
Under review as a conference paper at ICLR 2020

NEURAL ARCHITECTURE SEARCH IN EMBEDDING
SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The neural architecture search (NAS) algorithm with reinforcement learning can
be a powerful and novel framework for the automatic discovering process of neu-
ral architectures. However, its application is restricted by noncontinuous and high-
dimensional search spaces, which result in difficulty in optimization. To resolve
these problems, we proposed NAS in embedding space (NASES), which is a novel
framework. Unlike other NAS with reinforcement learning approaches that search
over a discrete and high-dimensional architecture space, this approach enables re-
inforcement learning to search in an embedding space by using architecture en-
coders and decoders. The current experiment demonstrated that the performance
of the final architecture network using the NASES procedure is comparable with
that of other popular NAS approaches for the image classification task on CIFAR-
10. The beneficial-performance and effectiveness of NASES was impressive even
when only the architecture-embedding searching and pre-training controller were
applied without other NAS tricks such as parameter sharing. Specifically, con-
siderable reduction in searches was achieved by reducing the average number of
searching to<100 architectures to achieve a final architecture for the NASES pro-
cedure.

1 INTRODUCTION

Deep neural networks have enabled advances in image recognition, sequential pattern recognition,
recommendation systems, and various tasks in the past decades. However, selecting a suitable neu-
ral architecture is frequently arduous because of the classical and new neural architectures emerging
daily. In general, manual design of network architectures according to the cases is achievable. How-
ever, hyperparameter tuning and architecture engineering through manual selection requires con-
siderable time. Furthermore, manually designing a neural network architecture requires substantial
experience in deep learning.

Given the aforementioned reasons, neural architecture search (NAS), an automated architecture en-
gineering, has been successful in the past years. The NAS algorithm is divided into three dimen-
sions, namely search space, search strategy, and performance estimation strategy (Elsken et al.,
2019). Outstanding results have been achieved using NAS with the reinforcement learning search
strategy (Zoph & Le, 2017). Here, a recurrent network was used to generate a string to form a
child network. However, such a type of network exhibits two problems: noncontinuous and high-
dimensional search space. The frequent large strings of action from the recurrent network and the
discrete space result in difficulty in optimization. The critical contribution of this study is the im-
provement of the dimension and quality of the search space that could provide a more efficient
framework to solve the two problems of searching architectures.

If a vector that can represent network architecture without discrete values is determined, then the
noncontinuous aforementioned disadvantages can be addressed. We proposed the NAS in embed-
ding space (NASES) method, which involves mapping origin architecture to architecture-embedding
by using an architecture encoder. The advantage of embedding space includes the lower-dimensional
and continues space, it considerably alleviates the difficulty in the optimization problem of the NAS
procedure with reinforcement learning. To learn and search on the embedding space, we developed
a mechanism to generate architecture encoder and decoder to promote origin architecture communi-
cation with the embedding space, and the autoencoder network was used in the mechanism (Hinton

1

Under review as a conference paper at ICLR 2020

& Salakhutdinov, 2006). The architecture simulator simulates the origin architecture space, which
assists the real architecture encoder learning. The decoder realizes the relationship between ori-
gin architecture and architecture-embedding, which maps the architecture-embedding to the origin
architecture.

The NASES procedure was implemented in two stages. We obtained a pretraining architecture
decoder and a pretraining architecture simulator in the first stage and provided the compression rate
between the embedding size and testing loss. In the second stage, we used the NASES procedure
for image classification on CIFAR-10 by using the network pretrained in the first stage. The results
of the experiment were efficient and indicated that NASES was highly efficient and considerably
reduced the number of searching architectures to <100 in <12 GPU hours. Thus, the results were
comparable with that of other popular NAS methods.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING WITH ACTION EMBEDDING

Reinforcement learning is a general approach that can be applied broadly to various areas. How-
ever, the large and discrete action space causes problems in function approximation. The majority
of studies have focused on two approaches, one approach factorizes the action space into binary
subspaces (Pazis & Parr, 2011; Dulac-Arnold et al., 2011). The other approach involves embedding
discrete actions into a continuous action, determining optimal actions in the continuous space, and
selecting the nearest discrete action to reduce the scaling of action sizes (Dulac-Arnold et al., 2015;
Hasselt & Wiering, 2009).

