for disentanglement. The simplest is fully supervised - for each training
image both the class and content are given as labels. A fully supervised scheme (e.g. deep encoders)
may be trained to recover the class and content information from a single image. Conversely, a
generative model can be trained to generate an image given input class and content information.
On the other extreme, fully unsupervised disentanglement takes as input a set of images with no
further information. A successful unsupervised disentanglement algorithm will be able to learn a
representation in which different factors of variation such as class and content will be represented
separately. Fully unsupervised disentanglement is highly ambitious and is work in progress, current
methods typically do not produce consistently good results in this setting (Locatello et al., 2019).

In this work, we deal with the class-supervised disentanglement task. In this setting, the class label
for each image in the training set is given. Such supervision can be easily obtained in practice
e.g. tracking an object in a video obtains multiple images in multiple poses of the same class (for
example, person identity). The objective of the disentanglement task is to learn a representation
containing all the information not available in the class label, denoted as content. In the case of
faces, this content includes: head pose, facial expression, etc. We begin by carefully analyzing the
information contained in the class and content representations. We show that current methods allow
information to leak between the representations leading to imperfect disentanglement. We therefore
introduce LORD, a novel method which carefully ensures no information leakage between the class
and content representations.

Our method differs from previous methods by several methodological improvements. i) We lever-
age latent optimization to learn a single representation for each class which is shared between all
its samples. We show and discuss the benefits of this approach over the amortized techniques.
ii) We introduce asymmetric regularization on the content latent codes to achieve class-invariant
representations. We show the superiority of this technique over adversarial constraints and the KL-
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divergence. Latent optimization is very effective at learning disentangled representations at training
time, however, it is not useful for obtaining class and content codes of unseen test images. Optimiz-
ing over the latent codes at test time (without class supervision which exists at training time), leads
to overfitting which results in entangled representations. We overcome this challenge by introducing
a second stage in which we use the class and content codes learned by our model in the first stage for
training feed-forward class and content encoders. The encoders generalize well to unseen images
and significantly reduce the inference time on new samples.

Our method is evaluated qualitatively and quantitatively in terms of generation of novel samples of
observed classes. We also quantitatively evaluate the quality of disentanglement of learned features
by classifying class labels from content codes and vice versa. Our method is shown to significantly
outperform other adversarial and non-adversarial methods. Disentangling class and content rep-
resentations assumes that intra-class variation is significantly lower than inter-class variation. We
discover that this assumption can be relaxed by clustering in-class styles into separate classes. We
demonstrate promising results of our approach on unsupervised domain mapping.

Our contributions in this work are as follows: i) An insightful analysis of class-conditional disen-
tanglement. ii) LORD: a new well-motivated non-adversarial method for disentanglement achieving
SOTA results by shared latent optimization and an asymmetric regularization. iii) Second stage
amortization for single-shot class generalization. iv) The first effective method for disentanglement
between 10k classes. v) A clustering based extension for style disentanglement.

1.1 RELATED WORK

Our work deals with class-supervised disentanglement. Several works based on variational autoen-
coders (VAEs) (Kingma & Welling, 2014) have attempted disentanglement with no supervision e.g.
β-VAE (Higgins et al., 2017) and factor-VAE (Kim & Mnih, 2018). In an extensive comparative
study, Locatello et al. (2019) show that none of the compared methods have been successful on all
the datasets examined. It therefore seems likely that some supervision is required for effective dis-
entanglement. Many works (including ours) provide only class supervision e.g. when the identity of
a face is given but not its transitory attributes. The disentanglement between the factors of variation
is enforced by adversarial constraints (Mathieu et al., 2016; Szabó et al., 2018; Denton & Birod-
kar, 2017) or by non-adversarial constraints e.g. cycle (Harsh Jha et al., 2018) or variational group
codes (Bouchacourt et al., 2018). Differently from the above works, we learn per-class codes rather
than per-image class. Similar design choice were taken by cGAN and cVAE, but for the application
of image generation rather than disentanglement. cGAN and cVAE require the latent space to be
Gaussian, which hurts disentanglement performance.

