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ABSTRACT

Training good policies for large combinatorial action spaces is onerous and usually
tackled with imitation learning, curriculum learning, or reward shaping. Each of
these methods has requirements that can hinder their general application. Here, we
study how growing the action space of the policy during training can structure the
exploration and lead to convergence without any external data (imitation), with less
control over the environment (curriculum), and with minimal reward shaping. We
evaluate this approach on a challenging end-to-end full games army control task
in StarCraft: Brood War by training policies through self-play from scratch. We
grow the spatial resolution and frequency of actions and achieve superior results
compared to operating purely at finer resolutions.

1 INTRODUCTION

Deep reinforcement learning’s success stems in part from the handling of large state spaces via
powerful function approximation. But how can algorithms cope with large high-dimensional or
combinatorial action spaces? Approaching domains with larger action spaces over longer horizons
leads to an explosion of the trajectories space. Plenty of methods exist to structure their exploration:
imitation and inverse reinforcement learning (Schaal, 1997; Ng et al., 2000), curriculum learning
(Selfridge et al., 1985; Elman, 1993; Bengio et al., 2009), reward shaping (Ng et al., 1999), options
(Stolle and Precup, 2002), hierarchical RL (Dietterich, 2000). Each respectively requires traces (or
demonstrations), modifying the task (or environment), prior knowledge on the value structure, on the
actions structure, or on the state structure. These requirements limits the applicability of the methods.

We study an approach that leverages prior knowledge on the action and policy space to greatly
reduce the sample complexity of exploration: growing the action space (GAS) of a policy during its
training. GAS is quite generally applicable: it does not require demonstrations, nor modifying the
environment or changing the reward(s), and the induced hierarchy of actions stays actionable (not
abstract). Instead, it requires (i) a form of hierarchy or abstraction over actions, (ii) a representation
of different levels of details within a single model (iii) a training procedure and a growth schedule.
Here, for (i), we leverage a spatial and temporal hierarchy in representing the action space. We start
by learning a policy and its associated value function at the coarser levels of detail (low resolution and
low frequency actions). Those form the basis of the computation of the policy at finer levels of detail,
and get refined over the course of training. We represent this policy (ii) as a ConvNet (LeCun et al.,
1990) encoder-decoder with LSTMs for integrating partial observations (Hochreiter and Schmidhuber,
1997). We decode directly to the finest action resolution and pool spatially and temporally to obtain
coarser actions. And for (iii) we use self-play, with IMPALA (Espeholt et al., 2018), and Population
Based Training (Jaderberg et al., 2017) to hyper-optimize the action space growth schedule. This
training process can be seen as a curriculum self-induced by the policy’s performance so far.

We propose to demonstrate the efficacy of GAS with an experimental study on the game of StarCraft:
Brood War. It is a partially observable real-time strategy game where players can control hundreds of
units, executing simultaneous, durative actions, for games averaging 15-20 minutes. The state space
is large, but the major problem for exploration in StarCraft comes from the combinatorial action
space. The game engine runs at 24 frames per second, and potentially at each frame the player could
issue a different action. All actions in StarCraft are the combinations of a set of units (or single unit)
executing a single command type, optionally at a target position. The lower bound of the branching
factor b from (Ontanón et al., 2013) (number of actions at any point in time) is 1050, and a 15 minute
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game with one action per second corresponds to depth d of 900, which gives a game complexity
bd = (1050)900. In this paper, we control only the military units (all the non-workers units), and
restrict ourselves to one action per second, a 128× 128 (or 64× 64) target/position resolution, and
the 3 major types of actions for military units. Already, the average number of possible actions (e.g.
with 80 alive units, each selected or not) is approximately 280 × 128× 128× 3 ≈ 5.9× 1028. Our
motivation for applying GAS to StarCraft is that an average human can play strategic full games with
30 effective actions per minute, with imprecise clicks and timings, and grouping units together. We
wager it is more important to master those broad strokes first, before filling in the details of optimal
micromanagement. Our policy neural network is trained end-to-end from scratch through self-play.
In our experiments we start by taking one action every 16 seconds, up to one per second, and start
with positions at an 8×8 resolution, up to 128×128 (or 64×64 for smaller “maps”). We also group
units spatially, first favoring sampling only one group down to the uniform sampling of arbitrary
groups (from a single unit to all units). The number of possible actions in our example thus grows
from 21 × 8× 8× 3 = 384 actions to 5.9× 1028 over the course of training.