2.2 SEARCH STRATEGY WITH REINFORCEMENT LEARNING

Our search strategy is based on reinforcement learning. Zoph & Le (2017) provided a novel NAS
framework, which incorporated reinforcement learning and applied it to two agents of the child
network and the controller of the recurrent network. The child network generated neural architecture
that can be considered the action of the controller network. Unlike the use of policy gradient by Zoph
& Le (2017), Williamsu (1992), and Baker et al. (2016) used q-learning to update the weight of the
network.

2.3 NAS WITH CONTINUES VECTOR

Most NAS procedures use a discrete search space. Unlike other approaches, such as the learning over
discrete and nondifferentiable search space, Liu et al. (2018) proposed an approach of differentiable
architecture search (DARTS), which was based on the continuous relaxation of the architecture
representation. On the basis of DARTS, Hundt et al. (2019) proposed sharp DARTS, which is a
more general, balanced, and consistent design. The closest concept to NASES is the approach
proposed by Luo et al. (2018) in which an encoder and a decoder was to map neural architectures in
a continuous space on gradient-based optimization and a predictor was used to achieve embedding
accuracy.

3 METHODS

In this section, to elucidate the NASES procedure, we followed the aforementioned three dimen-
sions: search strategy, search space, and performance estimation strategy.

3.1 SEARCH STRATEGY

The search strategy is a search method for fast and accurate exploration of the space of neural
architectures and involves techniques such as reinforcement learning, evolutionary algorithm, and
gradient-based method. These are popular strategies in NAS.

In the NAS with reinforcement learning, which is generally designed with two components of the
controller network and child network (Figure 1), the controller network is usually used to control the

2

Under review as a conference paper at ICLR 2020

child network architecture and generates string and the child network construct neural architecture
by using the output of the controller in each NAS iteration. The controller network calculates the
policy gradient to update the network by validating the performance of child network. Thus, severe
penalty is imposed when performance is low. The controller that is constructed using a multilayer
perceptron rather than the recurrent neural layer, generates such continuous value, rather than a
string, in the NASES. This is discussed in the next subsection.

Figure 1: Overview of NAS with reinforcement learning. The child network receives information
from the controller and generates a network architecture to evaluate date. The controller network
receives a reward from the evaluation of the child network for updating network parameters.

3.2 SEARCH SPACE

The main contributions of NASES is in the search space domain, which resolves the two afore-
mentioned problems of noncontinuous and high-dimensional space in reinforcement learning; these
problems lead to difficult optimization. NASES is similar to the general NAS procedure, which
also includes the child network and controller network. The optimization of maximize accuracy
is also used as a policy gradient method. However, our method differed from the general NAS
procedure; first, we developed an architecture encoder as the controller network to control the archi-
tecture of the child network and projected origin architecture into architecture-embedding. Second,
we devised the architecture decoder network, which decodes architecture-embedding from the ar-
chitecture controller network to the origin architecture to ensure the child network can understand
and generate network by using architecture-embedding (see Figure 2). That is, to alleviate these
problems, the architecture decoder functions as a translator to translate low-dimension embedding
into high-dimension vector for smooth childcontroller network communication. Furthermore, the
search space was bounded using micro search in this study. Thus, we did not apply the cell-based
trick of hierarchical representation because we attempted to search neural network on the complete
architecture and not only on the cell.

3.2.1 THREE PRINCIPAL FUNCTIONS OF NASES.

The NASES, has three principal functions. This section describes the functions of the architecture
decoder, architecture simulator, and controller network.