Many disentanglement methods use adversarial training (Goodfellow et al., 2014). Success was
achieved on image generation (Brock et al., 2019), image mapping (Isola et al., 2017) and domain
alignment (Liu et al., 2017). Adversarial methods are notoriously hard to optimize, require very
careful architecture and hyper-parameters tuning due to their min-max nature. To overcome these
issues, non-adversarial methods have been proposed to achieve better results on tasks previously
dominated by adversarial networks e.g. image synthesis (Bojanowski et al., 2018; Razavi et al.,
2019), image-to-image mapping (Hoshen & Wolf, 2018) and word translation (Mukherjee et al.,
2018). In this paper, we present a non-adversarial method achieving state-of-the-art performance on
disentanglement.

2 CLASS AND CONTENT DISENTANGLEMENT

Assume that we are given a collection of n images x1, x2, ..., xn ∈ X . For each image xi, we are
given a class label yi ∈ [k]. We assume that every image belongs to a single class, although this
requirement can be relaxed. Note that many images may share the same class label (e.g. faces of
the same person at different poses). We denote the embedding of a given class y as ey . We assume
that the images can be disentangled into representations in two latent spaces Y and C. Therefore,
our objective it to find a class representation eyi ∈ Y and a content representations ci ∈ C for each
image xi. Let us define the information that we wish each representation to contain. As there is
some inconsistency in the notation used in the style-content, pose-content and domain translation
literature, we will define our terms precisely.
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The image class representation eyi , needs to include all information that is shared by all images shar-
ing the same class e.g. if classes correspond to different facial identities, then the class representation
must include all the time-invariant facial information. The content representation ci includes all the
information that is unchanged if the image is transferred between classes. This information must
be independent of the class-information. E.g for faces, content corresponds to time-varying facial
information such as head pose and expression. Besides the class and content representations, im-
ages may contain other image-specific information, which is not represented by the class-label and
is not expected to be transferred across classes. The difference between content and style is seman-
tic and requires careful design. In the facial identity example the style may include noise, lighting
conditions or nuisance background features. We denote the style representation as si ∈ S.

We define a generator G, a neural network parameterized by θ, which transforms the disentangled
representations into an image. Given our definitions above each image can be modeled by:

xi = Gθ(eyi , si, ci) xi ∈ X eyi ∈ Y si ∈ S ci ∈ C (1)

The content must be independent of the class and style, however the style may be class dependent.
E.g. if the classes are shoe images and edge images, styles within the shoes class may include
particular colors and textures, which are typical of shoes but not of edge images. More formally, the
mutual information between c and ey , s should be zero:

I(c; ey) = 0 I(c; s) = 0 (2)
In many cases, it can be assumed that inter-class variation is significantly larger that intra-class
variation. Many approaches were devised to learn disentangled representations for this scenario, in
which si contains both class and style information of an image xi. We will critically review several
representative methods.

Adversarial Methods: One way to ensure the independence between the content and class/style
representations is using adversarial discriminators. We will summarize the ideas proposed in DrNet
(Denton & Birodkar, 2017) as this approach has the best performance of all adversarial methods.
These techniques do not learn a class representation explicitly but instead strongly constrain a style
encoding. The model of this method is described by:

xi = Gθ(0, si, ci) (3)
They attempt to ensure the similarity of styles of images in the class using a similarity constraint
Lsimilarity = ‖si − sj‖2 if yi = yj . To ensure independence between s and c, an adversarial
discriminator Dy(ci, cj) is trained to discover if two images are from the same class. If the content
representation is truly disentangled, then no class information is available in the content code and the
discriminator accuracy will not be greater than a random chance. This approach has two weaknesses:
i) It does not directly prevent content information from leaking into the style representation (but only
through a weak pairwise constraint). ii) Adversarial methods are notoriously hard to optimize and
require careful hyper-parameter tuning due to the challenging saddle point optimization problem.