This approach is anything but limited to StarCraft, and is just a generalized form of refining the
discretization of continuous variables. All reinforcement learning problems include a temporal
dimension, some have spatial priors or graph connected objects. Most multi-agent or continuous
control problems induce clear action abstractions (options). Let us now give the high-level example
of controlling a robotic arm (with k motors/degrees of freedom) to reach an object: it is not a problem
where we can reset or modify the environment easily, we have a notion of distance from the hand
to the object. We can explore the action space by using only one (or some) motor(s) to start with,
freezing the others, unblocking those additional degrees of freedom as this limited exploration leads
us to some sampling of the value function. This type of policy (and its growing/GAS version) can for
instance be represented with an auto-regressive model over degrees of freedom. We discuss intrinsic
hierarchies and action abstraction in more detail in §3.

In summary, we explain how hierarchical modeling of the action space aligns with the goal of
successively growing it. We propose a spatio-temporal action space resolution decomposition in
the context of real-time strategy games. We showcase its potency as an exploration curriculum in
StarCraft, where, to the best of our knowledge, we train the first end-to-end model for military units
control in full games of StarCraft only with self-play, from scratch.

2 RELATED WORK

Curriculum learning The motivation for curriculum learning is to “start small” and to present a
learning algorithm with data of increasing difficulty. This concept is particularly appealing in the
context of neural networks as their standard optimization algorithm, (stochastic) gradient descent,
is already incremental in nature (Elman, 1993; Bengio et al., 2009). For reinforcement learning,
curricula are commonly defined over tasks of increasing difficulty (Selfridge et al., 1985). They
rely foremost on a suitable environment that allows the definition of such tasks, and curricula are
problem-specific and require careful tuning. One approach to automate the definition of tasks
is reverse curriculum learning, in which initial environment states are generated with gradually
increasing distance from goal states (Florensa et al., 2017). In adversarial settings such as games,
self-play (Samuel, 1959; Tesauro, 1995; Silver et al., 2017) represents a natural form of curriculum
as agents are faced with opponents of the same or a similar skill-level (Bansal et al., 2017). The
effectiveness of self-play has also been demonstrated in (Jaderberg et al., 2018; Silver et al., 2017;
Baker et al., 2019) by solving a wide variety of complex tasks. Sukhbaatar et al. (2017) extend
self-play induced curricula to not just adversarial games but also reversible or resettable games.

Hierarchical RL and options A general approach for tackling challenging tasks is to exploit
inherent structure in the domain of interest. In reinforcement learning, this can be generally attempted
via hierarchical reinforcement learning, with the options framework being a popular formaliza-
tion (Sutton et al., 1999). Policies operating at different levels of temporal abstraction promise
faster learning and better transfer between tasks. Various methods of automatic option discovery
have been proposed (McGovern and Barto, 2001; Stolle and Precup, 2002). Other methods propose
tailored construction methods of neural network policies leading to hierarchical behavior (Dayan and
Hinton, 1993; Vezhnevets et al., 2017). Other approaches that aim to exploit hierarchical structure
concern themselves with the state or observation space. With a suitable state abstraction and proper
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aggregation, exploration can be greatly accelerated Nouri and Littman (2009). Finding the right
abstraction is then critical, and one can either settle for a static one or begin with a coarse state space
that is refined over the course of learning (Moore, 1994; Munos and Moore, 2002). Both approaches
do again require sufficient domain knowledge.

Large action spaces In this work we propose to exploit structure in the action space on top of that
in the state space. If the number of possible actions is very large, which is the case in combinatorial
action spaces, ensuring sufficient exploration of their effects is a challenging endeavor. To this end,
Farquhar et al. (2019) introduced the concept of growing action spaces (GAS) on a multi-agent
micro-management scenarios in StarCraft. Here, successively increasing the action space from few
(one) to several groups of units introduces a curriculum as the learning agent obtains successively
finer control options. We extend this approach with both a spatial and temporal action hierarchy
and apply it to unit control in full StarCraft games. A similar concept was utilized by Murali et al.
(2018) with a curriculum over dimensions of control of a robotic arm. In this case, the curriculum
prescribes a sampling strategy for the dimensions in order to guide exploration. Czarnecki et al.
(2018) propose a curriculum over agents by mixing two policies defined on a coarse and fine action
space, respectively. In contrast, our work integrates action hierarchies with multiple levels into a
single policy parameterization.