Architecture Decoder To obtain architecture-embedding decoder, first we created an approximate
of virtual distribution transformation, which projected the low-dimension space into high-dimension
space. That is, we transformed architecture-embedding into origin architecture.

fθ : Rn → Rm

a = fθ(â)

where fθ is a decode function parameterized by θ,Rn is the architecture-embedding space,Rm is the
origin architecture space, a is the set of origin architecture, â is the set of architecture-embedding.
This function released the controller network architecture and could be projected on another space
not bounded on the origin architecture space. This function is efficient and provides distribution
transformers. To develop this approximator, an architecture simulator is required, which is discussed
in the next subsection.

3

Under review as a conference paper at ICLR 2020

Figure 2: Overview of NAS on the embedding space. We used three functions namely architecture
controller, architecture decoder, and architecture simulator, rather than the origin controller network
for searching the neural architecture. Architecture controller received the origin architecture and
generated architecture-embedding. Architecture decoder received the architecture-embedding and
generated the origin architecture. Architecture simulator received random distribution and generated
architecture-embedding.

Architecture Simulator An architecture simulator is an approach of the approximator of the vir-
tual distribution transformation; its purpose creation of a function that simulates distribution to
achieve architecture-embedding. Furthermore, the distribution of simulation is not limited to dis-
crete or continuous space.

sv : U → Rn

â = sv(U)

where sv is a function parametrized by v and U is a uniform distribution.

Obtaining the architecture encoder and architecture simulator To obtain the architecture en-
coder and simulator, we used the autoencoder network (Hinton & Salakhutdinov, 2006). The autoen-
coder network is a unsupervised algorithm for distribution transformation and dimension reduction.
The autoencoder generates a representation by using the reduced encoding closest to its original in-
put. Therefore, the architecture encoder and simulator were assembled in the autoencoder network.
We pretrained an autoencoder network before training the controller, in which input space and tar-
get space had the same distribution. We used uniform distribution. For convenient policy gradient
learning, the activation function of the middle layer used was sigmoid; which leads the output with
Bernoulli distribution.

Controller A controller controls the child neural architecture. The neural architecture and hyper-
parameters of the controller are copied from the architecture simulator. The input is the child state
of network, and the output is architecture-embedding with Bernoulli distribution.

gk : Rm → Rn

where gk is an encode function parameterized by k, Rn is the architecture-embedding space, Rm
is the origin architecture space, A is the set of origin architecture, and â is the set of architecture-
embedding. We did not retrain the controller on the NASES procedures again and only fine-tuned
weights. The controller network can explore the architecture-embedding if the weights are initial-
ized using the pretraining simulator of the autoencoder network because the pretraining simulator

4

Under review as a conference paper at ICLR 2020

can project uniform distribution into architecture-embedding. Another advantage is fast search-
ing because the controller network is not required to learn projecting uniform distribution into
architecture-embedding again and focuses on searching architectures. Moreover, we devised a new
reward function by using the accuracy of the child network in training and validation. The reward is
obtained only from the accuracy of the validation set of the past NAS with reinforcement learning.
In this study, the reward function is different from the general function, and it not only considers
accuracy on the validation set but also estimates generalization errors (Eq. 1).

Reward =(ACCval − (ACCtr −ACCval))3

=(2ACCval −ACCtr)3
(1)

3.2.2 CHILD MODEL

The child model receives continuous vectors from the controller and generates neural architecture
by using the pretrained decoder model. Here, we described the NASES mechanism for creating a
network architecture. We required four hyperparameters, namely number of filters, filter size, kernel
type, and connection coefficient, in a layer. More details are in Appendix A.

3.3 PERFORMANCE ESTIMATION STRATEGY

To reduce the computational burden, we used two approaches of obtaining lower fidelities to estimate
performance. First, the learning scheduler follows cosine annealing with lmax = 0.05, lmin = 0.001
and T0 = epochs (Loshchilov & Hutter, 2017). Second, each architecture search was run for 10
epochs on the search phrase, and final architecture is run for 700 epochs. The detailed is presented
in Alg 1.