Non-Adversarial Methods: Due to the difficulty of adversarial training, non-adversarial methods
have attracted attention. We will review the ideas in Multi-Level VAE (ML-VAE) (Bouchacourt
et al., 2018), which performs the best of the non-adversarial methods and is most related to ours.
ML-VAE also does not learn a class-representation, but a style representation si via amortized infer-
ence. However, in order to limit the content information which flows to the generator from the style
code, it relies on the presence of samples from the same class in a mini-batch during training and
accumulates their style encodings using a product of normal densities before feeding the generator
(the entire process is described in the original paper). To summarize, ML-VAE approximates the
style representation s̄M of a group of observations M from the same class, and generates the image:

xi = Gθ (0, s̄Mi , ci) Mi = {j|yi = yj} (4)

It limits the information in the content representation ci by constraining its distribution using KL-
divergence with the standard normal distribution. This approach suffers from significant drawbacks:
i) It uses grouped amortized encoding for inferring s̄M . As the size of a mini-batch is limited,
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this either limits the group accumulation to be over a few samples which is biased, or limits batch-
diversity by only including a few classes which hurts optimization. ii) The KL-divergence does not
sufficiently constrain the information in ci i.e. in practice class information is found in ci.

3 LORD: LATENT OPTIMIZATION FOR REPRESENTATION
DISENTANGLEMENT

In Sec. 2, we analyzed the task of disentanglement between class and content. Our analysis high-
lighted the issues faced by current state-of-the-art methods. In this section, we introduce a novel
method motivated by the insights from the previous section.

3.1 LATENT OPTIMIZATION FOR CLASS SUPERVISION

We make explicit the assumption that inter-class variation is significantly larger than intra-class
variation. This allows us to model images as a combination of class and content codes:

xi = Gθ(eyi , 0, ci) (5)

Shared Latent Optimization: We model the class representation as an embedding ey that is shared
between all images belonging to the same class {xi|yi = y}. Instead of using amortized inference
(learning a mapping from the image to the class codes using an encoder), we optimize over the class
embeddings directly using latent optimization. This has several important benefits: i) As the code
is shared exactly between all images belonging to the same class (each having different content),
it is impossible to include any content information in the class code. ii) As we learn per-class
representations directly rather than using previous techniques as group averaging, each mini-batch
can contain images randomly sampled from all classes allowing maximal diversity.

Regarding the content representation, we can optimize over per-sample content embeddings directly
using latent optimization or in an amortized fashion using an image to content encoder ci = Ec(xi).
The benefits of each approach are elaborated upon in the experimental section.

Asymmetric Noise Regularization: Latent optimization over the class embeddings ensures that no
content information is present in the class representation. To ensure that class information does not
leak into the content representation, we regularize the content code to enforce minimally of infor-
mation. Previous approaches attempted to minimize content information by setting a bottleneck of a
small content code or by matching the content distribution to a prior normal distribution using KL-
divergence. Using a small noiseless bottleneck, does not however reduce information significantly.
A continuous variable may in fact store an infinite amount of information (although the amount of
information the generator may extract is limited by other factors). Regularizing with KL-divergence
(as done by previous works) often leads to a partial posterior collapse i.e. the encoder learns nearly
all means and standard deviations default to 0 and 1 respectively, satisfying a perfect standard nor-
mal distribution. For a few components, the encoder learns large means and very small standard
deviations. The KL-divergence therefore learns behavior similar to a small-size bottleneck. We
present experimental evidence in the Appendix A.3.

In our approach, we regularize the content code with an additive Gaussian noise and an activation
decay penalty. Our objective function becomes:

L =

n∑
i=1

‖Gθ(eyi , 0, ci + zi)− xi‖+ λ‖ci‖2 zi ∼ N (0, σ2I) (6)

The first loss terms uses a VGG perceptual loss as implemented by Hoshen & Malik (2019). Un-
less stated otherwise, we optimize over class and content codes (eyi and ci) directly using latent
optimization. All latent codes and the parameters of the generator are learned end-to-end using
stochastic gradient descent:

{e∗1, .., e∗k, c∗1.., c∗n, θ∗} = argmin
e,c,θ
L (7)
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Figure 1: A sketch of the first stage: all class and content embeddings and the generator are jointly
optimized. All images of the same class share a single class embedding. The content embeddings
are regularized by a gaussian noise. By the end of this stage, the latent space of the training set is
disentangled. Note that the second stage is not shown.