3 GROWING ACTION SPACES

We present a formalisation of our approach for Markov Decision Processes (MDP), that is the tuple
M := 〈S,A,P,R, γ〉, where S is a finite set of states, A a finite set of actions, P the transition
probability between states conditioned on actions,R the reward function for reaching a state through
an action, and γ is the reward discount factor. The goal is find an optimal policy forM, noted π∗
that maximizes the discounted sum of rewards (the return). For a different A′ ⊂ A action set (and
A′′ ⊂ A′, etc.), possibly only a subset S ′ ⊆ S is reachable, and through that only a subset of the
codomain ofR (by abusing the notation, letR′ be the induced/limited reward function). Nonetheless,
it is often possible to extract a smaller (i.e. with less transitions, smaller sample complexity) MDP
M′ from a given original MDPM. To the extend thatR′ samples salient values ofR, this smaller
MDPM′ may be helpful to structure/speed-up the exploration ofM. We note π′ a policy inM′, and
because A′ ⊂ A and S ′ ⊆ S, π∗′ ⊂ π. Note that nothing guarantees that π∗′ ⊂ π∗. Thus, (i) using
GAS is in general an assumption or prior that one can useM′ as an exploration proxy or curriculum
forM, (ii) in order to not be in a situation where the transfer from π∗′ to π∗ makes exploration
harder inM, it may be beneficial not to reach the optimal policy inM′, which for instance can be
achieved by mixing the levels (training π and π′ simultaneously) (Czarnecki et al., 2018; Farquhar
et al., 2019), or by entropy regularization. Note that nothing requires the representations (or models)
for π′ and π to share parameters. We now give some categories and examples of GAS, as well as
strategies to represent the hierarchies and grow the action space through them.

In the continuous control setting (e.g. MuJoCo (Todorov et al., 2012)), we can often assume a
C-Lipschitz value function Q where |Q(x, u+ ε)−Q(x)| < Cε. In those cases, given a continuous
action space A, it is commonplace to discretize it as A′, here the different levels of abstraction
correspond to different discretization resolution. Another possibility is to use only a selected subset
of the action dimensions, or, for instance, a subset of the actuators in the robotic arm from the
introduction. For categorical action spaces with a natural hierarchy or taxonomy, we can leverage it:
whenever we can naturally build a tree over the set of possible actions, we can grow the action space
from the roots of this tree. These abstractions exist naturally in card games like Poker (Sandholm,
2015), and reinforcement learning environments such as DMLab (Czarnecki et al., 2018).

However, there is not always a trivial taxonomy structure available to restrict the action space. For
instance, when it consists of selecting a subset from a set of N elements, the action space grows
exponentially as 2N . One can allow selections of at most or at least M < N , but this does not always
make sense. These actions still sometimes have a spatial meaning, for example traffic control for
deciding which traffic lights should be green, or scheduling multi-nodes jobs on a cluster where
performance can be impacted by the network proximity between 2 nodes. This is also the case for
the problem of StarCraft unit selection. In our experiments, we often reach states where the model
controls more than 50 units, leading to an action space with 250 ≈ 1.12 × 1015 actions (possible
subsets). It would be unreasonable to rely on pure chance to explore it entirely, and indeed humans
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don’t need millions of hours of game-play to understand that the number of meaningful options is
quite limited: for instance selecting all of the units or a single group of spatially close units. We
leverage the spatial information on the set elements to improve exploration by introducing correlated
sampling. From the beginning, the policy outputs a probability for each set element to be selected.
However, sampling is changed to ensure that spatially nearby set elements are more likely to be
selected together than not. More generally, correlated sampling can be applied as long as a meaningful
distance measurement can be defined between actions.