Algorithm 1 Neural Architecture Search in Embedding Space
Require: uniform distribution U ; architecture simulator sv; architecture decoder fθ; controller g;

child network c number of optimization iterations L; number of epochs in training phase e1;
number of epochs in final phase e2;

1: sv and fθ were assembled in an autoencoder network
2: Train the autoencoder network and evaluate its performance by uniform distribution U .
3: The controller g weights initialized with architecture simulator pretrained weights v.
4: for l=1, ..., L do
5: Generate child network c by architecture a.
6: Train and evaluate data child network c in epochs e1 by training and validation set.
7: Compute reward r from train and validation performance.
8: Train controller network gv using reward r.
9: Project architecture a into architecture-embedding â by using the controller network gv .

10: Decode architecture-embedding â into architecture a by using the architecture decoder fθ.
11: end for
12: Train and evaluate on the child network with the highest reward in epoch e2 by training and

testing set.

4 EXPERIMENTS

We describe two stages of the experiment in this section. The first stage involves training an archi-
tecture decoder and architecture simulator network and selecting an appropriate compression ratio
of architecture-embedding. The second stage involves applying the result of first stage to discover
novel neural architectures for image classification on CIFAR-10 (Krizhevsky & Hinton, 2009) by
using NASES.

5

Under review as a conference paper at ICLR 2020

4.1 FIRST STAGE: PRETRAINING ARCHITECTURE DECODER AND SIMULATOR NETWORK

4.1.1 DATASET

In the first stage of NASES experiment, our goal was to map origin architecture to architecture-
embedding. We assembled the architecture simulator and decoder in an autoencoder network and
trained this autoencoder network instead of training the simulator and decoder. To mimic the origin
architecture space, we sampled 300000 as a training set data from uniform distribution and sampled
100000 as the testing set data. In this case, we sampled uniform distribution at the interval [0, 30].

4.1.2 TRAINING DETAILS

The optimization of the autoencoder network was achieved by using an Adam (Kingma & Ba, 2015)
optimizer with a learning rate of 0.00001. During the training of the autoencoder network, the
learning schedule is increased the batch size instead of decaying the learning rate (Smith et al.,
2018) and saved weights with the lowest test loss during testing. In the network architecture, the
policy gradient methods update the probability distribution of actions so that the controllers actions
with high expected reward exhibit a high probability for an observed state. Therefore, the activation
function is a sigmoid function used in the middle layer hidden of the autoencoder network, and it
leads the distribution of hidden output to Bernoulli distribution, suitable for computing the policy
gradient to update the controller network. Other details regarding the experimental procedures are
as follows: Three fully connected layers with the number units of 1000, 500, and 100 were used
for the simulator and decoder networks; the first layer exhibited the ReLu activation function, and
the second and third layers exhibited the tanh activation function. The architecture decoder network
exhibited the same neural architecture and hyperparameters setting as the architecture simulator
network. The loss function used a least square error.

4.1.3 RESULT

To understand the loss of information from the embedding space, we evaluated the compression
ratios of 0.83, 0.67, 0.5, 0.33, 0.17, 0.08, and 0.02 to examine the utility of compression. We set
an upper bound of testing loss as a baseline, because if the decoder is incapable of decoding on
architecture-embedding, the best strategy always is the predicted average value (average is 15 in this
case). The utility of compression ratio on different sizes of embedding by using the autoencoder
network is presented in Table 1. The testing loss represents the loss of information after compres-
sion by the autoencoder network, and the loss of information increases with the compression ratio.
Appendix B, Figure 3 illustrates the double-axis plot of the testing loss and embedding size (accord-
ing to Table 1). As illustrated in Appendix B, Figure 3, a definite trade-off exists between loss and
compression rate; high compression rate leads to high information loss. In this case, we suggested
a range of 20-30 as the appropriate embedding size by using the double-axis plot with cross-area of
testing loss curve and embedding size curve. In this range, the compression rate is more than half
and information loss is considerably low. For image classification (second experiment stage) we
followed the experiment results of the first stage, and the set the compression rate at 0.33. That is,
the origin size of 60 was projected into the embedding size of 20.

