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ABSTRACT

In recent years, researchers have seen working on interpreting the insights of deep
networks in the pursuit of overcoming their opaqueness and so-called ‘black-box’
tag from them. In this work, we present a new visual interpretation technique that
finds out discriminative image locations contributing highly towards networks’
prediction. We select the most contributing set of neurons per layer and engineer
the forward pass operation to gradually reach to the important locations of the in-
put image. We explore the connectivity structure of the neuron and obtain support
from succeeding and preceding layer along with its evidence from current layer
to advocate for a neuron’s importance. While conducting this operation, we also
add priorities to the supports from neighboring layers, which, in practice, provides
a reliable way of selecting the discriminative set of neurons for the target layer.
We conduct both the objective and subjective evaluations to examine the perfor-
mance of our method in terms of model’s faithfulness and human-trust, where we
visualize its efficacy over other existing methods.

1 INTRODUCTION

With the rise of unprecedented performance of deep leaning methods in various computer vision
tasks over last few years, the network architecture also gets complex (Szegedy et al., 2015; He et al.,
2016) to preserve such diverse variations. Such complex architecture although facilitates with higher
recognition performance, but provides less understanding of the fact that ‘how it actually works!’.
As a result, people now and then tag it as a black-box model, raising the necessity of eradicating its
opaqueness while being more understandable and transparent for general use.

To understand the inner representations of deep networks, it is important to see how and what the
network learns in practice. One possible way is to look for the salient image regions that contribute
the most for the networks’ prediction. In this way, we not only get to know how a network is mak-
ing its prediction, but also we will have the idea which portion is guiding the network towards a
miss-prediction. In fact, with the use of such visualization, researchers can better interpret the in-
sights of CNN’s prediction. The straight-forward way that these techniques take is to finding out
discriminative image regions that supplement the label predictions, acting as the visual explana-
tions for the predicted label making us understand the class specific patterns learned by the models.
Majority of the work on this area utilize gradient information to visualize the salient regions con-
tributing towards predicting input label (Simonyan et al., 2013; Zeiler & Fergus, 2014; Springenberg
et al., 2014; Zhou et al., 2016; Selvaraju et al., 2017) , among which some are simply constrained
to specific network architecture while some other outputs low-resolution visualizations, limiting the
overall understandability of the method.

In this work, we present a visual interpretation technique that finds out the most discriminative image
locations contributing to the network prediction. For this, we select discriminative set of neurons per
layer and engineer the forward pass operation to gradually reach to the important locations of the
input image. To be specific, for a given network’s prediction, we start from the softmax layer to find
the discriminative neurons for each layer through a novel proposed way and gradually traceback to
the input image for the most important locations. While finding out such set of neurons, we explore
the connectivity structure of the neuron and obtain evidence support from current layer along with
supports from the neighboring layers, i.e., succeeding and preceding layer. While doing this, we also
provide priorities of the information obtained from each neighboring layer. In this way, we come up
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Figure 1: Input image and corresponding discriminative locations found by our method. Third
column shows the heatmap generated from the discriminative locations.

with a reliable approach of finding out the discriminative neurons per layer to be propagated for the
important image locations at the end. Our method is advantageous with a generic approach that can
be adopted to any network, where it can produce high-resolution pixel-wise localization of important
pixels. We conduct set of experiments to visualize the efficacy of proposed technique against other
existing methods, through both objective and subjective evaluations. One sampel visualization is
provided in Fig. 1.

2 RELATED WORKS

In recent years, there have been numerous efforts on interpreting the deep network in terms of vi-
sualizing the network’s performance. The dominant group of researches have been conducted on
the visualization based on gradient based approach. Simonyan et al. (2013) compute the sensitivity
of classification score in terms of the partial derivative of the classification score for a given class
with respect to the pixel value changes. Deconvolution-based works (Zeiler & Fergus, 2014) take
a similar approach to visualize the salient feature concepts across different layers. Guided back-
prop (Springenberg et al., 2014) is another method that utilizes the gradient by modifying them for
a better qualitative visual representation.