In the options framework proposed by (Sutton et al., 1999; Stolle and Precup, 2002), a Markov option
is executed by either choosing a new option with probability β(st), or otherwise following the current
option. One method of growing the resolution in this case would be to slowly warm up β during the
training procedure. This results in agents at the beginning of training following options for a long
time before switching. When we are not in an option framework, we may run into durative actions
in complex environments. If we expect that a durative action is generally too short for its effects to
be felt, we can simply run the action multiple times in a row, growing the action space by slowly
lowering the number of times it is run in a row. In a robotic arm, perhaps random exploration will not
be effective, but encoding the inductive bias of moving in a certain direction for a long time in the
beginning of training may help training converge faster. Running a durative action for some time
should make it easier for the agent to learn the reward provided.

4 GAS MODELING FOR REAL-TIME STRATEGY GAMES

4.1 TASK

In this study, we tackle the problem of controlling military units in StarCraft: Brood War. In
contrast to previous works, we focus on playing full games rather than isolated micro-management
scenarios, in which two sets of units are provided (Synnaeve and Bessiere, 2011; Churchill et al.,
2012; Usunier et al., 2016; Farquhar et al., 2019). Besides control of military units, full game-play
requires management of worker units for resource gathering as well as ensuring economic progress to
enable the production of military units in the first place. In our setup, these tasks are handled by rule
sets provided by the StarCraft bot platform TorchCraftAI (Gehring et al., 2019; Synnaeve et al., 2016).
These include a planning algorithm to realize a fixed unit build order which dictates the high-level
strategy over the course of the game. In our training and evaluation setup, we provide identical rule
configurations for all agents.

As is common in real-time strategy games, observations in StarCraft are limited to the immediate
vicinity of the player’s own units. The remaining area on the map is covered by the “fog of war”.
The observations our agent receives are represented symbolically in a similar fashion as described
in Farquhar et al. (2019). The win condition of a game is to destroy all buildings of the opponent.
The final reward is 1 for a win, -1 for a loss.

4.2 ACTION SPACE HIERARCHY

We consider the following combinatorial action space, inspired by the primitive actions of the Brood
War game engine and the typical human interaction with the game. At each time step, we issue a
single command at a single location to a subset of all controllable units. This also corresponds to the
action space implemented in TorchCraftAI (Gehring et al., 2019). Informally, this action is composed
of a selection of a single command, the set of units to give that command to, and the target position
of the command. Formally, each action is a 3-tuple A = 〈AU , AP , AC〉. AU is itself a combinatorial
action with AU = 〈Au〉u∈U for a set of units U and binary actions Au ∈ {0, 1} such that Au = 1
means we select the unit. The target position AP = 〈x, y〉 of the command corresponds to a pixel
coordinate on the map. We support three primitive commands offered by the StarCraft game engine,
AC ∈ {Attack,Move,AttackMove} The actions respectively result in attacking an enemy unit,
moving to a target location, and moving to a location while engaging in fights with opponent units
encountered along the way. The selected action will be executed by the game engine until completion.
Execution is performed on a per-unit basis, i.e. units will execute an old action until a new action is
given, allowing the control of multiple groups of units separately despite selecting only one action at
each time step. We note that the command AC and position AP are directly tied to each other and
thus model 〈AP ,AC〉 as a joint action space AP,C of dimension |AP,C | = |AP ||AC |.
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Based on the natural spatial hierarchy of the game, we propose to grow the action space of both
unit selection AU and command and target position AP,C . Trading off action accuracy with ease of
modeling, and noting that human players seldomly rely on pixel-perfect control, we map all actions
to a fixed grid over the whole playing area. The first and lowest level of actions are build tiles, each
corresponding to a 32-by-32 pixel region. Denoting with AlP the action set over positions at level l,
A1
P is thus defined over build tiles. With each successive level, we halve the resolution of positions so

that 4|AlP | = |A
l+1
P |. Consequently, a two-by-two neighborhood of positions in level l is collapsed

to a single action in level l + 1. Selecting a position at level l + 1 amounts to randomly selecting any
of the corresponding positions at level l. This action hierarchy results in joint action spaces AlP,C .

For unit selection, we express the per-unit actions Au in build tiles as well. The resulting action space
AV consists of binary actions Avp for each build tile position p. If Avp = 1, all units located in the
build tile corresponding to p will be included in the resulting action A. Units are often moved in
groups; higher-level actions thus bias the binary, per-unit selection based on the distance between
them. We realize this by sampling Avp with a spatially correlated yet uniform noise εlp, i.e.