4.2 SECOND STAGE: IMAGE CLASSIFICATION ON CIFAR-10

4.2.1 DATASET

The second stage of the experiment is a multiclass classification for assigning a class to the image
object. The CIFAR-10 (Krizhevsky & Hinton, 2009) data set consists of 60000 color images of 32
32 RGB in 100 classes. Each class has 6000 images with 5000 training data and 1000 testing data.
Additionally, to achieve standardization and normalization, we applied only three standard data
augmentation techniques: (1) Subtracting the mean and then dividing the answer by the standard
deviation, which ensures that all variables have mean zero and standard deviation 1. (2) Centrally
padding on training set to 40 40 and randomly cropping images back to 32 32. (3) Randomly
flipping images horizontally.

6

Under review as a conference paper at ICLR 2020

Table 1: Performance of the autoencoder network. The left block represents the compression ratio.
The right block represents information loss on the training and testing set.

Origin Size Embedding Size Compression ratio Training Loss Testing Loss

60 1 0.02 71.78 72.58

60 5 0.08 59.82 63.37

60 10 0.17 53.38 57.52

60 20 0.33 40.79 46.15

60 30 0.5 30.53 34.77

60 40 0.67 19.14 22.66

60 50 0.83 7.54 10.76

60 60 1 1.74 2.23

4.2.2 SETTINGS

The spilled validation ratio was 0.9; we then randomly split 45000 and 5000 images for training
and validation, respectively, in the neural searching procedure. Finally, we used 50000 images
for training and 10000 images for testing when the NASES search procedure was complete. Each
architecture search procedure was run for 10 epochs on the search phase, and the final architecture
was run for 700 epochs.

The child network is described in the paragraph following the method section. The hyperparameters
setting of the child network considers ENAS (Pham et al., 2018) as a reference. It was trained
with Nesterov momentum, the momentum of 0.9 (Nesterov, 1983). The learning schedule followed
the learning rate decay with a cosine annealing for each batch (lmax = 0.05, lmin = 0.001, T0 =
epochs) (Loshchilov & Hutter, 2017), batch size of 128, weight decay of 1e-4. We initialize w
with He initialization(He et al., 2015) in the child network. We designed a 15-layer convolutional
architecture by using 60 hyperparameters (a layer for four hyperparameters contains: number of
filters, filer size, kernel type, and connection coefficient). The NASES mechanism provided effective
mechanism, and it only required applying 20 hyperparameters on embedding vector by using the
0.33 compression ratio. By following the controller network perspectives, we took the pretrained
parameters of an already trained model from the first phase experiment of the pretrained architecture
simulator. The controller hyperparameters setting and neural architecture followed the first stage of
the experiment.

According to the reward function engineering perspectives, Eq. 1 was used as our reward function;
this function not only considered accuracy of the validation set but also estimated the generalization
error. We stored the reward in a reward pool in each NASES iteration. Furthermore, we normalized
and updated the rewards of the reward pool at the end of each iteration. To prevent the dependency
of the final architecture on initial architectures, we ran random architectures ten times to collect
rewards without updating parameters of the controller network in the beginning. We sampled three
architecture examples from reward pool to update the controller network in each NASES iteration.
Furthermore, the epsilon-greedy approach (Watkins, 1989) occurred randomly with the probability
epsilon. Therefore, we have 10 % to generate architecture randomly to out of the reward pool too.

4.2.3 RESULT

We ran the NASES procedure five times by using different random seeds on a single Nvidia V100
GPU, and NASES required approximately 12 hours to determine the final architecture for a NASES
procedure. Furthermore, the average number of searching architectures to achieve final architecture
for the NASES procedure was <100, the number of searching architectures was reduced consider-
ably compared with past NAS approaches. To determine the performance of the architecture, we
evaluated the child network by using the final architecture network on the CIFAR-10 test dataset.