Class-specific activation maps (CAM) (Zhou et al., 2016) generate salient feature-maps by combin-
ing the intermediate feature maps before global average pooling layer. Although such techniques
provide better flexibility than the prior approaches in terms of interpreting the prediction, they are
disadvantageous with their architecture-specific design. Improvements are done over this method
by utilizing gradient information, as in (Selvaraju et al., 2017). Nevertheless, Selvaraju et al. (2017)
still use low-resolution maps which perhaps are disadvantageous for better interpretation.

We also observe group of work (Bach et al., 2015; Cholakkal et al., 2016; Robnik-Šikonja &
Kononenko, 2008; Zintgraf et al., 2017) taking relevance score for each feature with respect to a
class and estimate whether the prediction change in absence of that feature. Large changes in pre-
diction indicate the importance of the feature while small changes indicate the opposite. Some other
approaches (Cholakkal et al., 2016) take probabilistic approaches to find the contribution of each im-
age patch (or pixel) to the classification detailing their understanding. Zhang et al. (2018) computes
marginal winning probabilities for neurons at each layer, where distinct attention map is computed
as the sum of these probabilities across the feature maps.

Recently, Mopuri et al. (2018) proposes CNN-Fixations based method that selects important neu-
rons to trace the salient image region interpreting the network’s prediction. One important part
of (Mopuri et al., 2018) is to select the salient neurons for each layer, where authors suggest a naive
approach of looking at the best activation values. However, this approach only concentrates on the
current layers activation values to select the best set of neurons. Considering the connected structures
of each neuron to the other neurons from preceding and succeeding layers, we argue that informa-
tion from neighboring layers, e.g., the preceding and succeeding layers also contribute towards its
excitation. While selecting the important neuron, we consider information from succeeding, current
and preceding layer along with providing priorities to each layer information. In this way, we come
up with a more reliable way of selecting the salient neurons in order to be propagated towards the
salient image regions. As soon as we reach the input image, with the discriminative location, we
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Figure 2: Example of a fc-layer and conv layer is shown, where we find the discriminative neurons.
Purple neurons denote the set of important neurons for a layer. For a such neuron (purple with glow)
from the succeeding layer, we calculate score for a target neuron (green with glow). Supports from
the succeeding, preceding and current layers are denoted by corresponding Z notations. Details of
calculating those Z-values can be found in section 3.1.

generate heatmap by Gaussian blurring those neurons. We require no hyper-parameters or heuristics
in the entire process of back-tracking the evidence and our method can easily be adopted to any
network architecture.

3 METHODOLOGY

We describe the basic methodology of our approach in this section. The main goal is to identify the
discriminative image locations that contribute most for the CNN prediction, providing an explainable
interpretation of the CNN. Similar to the other recent works (Mopuri et al., 2018; Huber et al., 2019)
that select important neurons to trace-back the salient input pixels, we also engineer the forward-
pass operation to discover the discriminative salient image pixels. Such strategy typically starts
from the network’s prediction neuron and sequentially selects the most active set of neurons per
layer to get through to the input image. Considering only the activation values can perhaps be
considered as one of the naive ways of selecting the discriminative set of neurons for each layer,
as also observed in (Mopuri et al., 2018). Nevertheless, since the neurons are connected to the
preceding and succeeding layer, we argue that information from such neighboring layers is also
informative in selecting the best set of neurons per layer. Moreover, while utilizing information from
the neighboring layers, we assign learned weights to those layers which also specify the importance
of the neighboring layers in selecting such neurons.

3.1 FORMULATION

In this part, we describe the general methodology of our approach. We start with a neural network
with L layers. After a forwards pass is completed during the inference, we begin with the last
fc layer as the current layer, where the softmax layer is considered as the succeeding layer and
previous fc layer (if exists, otherwise other conv/pool layer) will be considered as the preceding
layer. Neurons with top n-probabilities from softmax layer are considered as the discriminative
neurons for that layer, for which we try to find a set of most contributing neurons for the last fc
layer (current layer). For selecting such set of discriminative neurons, we consider the sequential
connectivity structure of a network where the contribution of a neuron is related and dependent
on the connectivity of neighboring layers. In our approach, to select a discriminative neuron, we
consider the evidence from the current layer along with support from the preceding and succeeding
layer. Formally, for each of the discriminative neuron (	) from the succeeding layer, we calculate a
score, Ω�	, for each of the neuron (�) at current layer,