3.2 AMORTIZATION FOR ONE-SHOT INFERENCE

Latent optimization, which is used effectively for training, requires optimization for every image
(including at inference time). In the training set, a class embedding is shared across multiple images,
which prevents the embedding from including content information. However, at inference time, a
single image from an unknown class is observed. Optimizing over the latent codes for a single
image leads to overfitting which results in entangled representations. Moreover, it requires iterative
test-time inference since it does not perform amortized inference.

To this end, we introduce a second stage which learns class and content encoders that directly in-
fer class eyi and content ci representations from a single image xi. The second stage effectively
amortizes the results of the first stage and generalizes well to unseen classes and images. We train
encoders Ey : X −→ Y and Ec : X −→ C, which take as input an image xi and output its class and
content embeddings that were learned by our method in the first stage. We also use a reconstruction
loss, to ensure the representations learned in the second stage must reconstruct the original image
xi. The optimization objective is presented in Eq. 8. The optimization is over the parameters of
encoders Ey and Ec (which are randomly initialized) and the parameters of the generator G (which
are initialized from the first stage). Note that the given eyi and ci are the representations we have
learned during the previous stage.

LE =

n∑
i=1

‖Gθ(Ey(xi), 0, Ec(xi))− xi‖+ α1 · ‖Ey(xi)− eyi‖2 + α2 · ‖Ec(xi)− ci‖2 (8)

After training, we can preserve the class of a new test image x̂1 and transfer over the content from
another image x̂2 by decomposing the images into their disentangled class and content representa-
tions and regenerating them as follows:

x̂1←−2 = Gθ(Ey(x̂1), 0, Ec(x̂2)) (9)

4 EXPERIMENTS

Our method is evaluated against SOTA techniques for class-supervised disentanglement. We do not
compare to methods for fully-unsupervised disentanglement as the results are not directly compara-
ble and their performance is inferior on the following benchmarks due to lower level of supervision.
All the implementation details are provided in the Appendix A.1.

Datasets: We evaluate the performance of our method and the baselines on several datasets (each
with the appropriate class labels): Cars3D (car model as class label, azimuth and elevation as con-

5



Under review as a conference paper at ICLR 2020

ML-VAE DrNet Ours

Figure 2: Comparison between our method and baselines on Cars3D (top) and SmallNorb (bottom).

tent), SmallNorb (object type× lighting× elevation as class labels, azimuth as content), SmallNorb-
Poses (object type × lighting as class labels, azimuth and elevation as content), CelebA (person
identity as class label, other unlabeled transitory facial attributes e.g. head pose and expression as
content), KTH (person identity as class label, other unlabeled transitory attributes e.g skeleton po-
sition as content), RaFD (facial expression as class label, rest as varied content). A more detailed
description of each dataset and configuration can be found in the Appendix A.2.

Baselines: We compare our method against SOTA methods for class-supervised disentanglement.
DrNet (Denton & Birodkar, 2017) and Szabó et al. (2018) encourage disentanglement by adversar-
ial constraints, and ML-VAE (Bouchacourt et al., 2018) and Cycle-VAE (Harsh Jha et al., 2018)
use variants of VAE equipped with grouped class accumulation and cycle constraints to discour-
age degenerate solutions. We also compare against StarGAN (Choi et al., 2018) in Multi-Domain
translation. For fairness, we evaluate each baseline with L1 and perceptual loss and report the best.

Quantitative Experiments:

Content transfer experiments: To test the quality of disentanglement, we measure the quality of
content transfer in terms of perceptual similarity by LPIPS (Zhang et al., 2018). We use the content
labels available in the Cars3D and SmallNorb datasets as ground truth for content transfer. For
given test images xi and xj , we measure the similarity between x1←−2 = Gθ(Ey(xi), 0, Ec(xj))
and another image from the same class of xi matching the same content of xj . For CelebA, given
two images of the same person, we infer the class (identity) representation from the first image
and aim at reconstructing the second by extracting the content representation from an image of a
different identity which has the most similar pose (nearest neighbour in the 68 facial-landmarks
space). Results are reported in Tab. 1. It can be seen that we strongly outperform all the baselines.