7

Under review as a conference paper at ICLR 2020

Table 2: Performance and GPU computing time on macro search space of the NAS approach for
class classification on CIFAR-10: First block represents the results of the final network. The second
and the last blocks represent the results of the final network for more filters to each layer.

Level Method GPUs Days Params Error

1 Macro NAS with Q-Learning (Zhong et al., 2018) 10 8-10 11.2m 6.92

1 SMASH (Brock et al., 2017) 1 1.5 16.0m 4.03

1 NAS (Zoph & Le, 2017) 800 21-28 7.1m 4.47

1 NASES 1 0.5 8m 4.07

2 Net Transformation (Cai et al., 2017) 5 2 19.7m. 5.70

2 ENAS (Pham et al., 2018) 1 0.32 21.3m 4.23

2 NASES + more filters1. 1 0.5 20.4m 3.93

3 NAS + more filters 800 21-28 37.4m 3.65

3 ENAS + more filters. 1 0.32 38.0m 3.87

3 NASES + more filters2 1 0.5 28.4m 3.71

Table 2 summarizes the performance of NASES and other NAS approaches by using the macro
search algorithms. This final architecture is presented in Appendix C, Figure 4.

In Table 2, the approaches have been into three levels based on the number of parameters. The first
block of Table 2 presents the performances of NAS approaches; the NASES final architecture that
achieves 4.07 error rate on the testing set uses only 8 million parameters, which is comparable with
other NAS approaches. For comparing more approaches and models, we added a number of filters
to each layer of the final architecture. The second block of Table 2 represents the performance of
NAS approaches when the number of parameters was approximately 20 million, and the NASES
final architecture can be improved to 3.93 error rate by adding 100 to the number of filters of each
layer. Finally, to evaluate the high parameter network, we added 150 to the number of filters of each
layer. Notably, the NASES final architecture that achieved 3.71 error rate only used 28.4 million
parameters, which was better than approximately 38 million parameters used by the ENAS (Pham
et al., 2018) and NAS (Zoph & Le, 2017). NASES required approximately half GPU day to discover
the final architecture. The beneficial-performance and effectiveness of NASES was impressive even
when only the architecture-embedding searching and pre-training controller were applied without
other NAS tricks such as sharing parameters (Pham et al., 2018).

5 CONCLUSION

NAS with reinforcement learning is a powerful and novel framework for the automatic discover-
ing process of neural architectures. Here, we designed a novel NAS framework, and this approach
alleviated the two problems of noncontinuous and high-dimensional search space of NAS with rein-
forcement learning. We named this NAS framework NASES, in which the controller can be searched
on embedding space by using the architecture decoder and architecture simulator. We achieved fa-
vorable results for image classification on CIFAR-10; the NASES exhibited efficient performance
and high effectiveness when the number of searching architecture was reduced to <100 architec-
tures. We proposed a simple method to estimate the compression ratio of architecture-embedding.

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. 2016.

8

Under review as a conference paper at ICLR 2020

Jonathon Shlens Barret Zoph, Vijay Vasudevan and Quoc V. Le. Learning transferable architectures
for scalable image recognition. 2018.

Andrew Brock, Theodore Lim, J.M. Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks. 2017.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Reinforcement learning for
architecture search by network transformation. 2017.

Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, and Patrick Gallinari. Fast reinforcement
learning with large action sets using error-correcting output codes for mdp factorization. 2011.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep rein-
forcement learning in large discrete action spaces. 2015.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. 2019.

Hado Van Hasselt and Marco A. Wiering. Using continuous action spaces to solve discrete problems.
2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. 2015.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
2006.

Andrew Hundt, Varun Jain, and Gregory D. Hager. sharpdarts: Faster and more accurate differen-
tiable architecture search. 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. 2015.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. 2017.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
2018.

Qiang Chen Min Lin and Shuicheng Yan. Network in network. 2013.

Yu. E. Nesterov. A method of solving a convex programming problem with convergence rate
o(1/k2). 1983.