Ω�	 = αsucZ‡
�

suc(αcurZ†
�

cur + αpreZ†
�

pre), (1)

where,Z and αwith subscript cur, pre and suc denote calculated support and corresponding weight
values for the current, preceding and succeeding layers, respectively. This equation indicates that for
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each neuron, we calculate three support values from current, the succeeding and preceding layers.
The corresponding weight values for each layer are learned beforehand, which denote how much we
want to prioritize the support information from each layers.

Two superscript ‡ and † denote different support metrics. Support Z with superscript † denotes
that the support is devised by multiplying its activation value with its weight connected to selected
neuron from another layer. For the current layer, we calculate it by multiplying the current activation
A�cur with its connected weightW�cur with the selected neuron from the succeeding layer. Formally,
we define it as,

Z†
�

cur = A�cur · W�cur. (2)

For the preceding layer, we obtain the support from the most contributing neuron of the preceding
layer that is connected with the target neuron from current layer. To get such support, we first
observe the individual supports for all the neurons of the preceding layer that are connected with
the target neuron (from current layer) by multiplying their activations with corresponding weight
value. From all the supports, we select the most contributing one by picking up the highest value.
We define Z†�pre as,

Z†
�

pre = arg max{[A�pre · W�pre] : � ∈ Npre}, (3)
where,Npre denotes the set of neurons from preceding layer. We A�pre andW�pre denote the activa-
tion and corresponding weight value for a neuron (�) from the set Npre.

We also observe the influence of current neuron (�) in the succeeding layer in the sense that for how
many cases (selected neurons from succeeding layer), it provides the best support. To be specific, we
specify a counter to check for how many times the current neuron possess the highest contribution in
terms of its Z�cur value for different selected neurons from succeeding layer. Default value 1 is used
in case the above condition is not satisfied. The counter value is used as Z‡�suc in Eq. 1. Basically,
if the current neuron provides best support for different selected neurons from succeeding layer, we
consider current neuron (�) as one of the influential neurons for current layer, which is why we
multiply this counter value in the Eq. 1 to provide more support for the current neuron.

We calculate Ω�	 values for the set of all neurons (Ncur) at current layer, for a selected neuron (	)
from the succeeding layer. Finally we consider top k-neurons based on highest Ω�	 values, which
we define as the most contributing neurons, for the selected neuron (	) from succeeding layer. The
selected set of neurons N ∗cur	 , is derived as,

N ∗cur	 = arg max
k
{Ω�	 : � ∈ Ncur}. (4)

Note that we use a superscript ∗ as a sign of being selected set of neurons. However, in the above
way, for all the individual discriminative neurons from succeeding layer, we select the set of dis-
criminative neurons for current layer. We take the union of all such sets and obtain the final set of
discriminative neurons for current layer. We define it as,

N ∗cur =
⋃

	∈N∗
succ

N ∗cur	 , (5)

where, N ∗suc denotes the set of discriminative neurons for successive layer. In this way, we sequen-
tially select the set of most contributing neurons for each of the layers. Finally, we reach to the input
image and get the most distinctive image pixels.

While generating discriminative set of neurons in conv layers, we also use the same strategy (Eq 1)
as taken in fc layer, except computing support value Z† slightly differently. Since the neurons
at conv layer consist of 3D fields having channel info along with spatial location info (x, y), the
neurons appear as 3D spatial blob. For each selected neuron, we first extract the corresponding
activations within a receptive field, as denoted in green rectangle in conv-layer part in Fig. 2. Recall
that in the fc layer, while dealing with any of the Z† values, we multiply the activation value with
corresponding weight value. Now the change we do in conv layer while dealing this issue is that we
compute the Hadamard product between the above-mentioned receptive activations and associated
filter weights of the specified neuron. We note that result of this Hadamard product is also a 3D
spatial blob of same size. Therefore, for any further calculation, i.e., obtaining the highest value,
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Algorithm 1 Selection of discriminative set of neurons for a layer

Input: Discriminative set of neurons from successive layer N ∗suc,
Layer-wise pre-learned weights (αcur, αsuc, αpre).