Classification experiments: To assess the disentanglement of our learned representations, we follow
the protocol in Harsh Jha et al. (2018) and train a classifier to classify class labels from content
codes and vice versa. Results can be seen in Tab. 2. On all datasets, our model achieves near perfect
disentanglement as the classifier could barely guess class labels from content codes by a random
chance (same for the other direction). All the baselines fail to zero out the mutual information
between the two representations. To conclude, our method is able to learn the most disentangled
features without introducing adversarial constraints. For CelebA, in order to test if the content of an
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Figure 3: Comparison between our method and baselines on KTH (top) and CelebA (bottom).

image is predictable from the class code we train a linear regression model to regress the position of
68 facial landmarks. It can be seen that the linear regression results in the highest error on our class
representations, indicating the highest degree of disentanglement of our method. It should be noted
that all methods could classify class labels from class codes and content labels from content codes
very accurately (not shown).

Facial expression transfer experiment: We compare our method against StarGAN in the task of
Multi-Domain translation. We follow the protocol in Choi et al. (2018) and compute the classifica-
tion error of a facial expression classifier (trained on real images from RaFD) on synthesized images.
We train both image translation models using the same training set and perform image translation
on the same, unseen test set. As can be seen in Tab. 4, our model achieves lower classification error
than StarGAN, indicating that our model produces more realistic facial expressions without using
adversarial training.

Qualitative Experiments: We visually evaluate the results of our method against DrNet (strongest
adversarial baseline) and ML-VAE (strongest non-adversarial baseline) in Fig. 2 and 3. In each
experiment, we visualize switching between class (left column) and content (top row) codes for
each pair within a set of 5 test images. On Cars3D, our method achieves excellent content transfer
while keeping the class fixed. DrNet is mostly able to transfer the content, but it does not keep the car
model fixed. ML-VAE results are of lower fidelity. On SmallNorb, our method works well, whereas
the baseline methods struggle with preserving the identity of the object in some rotations (e.g bottom
row). On KTH both our method as well as DrNet perform well, although our method achieves more
accurate transfer (e.g. last image in the top row). ML-VAE fails to transfer the skeleton on some
identities (e.g. last row). On CelebA, the baselines generally transfer head pose but do not preserve
the person identity. Our method achieves better pose transfer than both baselines, and is able to
maintain the identity.

Non-adversarial unsupervised domain translation: We tackle the problem of domain mapping, in
which classes (domains) exhibit in-class variations by introducing a preliminary step of clustering
in-class styles (variations) into separate classes. For example, in the task of translating edge images
into shoe images and vice-versa, we first form style clusters by applying k-means on style features
extracted from first layer of a pretrained VGG model (Li et al., 2017). We then apply LORD treating
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Table 1: Content transfer reconstruction error (LPIPS ↓)
Cars3D SmallNorb SmallNorb-Poses CelebA

Szabó et al. (2018) 0.137 0.417 0.214 0.331
Cycle-VAE (Harsh Jha et al., 2018) 0.141 0.197 0.202 0.228
ML-VAE (Bouchacourt et al., 2018) 0.132 0.210 0.173 0.222
DrNet (Denton & Birodkar, 2017) 0.095 0.166 0.152 0.229
Ours 0.078 0.117 0.106 0.197

Table 2: Classification accuracy of class labels from content codes (y ←− c) and of content labels
from class codes (y −→ c) (lower indicates better disentanglement). Note that the last right column
presents the error of face landmark regression from the class codes (higher is better).

Cars3D SmallNorb CelebA
y ←− c y −→ c y ←− c y −→ c y ←− c R(y) −→ c

Szabó et al. (2018) 0.91 0.82 0.36 0.37 0.09 3.59
Cycle-VAE (Harsh Jha et al., 2018) 0.08 0.80 0.27 0.79 0.14 3.14
ML-VAE (Bouchacourt et al., 2018) 0.77 0.96 0.90 0.93 0.17 3.98
DrNet (Denton & Birodkar, 2017) 0.26 0.68 < 0.01 0.78 0.03 3.23
Ours < 0.01 0.01 < 0.01 0.05 < 0.01 4.75
Random chance < 0.01 0.01 < 0.01 0.05 < 0.01 -

style clustering as class labels on the Edges2Shoes dataset. Examples of translation diversity along
with style-guided edges to shoe mapping are shown in Fig. 5.