Jason Pazis and Ronald Parr. Generalized value functions for large action sets. 2011.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. 2018.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning
rate, increase the batch size. 2018.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Ronald J. Williamsu. Simple statistical gradient-following algorithms for connectionist rein- force-
ment learning. 1992.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generatio. 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. 2017.

9

Under review as a conference paper at ICLR 2020

A THE CHILD MODEL DETAILS

A.1 THE OPERATIONS.

The 12 operations were provided to the controller by using two hyperparameters, namely filter
size and kernel type. The filter size represents the amount of neighbor information during the cur-
rent layer processing, and kernel type represents the components of the neural network, including
the convolution layer, depthwise-separable convolution layer, maximum pooling layer, and aver-
age pooling layer. The child network receives these continuous vectors, and we developed a rule
that transforms into discrete vectors. For example, in the kernel type, the rule is that ≤ 7 assigns
depthwise-separable convolution, >7 or ≤ 15 assigns convolution. For filter size, the rule is that ≤
10 assigns to the 3 × 3 filter size. According to this principle, the operations available for the child
network are convolution with filter sizes 3 × 3, 5 × 5, and 7 × 7; depthwise-separable convolution
with filter sizes 3× 3, 5× 5, and 7× 7; maximum pooling with filter sizes 3× 3, 5× 5, and 7× 7;
and average pooling with filter sizes 3 × 3, 5 × 5, and 7 × 7. In addition, each depthwise-separable
convolution was applied twice (Barret Zoph & Le, 2018).

A.2 SKIP CONNECTION.

The skip connections are essential connections that occur from the early layers to the later layers
through addition or straight up concatenation. The reasoning behind this skip connection is that
they exhibit an uninterrupted gradient flow from the first layer to the last layer, which tackles the
vanishing gradient problem. In this study, the hyperparameter of the connection coefficient assigned
the early layer to connect to last multiple layers with closer connection coefficient; these layers were
concatenated in the channel dimension at the end of the layer. Therefore, we created another rule,
and the layers are a connection when the connection coefficient is close to three; for example, the
layer one and two are a connection when their connection coefficient is between two and five.

A.3 THE ORDER OF THE BLOCKS IN EACH LAYER.

Performance was affected by the order of blocks in each layer. We applied the order of ReLu-conv-
batchnorm (Ioffe & Szegedy, 2015). Moreover, the kernel size of 1 × 1 convolution filters can
be applied to change the dimensionality in the filter space. We applied the order of ReLu-conv-
batchnorm to 1 × 1 kernel size convolution layers before the convolution layer, except for the first
layer.

A.4 GLOBAL AVERAGE POOLING.

We employed a trick into the NASES of the global average pooling (Min Lin & Yan, 2013) which
is an operation that calculates the average output of each feature map in the final convolution layer
for reducing the number of parameters from the full connection layer.

10

Under review as a conference paper at ICLR 2020

B DOUBLE-AXIS PLOT OF THE TESTING LOSS AND EMBEDDING SIZE

Figure 3: Double-axis diagram that illustrates the testing loss and embedding size, which offer
useful information for selecting an appropriate embedding size. Right axis: testing loss. Left axis:
embedding size.

C FINAL ARCHITECTURE

Figure 4: The NASES final architecture discovered on the macro search for image classification. It
is a 15-layer convolutional architecture by using 20 NASES hyperparameters.

11

	Introduction
	Related Work
	Reinforcement Learning with Action Embedding
	Search Strategy with Reinforcement Learning
	NAS with Continues Vector

	Methods
	Search strategy
	Search Space
	Three Principal Functions of NASES.
	Child Model

	Performance Estimation Strategy

	Experiments
	First Stage: Pretraining Architecture Decoder and Simulator Network
	Dataset
	Training Details
	Result

	Second Stage: Image Classification on CIFAR-10
	Dataset
	Settings
	Result

	Conclusion
	The Child Model details
	The Operations.
	Skip Connection.
	The Order of the Blocks in Each Layer.
	Global Average Pooling.

	Double-axis Plot of The Testing Loss and Embedding Size
	Final Architecture