Avp =

{
1 if πvp > εlp
0 otherwise ,

with πvp denoting the probability of selecting units at position p according to the current policy π.
At the lowest level of actions, εlp is generated uniformly ε1P ∼ U(0, 1). For l > 1, we obtain spatial
correlation by smoothing. Given an arbitrary smoothing kernel Kl, we can maintain the uniform
noise in the long run by transforming the noise via cdf(Kl ∗ icdf(ε1P )), where icdf and cdf are
the (inverse-)cumulative distributions of a Gaussian, and ∗ indicates the convolution operator. This
ensures that the expectation of εlp is maintained across different levels. For our experiments, we use
the Kl (x, y) = exp

(
−
(
x2 + y2

)
/
(
2 · σ2

l

))
as the smoothing kernel, where σl is a characteristic

distance expressed in build tiles.

In Figure 1, we visualize our proposed hierarchy on a small sub-section of a 64-by-64 build tile
map. The unit selection noise εlu, corresponds to random noise at the lowest level and will gradually
increase in spatial correlation in higher levels. The distribution over positions is shown for two of
the three commands. The decrease in resolution for higher action levels directly results in fewer
possible actions at the expense of accuracy. For example, the actions over which π4

P,C(C = Attack)
is defined make it impossible to select an individual target among the red units on the bridge. The
agent can only chose whether to attack the units on the bridge not. On the other hand, it is still
possible to decide whether to enter the battle or not.

The temporal dimension of the action space is structured by modifying the time steps between taking
actions, denoted with δlt = l. At a coarse level, only few actions can be performed during a game.
This provides the agent with an opportunity to experience the effects of long actions such as moving
units across long distances. The lowest level, l = 1, corresponds to taking an action at every time
step.

4.3 MULTI-SCALE POLICY MODEL

We enable joint training of all action space levels by employing a single neural-network parameteriza-
tion for all resulting policies πl. For unit selection, the same policy is used for different action levels,
as only the correlation of the noise εlp is adjusted. The action space hierarchy overAP,C is realized by
parameterizing π1

P,C with neural network weights θ. For additional levels l, we do not introduce extra
parameters but instead obtain πl+1

P,C by average-pooling πlP,C . Concretely, for a maximum map size
(W,H), π1

P,C corresponds to a three-dimensional tensor |C| ×H ×W . The remaining distributions
for l > 1 are thus computed as

πl+1
P,C(C, x

l+1, yl+1|s) = 1

4

1∑
m=0

1∑
n=0

πlP,C(C, 2x
l +m, 2yl + n|s) .

For our parameterization, we opt for an encoder-LSTM-decoder model, where a ResNet (He et al.,
2015) trunk is used for encoding as in Farquhar et al. (2019). Symbolic unit observations are first
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Figure 1: Visualization of spatially correlated noise and action space resolution. Left Close-up
of a StarCraft: Brood War game with two players (blue and red), showing ≈ 12% of the whole
map area). The “fog of war” limiting the blue player’s observations is not shown here. Right
For the agent playing blue, we show (from left to right) the sampling noise for unit selection εlu,
example distributions over positions for Attack and Move commands at different spatial levels l
(top to bottom). Green represents high values, red stands for low values; actual values are scaled for
visualization purposes.

encoded individually, with the resulting embeddings then placed at their corresponding locations for
concatenation with spatial features. To ease memorization of past observations, a spatially replicated
LSTM performs temporal integration of the resulting features (Xingjian et al., 2015; Synnaeve et al.,
2018) before the ResNet trunk is applied.

The encoder output is provided to a LSTM (Hochreiter and Schmidhuber, 1997) and decoded using
upsample-convolution blocks to its original resolution. Each upsample-convolution block consists of
a 2-by-2 upsampling operation and concatenation with the intermediate output of matching resolution
of the ResNet trunk, followed by a residual convolution block. We employ two separate decoders for
πP,C and πV , such that we can condition the unit decoder on the sampled position and command.
We only duplicate the upsample-convolution blocks of the model, and keep the LSTM trunk the same
same.