Output: Discriminative set of neurons for current layer N ∗cur
1: for each neuron 	 ∈ N ∗suc do
2: for each neuron � ∈ Ncur do
3: Calculate score Ω�	 = αsucZ‡

�

suc(αcurZ†
�

cur + αpreZ†
�

pre), where
Z‡�suc, Z†�cur, and Z†�pre are the calculated supports from successive, current and previous
layers, respectively (details are in section 3.1)

4: end for
5: Select k-discriminative neurons with highest scores, N ∗cur	 = arg maxk{Ω�	 : � ∈ Ncur}.
6: end for
7: Select the final set of discriminative neurons by taking union of all N ∗cur	 ,
N ∗cur =

⋃
	∈N∗

succ
N ∗cur	

8: return N ∗cur

we sum up the output values across the (x, y) spatial region to numerically process each channel
information with single value. In this way, we simply trace back the (x, y) location of the succeeding
layer onto the strongest contributing locations (channels) of the current layer. For pooling layers, we
simply extract 2D receptive fields of the corresponding neuron and find the locations (or neurons)
having the highest activations since most of the models normally use max-pooling to sub-sample
the feature maps. Sample illustration for fc and conv layer in extracting the important neurons is
provided in Fig. 2 and the general algorithm is provided in Alg. 1.

3.2 LAYER-WISE WEIGHT SELECTION

In this section, we describe a strategy to learn the layer-wise weights (αcur, αsuc, αpre) defined in
Eq. 1. We adopt one of the popular reinforcement learning techniques to learn these weights.

First, let us define the above weight selection problem as a tuple of action, A and corresponding
rewards, R. Such action and corresponding reward value can be generated in many different ways.
However, in our approach, we consider Intersection-Over-Union (IOU) score for an input image
to define tuple < A,R >. For the experiment, we randomly select 1000 images from Imagenet
Validation dataset (Russakovsky et al., 2015) and calculate IOU score for each of them within the
pre-defined range of values for the weights defined above (i.e, αcur). We consider the IOU score as
action A and if its IOU score passes a threshold (0.5), then we put a binary reward R = 1, otherwise
no reward is given.

To elaborate it, after tracing back for the discriminative regions to the input image, we generate
bounding box (details of generating bounding box are provided in section 4.1.2) around the target
object. Afterwards, we compare this with the ground-truth to get the IOU score. The rationale
behind considering IOU score is that it shows how accurately a method identifies the important
image regions. However, the IOU score for each image is calculated separately for each of the
weight values for respective predefined value range. Now we can define the above scenario as a
Bernoulli multi-armed bandit problem (Auer et al., 2002) as a tuple of < A,R >, where,

• For each individual target weight, (i.e., αcur), we have K-predefined discrete values with
reward probabilities θ1, ..., θK .

• At each trial t, we take an action a that is to generate IOU score at an input image for the
target weight within its any of the K-values, and receive a reward r.

• The value of action a is the expected reward, Q(a) = E[r|a] = θ. If action at at the trial t
is on the ith value of the target weight, then Q(at) = θi.

• R is a reward function. In the case of Bernoulli bandit, we observe a reward r in a stochastic
fashion. At the each trial t, rt = R(at) may return reward 1 with a probability Q(at) or 0

otherwise. The goal is to maximize the cumulative reward
∑T

t=1 rt.
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(a) Original Image

(b) CNN-Fixations (c) Grad-CAM

(d) Grad-CAM++ (e) Proposed

Figure 3: Visual comparison among different methods.

We solve the above problem using standard UCB solver (Agrawal, 1995), where the optimal action
a∗ (that is the optimal value for each weights) is selected based on optimal probability θ∗ defined
as, θ∗ = Q(a∗) = maxQ(a)q∈A = max θi1<=i<=K . Note that the above strategy is applied
separately for the three weights mentioned above within their respective range of values, and the
optimal values for each of the weights are selected separately.