5 ABLATION ANALYSIS

We perform a careful ablation analysis on the components on our method, a summary of this study
is presented in Tab. 3. Shared latent optimization vs. amortized inference: We train amortized
variants of our model with feed-forward class and content encoders instead of optimizing over the
latent codes directly. Class representations of samples from the same class are averaged within a
mini-batch during training. It can be clearly observed from the results that class representations
which are learned via amortized inference leak information about the actual content of each sample,
resulting in entangled representations. Moreover, we train semi-amortized variants of our model
which leverages latent optimization for learning shared class representations, but uses a feed-forward
encoder to infer the content code of an image. It can be noticed that this variant achieves sub-optimal
performance as it leaks some class information into the content representation. We hypothesize that
this variant is inferior to our fully unamortized model as a result of an inductive bias conferred
by latent optimization. In both the amortized and semi-amortized models, we find that the KL-
divergence fails to regularize the information leakage from the class representation into the content
representations. A visualization of the partial posterior collapse along with a discussion can be found
in the Appendix A.3. We finally demonstrate the importance of our second stage by assessing the
performance after the first stage only. This can be done by optimizing over the latent codes of a new

Table 3: An ablation study with several variants of LORD on Cars3D.
Transfer error (LPIPS) ↓ Classification accuracy ↓

y ←− c y −→ c

Ours - amortized (w/ KL-divergence) 0.094 0.95 0.96
Ours - amortized (w/ Asymmetric noise) 0.082 0.92 0.97
Ours - semi amortized (w/ KL-divergence) 0.095 0.93 0.01
Ours - semi amortized (w/ Asymmetric noise) 0.079 0.22 0.01
Ours (w/o second stage) 0.175 0.11 0.50
Ours (w/o regularization) 0.095 0.10 0.01
Ours 0.078 < 0.01 0.01
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Table 4: Classification error (%)↓ on transferred facial expressions from RaFD.
StarGAN (Choi et al., 2018) Ours Real Images
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Figure 4: A qualitative comparison between our method (upper row) and StarGAN (bottom row) in
facial expression transfer on RaFD. See Appendix A.4 for more results.

test image while keeping the rest of the model frozen. As can be seen, this approach suffers from
low performance in all metrics. The effect of the asymmetric noise regularization can be observed
from the inferior performance of training our model without regularization.

6 DISCUSSION

Non-Adversarial training: Differently from most other previous works, we do not use adversarial
training to enforce disentanglement between the class and content. Non-adversarial training has
significant advantages in the ease of optimization. Interestingly, we achieve state-of-the-art perfor-
mance without any adversarial constraints. We believe this should motivate researchers to further
develop non-adversarial approaches.

Perceptual loss: For training our model, we use a perceptual loss, originally trained on the imagenet
dataset. This is not extra supervision, as the imagenet dataset is not strongly related to any of
the tested datasets. In our experiments we found the perceptual loss was helpful to other method
that did not use GANs on the output image (even if they used GANs on the intermediate features
representations e.g. (Denton & Birodkar, 2017)). In line with other work Hoshen & Malik (2019),
we found that perceptual losses are very helpful for latent optimization.

7 CONCLUSION

We present an effective approach for class-supervised image disentanglement, using shared latent
optimization, an asymmetric regularization and a second amortization stage for single-shot gen-
eralization. Our approach achieves state-of-the-art performance compared to both adversarial and
non-adversarial disentanglement methods. We finally show how style clustering can extend our
method for tackling domain translation as an inter-class disentanglement with promising results.

Figure 5: Examples of the diversity in translating edges to shoes (upper row) and style-guided
translation (bottom row). Triplet order in bottom row (left to right): edges, style, translation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The architecture of the generator consists of 3 fully-connected layers followed by 6 convolutional
layers (the first 4 of them are preceded by an upsampling layer and followed by AdaIN normaliza-
tion). We set the size of the content latent code to 128 and the size of the class code to 256 in all
our experiments. We regularize the content embeddings with an additive gaussian noise with µ = 0
and σ = 1 and an activation decay with λ = 0.001. We perform the latent optimization using
SGD utilizing the ADAM method for 200 epochs, with learning rate of 0.0001 for the generator and
0.001 for the latent codes. For the second stage, the class and content encoders are CNNs with 5
convolutional layers and 3 fully-connected layers.