We note that for a given game state, only a subset of all actions are permitted. Attack actions can only
be issued to currently visible opponent units, and unit selection can be constrained to locations at
which any of the player’s units are present. We mask out invalid actions by constraining the respective
probabilities in πP,C(C = Attack) and πvp to 0. Similarly, we implement play at coarser time
resolutions by masking out all possible actions. For a time step t and temporal action level l, the
agent will obtain policy gradients if t mod δlt = 0 only. Otherwise, gradients are solely provided by
back-propagation through time used for the LSTM cells.

Model training is performed in an actor-critic fashion Sutton and Barto (1998). While the policy
is computed on partial observations only, we grant the critic access to full observations. The critic
function is parameterized separately from the policy network using the same architecture. The
availability of full observations removes most of the need for temporal integration so that we do not
include recurrent layers in the critic network. The encoder is followed by a linear layer, predicting
the state-value function V π .

4.4 GROWING SCHEDULES

Over the course of training, we aim to successively decrease the action level l to obtain finer-grained
policies in a self-play setting of several agents. With the premise that finer actions enable better
game-play, we expect that an appropriately timed action space refinement for a single agent results in
increased performance over other agents. The common approach of hand-crafting a growing schedule
comes with the pitfall that optimal training might require non-monotonic schedules. This is amplified
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by the fact that we jointly grow three dimensions of the action space (positions, correlation of unit
selection, and the time span between actions). For example, deciding whether to flee a battle requires
frequent actions but only a coarse target position. In contrast, tactical positioning is possible on larger
time spans, but can require very specific selection of position and units. We thus avoid the manual
definition of schedules and instead introduce a refinement of the action space as a possible mutation
operation in population based training Jaderberg et al. (2017).

The single parameterization of policies detailed in §4.3 enables the use of smooth growing schedules,
in which multiple action levels can be utilized. To this end, we specify a distribution over action
levels, with growing corresponding to a shift of the probability mass towards lower levels. The final
resolution then corresponds to a distribution with Pr(l = 1) = 1 and 0 for all l > 1. At each time
step, a level is first sampled according to the current distribution, and the action will then be sampled
from the respective policy. We apply a smooth growing schedule to the position action only and
specify single levels for unit selection and the interval between taking actions.

5 EXPERIMENTS

Scenarios We selected three different scenarios to run experiments and ablations and investigate
the effect of our proposed action space curricula on training speed and final performance. A toy micro
experiment allows us explore the effect of action space growing in an isolated setting. The second is
a mid-game scenario, in which players start out with 2 bases as well as military units and defensive
buildings. This scenario trains much faster and allows us to study our training dynamics in more
detail. Finally, we play full games where both players start out as in a standard game of StarCraft.

Fixed Baselines In order to measure progress, we ground the evaluation of all trained models by
competing against handicapped versions of the rule-based StarCraft bot CherryPi, that is not learning
anything. CherryPi is a top StarCraft bot: it won the SSCAIT 2017/2018 tournament and came
second at the AIIDE 2018 competition. We note CPI for the full bot with no handicaps; CPIIdle
is handicapped by not taking any actions for the first 40 seconds of game time. CPIRestrict50 and
CPIRestrict25 are versions of the bot that randomly drop 50% and 25% of their actions, respectively.
Our trainable policy is identical to those baselines for the economy and worker management.

Training Setup We train a population of several agents in parallel Jaderberg et al. (2017) where
each agent is trained with IMPALA Espeholt et al. (2018). After a random pairing for matchups,
a game trace is collected by playing another agent in the population; multiple games are played in
parallel in a pool of rollout workers shared among the whole population. For each agent, traces are
then aggregated in a FIFO queue of maximum size 2500 – a replay buffer – where each entry is a
BPTT-sized (back-propagation through time) chunk, including LSTM state burn-in (Kapturowski
et al., 2019). Chunks are sampled with prioritized experience replay (Schaul et al., 2015), and
gradients are then computed with the V-Trace off-policy correction (Espeholt et al., 2018).