4 EXPERIMENTAL RESULT

Of course, one such interpretation work must show its consistency with the model’s prediction (faith-
fulness) and should be good enough to gain human trust. To show these things, we conduct both
the objective and subjective evaluations to compare our method against other existing methods in
terms of faithfullness and human trust. We also evaluate the robustness of our method in presence
of adversial noise. In addition, we analyze the model’s prediction from their heatmaps in case there
is a miss-classification.

4.1 OBJECTIVE EVALUATION

For the objective evaluation, we judge the consistency of the methods with respect to the prediction
of the model. We conduct couple of experiments for this purpose. The details are given below.

4.1.1 POINTING GAME EVALUATION

The pointing game technique was introduced in (Zhang et al., 2018), which examines the discrim-
inativeness of different attention maps for the sake of object-localization purpose. If the maximum
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Table 1: Comparative objective evaluations for different methods. Note∗: results are taken
from (Chattopadhay et al., 2018).

Methods Pointing-Game Scores (%) Increase-in-performance (%)

Grad-CAM 40.67 2.94*
Grad-CAM++ 50.57 17.65*
CNN Fixations 53.40 22.36

Proposed 55.25 24.84

(a) Original Image (b) Discriminative locations
found by our method

(c) Image with occlusion in
non-object area.

Figure 4: Generating occlusion in the image.

point in the attention map falls within the ground truth bounding box, one #hit is counted, other-
wise it is considered as one #miss. This technique simply asks for pointing at an object of specific
category of the image and it does not require any mechanism to highlight full object range . In
this technique, the final score PG is calculated as a ratio of number of #hits with respect to total
samples (#hits+ #misses).

PG =
#hits

#hits+ #misses
. (6)

In our approach, we randomly collect 2501 images from ImageNet (ILSVRC2012) validation set,
and calculate #hit or #miss for each image. The final PG score is then calculated based on the
above equation. The experiment is conducted 3 times and the average results are reported at Table 1.
We conduct this experiment for the other existing methods, namely Grad-CAM (Selvaraju et al.,
2017), Grad-CAM++ (Chattopadhay et al., 2018), CNN-Fixations (Mopuri et al., 2018), using the
same strategy described above. As we see from the table, proposed method achieves the highest PG
score than other methods, demonstrating its ability to localize the designated objects in a better way
than the other methods.

4.1.2 CHANGE-IN-CONFIDENCE EVALUATION

In this experiment, we examine the efficacy of the model’s visual explanation in the the ovreall
decision process. To conduct this experiment, we occlude the specific parts of the image based on
the visual map generated by the designated method, and check the change in classifier’s confidence
due to the forced occlusion. At first, we generate bounding box around the salient regions. For
the generation of bounding box, we first discard the outlier points. We define a point as an outlier
if there is a absence of sufficient neighboring points within a given circle. The number of outlier
points and the radius of the circle are found empirically for the method. However, as soon as we
remove the outliers, we generate the best fitting bounding box covering the remaining points.

For our experiment, we keep the object part within the bounding box and occlude other region, as
shown in Fig. 4. The rationale of this experiment is that for the prediction, CNN mainly looks for
the important region, and as a result, occluding the unimportant region may enhance the confidence
score of the prediction. To observe the change in performance, we occlude the other regions apart
from the bounding box and examine the increase in performance. To be specific, we consider how
many times the model gain an increase in performance, and report the average results in the Table 1.
The results are generated similarly as before on randomly selected 2501 images from ImageNet. As
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Figure 5: Performance on perturbed adversial images.

we observe from the results, by occluding the non-object region, we gain the confidence boost for
the maximum time than other method, which clearly shows its efficacy in correct localization of the
designated object.

For both the above experiments, we achieve expected results that exhibit a better confidence in
generating explanation that are more faithful to the deep network, as compared to other methods.
Some of the visual comparative results are also provided in Fig. 3. Note also that for both the
experiments, we have used 2501 images from ImageNet validation set. We do this in order to keep
similarity in the experimental settings, as in (Chattopadhay et al., 2018).