A.2 DATASETS

Cars3D (Reed et al., 2015): This dataset consists of 183 car CAD models, each rendered from equi-
spaced 24 azimuth directions and 4 elevations. We define the car model as the class and the rest as
content. We use 163 car models for training and the other 20 are held out for testing.

SmallNorb (LeCun et al., 2004): This dataset contains images of 50 toys belonging to 5 generic
categories: four-legged animals, human figures, airplanes, trucks, and cars. The objects were imaged
by two cameras under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18
azimuths (0 to 340 every 20 degrees). We use this dataset in two configurations: i) SmallNorb: 25
separate identities for training and 25 for testing, treating lighting and elevations as part of the object
class, and azimuth as the varied content. This configuration is used for evaluating the generalization
capability of the disentanglement methods from a very limited set of seen classes. ii) SmallNorb-
Poses: Using all the classes for training, holding out 10% of the images for testing. In this case we
treat the elevation as part of the varied content as well.

CelebA (Liu et al., 2015): CelebA contains 202,599 facial images of 10,177 celebrities. The faces
are aligned and cropped to contain only the facial region. We designate the person identity as the
class, and transitory facial attributes such as head pose and expression as content. 9,177 classes are
used for training and the other 1,000 are held out for testing.

KTH (Laptev et al., 2004): KTH contains videos of 25 people, performing 6 different activities in
different settings. We designate person identity as class, and transitory attributes (predominantly
skeleton position) as content. Due to the very limited amount of subjects, we use all the identities
for training, holding out 10% of the images for testing.
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Figure 6: Evidence for a partial posterior collapse with KL-divergence. 126 out of 128 components
of the content code collapse to match a perfect standard normal distribution with zero mean and a
unit standard deviation. The remaining two components sustain much higher mean and much lower
standard deviation. This prevents the regularization from acting as a tight bottleneck.

RaFD (Langner et al., 2010): RaFD consists of 4,824 images collected from 67 participants making
eight facial expressions in three different gaze directions, which are captured from three different
angles. We treat the facial expression as class and rest as varied content, holding out 10% of the
images for testing.

Edges2Shoes (Yu & Grauman, 2014): A collection of 50,000 shoe images and their edge maps.

In all the experiments, images are resized to 64x64 resolution to fit the same architecture in LORD
and the baselines. For evaluation on RaFD we follow the protocol in StarGAN (Choi et al., 2018)
and crop the images to 128x128.

A.3 KL-DIVERGENCE POSTERIOR COLLAPSE

We provide evidence for the partial posterior collapse caused when regularizing the content codes
with KL-divergence. Fig. 6 shows the mean and standard deviations of each of the 128 components
of the content code (averaged over all samples in the dataset) in a model trained on SmallNorb. It
can be seen that 126 out of 128 components of the content code collapse to match a perfect standard
normal distribution, while in the remaining 2 components the standard deviation is reduced dramat-
ically along with a substantial increase in the mean. This phenomenon implies that regularizing
the distribution of the content codes with KL-divergence does not serve as a strong bottleneck for
preventing the class information from leaking into the content codes. The asymmetric regularization
introduced in our method is a stronger constraint which results in better disentanglement.

A.4 QUALITATIVE RESULTS

We provide more qualitative results in Fig. 7, 8, 9, 10 and 11.

A.5 STYLE CLUSTERING SAMPLES

We provide samples in Fig. 12 of clustering shoe images with k-means (k = 100) using style features
(Li et al., 2017) extracted from a pretrained VGG model.
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Figure 7: More qualitative results of our method in transferring content between classes on CelebA.
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Figure 8: More qualitative results of our method in transferring content between classes on CelebA.
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Figure 9: More qualitative results of our method in transferring content between classes on Cars3D.
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Figure 10: More qualitative results of our method in transferring content between classes on Small-
Norb.
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Input Angry Contempt. Disguste Fearful Happy Sad Surprised

Figure 11: More qualitative results of our method in facial expression transfer on RaFD.

Figure 12: Random samples from clusters of shoe images formed by k-means on style features
extracted from a pretrained VGG model.
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