4.2 SUBJECTIVE EVALUATION: HUMAN TRUST

In the aforementioned set of experiments for objective evaluations, we explored the faithfulness
property of the method; on the contrary, in this section, we conduct subjective evaluation experiment
to evaluate its interpretibility in terms of human trust.

To elaborate more, if the visual explanation for different methods are given, we want to evaluate
which one seems more trustworthy. The purpose of this experiment is to check whether the human
perception of the visual output (heatmaps) of our method complies with machine accuracy. For this
purpose, we compare the visual maps for AlexNet and VGG-16 generated by our method. We know
from the past researches that VGG-16 shows better results than AlexNet on image classification
tasks [79.09 mAP (vs. 69.20 mAP) on PASCAL dataset (Everingham et al., 2010)]. In order to
comply with this result, we take 58 images where both the AlexNet and VGG-16 predicts the object
correctly and generate visual map for our method. We then provide the maps to 12 users, first
ask them ’Which map best describes the object present in the image?’. Surprisingly, all the users
voted for VGG-16 as producing a better map than ALexNet. Later, we also ask the users that ’How
reliable the map of each model?’ We provide reliability scores for both the models between 1 ∼ 5
with the radio-button option. The obtained scores are then normalized, where we found that VGG-
16 (38.08) has a higher score than AlexNet (36.07), which also complies with the previous finding
that VGG-16 achieves higher accuracy than AlexNet for object classification. In this way, based on
the explanation from the human prediction, our visualization method can help users place trust in a
model that can generalize better.

4.3 ROBUSTNESS EVALUATION

Recent work show that deep networks shows vulnerability to adversial attacks (Goodfellow et al.,
2014). This finding actually provides a great chance to test the robustness of a method’s performance
in practice. Adversial attacks perturb the images such a way that fools the network to miss-classify
the existing object with a high probability. We generate images for Imagenet trained on VGG-16
using Deepfool (Moosavi-Dezfooli et al., 2016) and observe the visualizations for our method. As
we can see from Fig. 5 that the adversial attack changes the input label from bath-towel to ice-
cream. In the perturbed image, the heatmap concentration shifts to round-shape objects. However,
portion of heatmap also covers the towel portion, which is still a visually present object in the image.
Therefore, in case of adversial attack, our visualization map not only shows shifted concentration of
object, but also covers the original object that is stil present in the image. In this way, we observe
the robustness of our visualization map.
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(a) Discrminative location and Map for AlexNet

(b) Discrminative location and Map for VGG-16

Figure 6: Visualization map for AlexNet and VGG-16 on a grey-fox object, where VGG-16 classifies
it correctly and AlexNet missclassifies it.

4.4 ANALYZING MISS-CLASSIFIED IMAGE

One of the best purpose of the visualization methods is the analysis of ’why the model performs like
this?’. Analyzing the miss-classified images for different models is one of the examples of such
usages since if the visualization method can offer a proper explanation for their predictions, it is
possible to improve the modalities of the architecture, as well as various aspects of training and
performance. Proposed method can act as a tool to aid analyzing such aspect. We exhibit this by
analyzing a miss-classified image for object recognition purpose, as shown in Fig. 6. As we see
from the figure that the image is wrongly classified by Alexnet, but classified correctly by VGG-16.
If we see in detail, AlexNet actually look for totally different regions (i.e., backgrounds, tail of the
fox) that actually leads the model towards wrong classification. In such way, we can analyze the
model’s performance in practice and may find out the rooms for improving different aspect of the
model through the visual analysis.

5 CONCLUSION

In this work, we present a new visual interpretation method that sequentially selects the discernible
neurons for each layer considering neighboring layers information, and gradually trace back to the
input image to find the salient part contributing mostly to the classifier’s prediction. Proposed ap-
proach calculates the visual map after the forward-pass and demonstrates better visualization against
other existing methods. We conduct both the subjective and objective experiments to show the supe-
riority of our method, and as well show the robustness of our method in presence of adversial noise.
Moreover, in cases of miss-classifications, our approach can be beneficial to offer visual explana-
tions to aid making the CNN more transparent, offering improvement scopes for various training
and architecture aspect of the model.
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