After a fixed number of model updates (between 500 and 1000 in our experiments), agents produce
individual checkpoints of their parameters. Similar to the framework described in Li et al. (2019), the
resulting policy enters an evaluation round with past population members. We compute a ranking
using TrueSkill (Herbrich et al., 2007), and the rank of the checkpointed policy determines if the
agent gets culled. When a training agent is interrupted, a new agent is initialized from a previous
population member, with hyper-parameters subject to mutation (all our experiments use a mutation
rate of 50%). Parent selection is done proportionally to the rankings in the most recent tournament.
We limit the number of archived agents – non-training population members – and remove the ones
with the worst rank. We detail the PBT hyper-parameters in Table 1, the learning rate and the free
GAS hyperparameters are candidates for mutation in all our experiments.

Metrics While our PBT setup optimizes for the TrueSkill of a population, we can measure and
compare the success of training runs with additional metrics. First, we compare against fixed baselines,
which do not take part in training games, both in terms of win rates and TrueSkill rating. We further
let members of different populations directly compete against themselves and analyze the resulting
win rates.
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Parameter Toy micro Late Game Full Game

Active population size 2 8 8
Maximum archived agents 2 16 64
Batch size 120 56 120
BPTT steps 16 48 24
Checkpoint interval (updates) 500 1000 800
Entropy factor (fixed/mutated) 10−4 Mutated 10−4

Ranking against CPI versions No Yes No
Reward Win/lose Win/lose + ∆supply Win/lose

Table 1: Hyper-parameters used during training for each of the three scenarios discussed in §5.

5.1 TOY TASK

Figure 2: The toy micro task, where the goal
is to find the opponent base. We play 30
games between each agent after training for
one day, and display the winrate in a head-to
head matchup, e.g. first to find enemy base.
The plot shows that we need all three growing
schemes to succeed on this task.

In this task, the agent starts like in a normal game, in
a map with 4 starting locations, and the game ends
when one player discovers the other player’s base.
Players can split up their initial set of units to try
to find which of the remaining 3 starting locations
contains the enemy. Intuitively, randomly exploring
at a high spatiotemporal frequency is harder than
exploring at a lower spatiotemporal frequency, and
splitting units should be beneficial. Therefore, grow-
ing all three of U, P, and T resolutions should allow
the model to explore much faster.

For both tasks, after we finish training, we pit the
agents against each other and show the winrates in
Figure 2. The best agent in the GAS run was able to
discover that quickly moving the initial single unit
(“Overlord”) towards the closest enemy base candi-
date location was a good strategy. Because this unit
is very slow, and rarely reaches the base before other
units spawn, it shows that the model is able to pick up
a very long-horizon reward signal. Additionally, the
model will move the faster units produced to a differ-
ent base than the initial overlord. Figure 2 indicates
that growing all three is most effective on this task.

5.2 MID-GAME SCENARIO

We propose a mid-game scenario to ablate our experiments. We use a small map with 4 bases, and
begin with each player having a few military units and in control of two of the bases. In order to
compare the effects of our GAS scheme and population based-training we run: (1) a baseline with no
GAS, (2) Growing only temporally, (3) Growing all three axes. To further speed up training, we rank
against CPI, as well as the restricted versions, during PBT. Even though we do not train against them,
PBT will select agents that do well, giving a smoother learning curve for our experiments.

Over the course of the training, agents trained with GAS learn different strategies as the overall level
of the population increases. First, agents learn to gather their military units in one base, and wait for
the enemy to attack. Then, they value the center of the map and fight over it to prevent the enemy
from gathering all its units together. Later on, they learn that they should retreat their units to defend
when their base is under attack, or sometimes choose to trade bases if they are already attacking an
enemy base. Finally, they learn to refine their unit selection to handle different unit types differently.

After training for 80 hours, we compare the results of the ablations in 3: trainings without GAS
for U, P, and T plateau after about 40 hours of training to a local optimum. The policies trained on
those runs don’t use the “Move” command and almost exclusively rely on “Attack-Move” commands.
While “Move” orders are essential to retreat or flee, they are almost impossible to learn without a
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(a) Distribution of the different agent generations in
the archived population (training with GAS).

(b) P (green), U (blue) and T (yellow) resolutions sched-
ules found by PBT: dots represent agents in the popula-
tion, and the line is the GAS schedule for the lineage
of the best agent in the final evaluation round

(c) Population diversity for GAS training: mini-
mum and maximum number of training iterations
for agents the population, as well as training itera-
tions of their common ancestry.

(d) Best win-rate obtained up to different wall clock
times against CPI (and CPIRestrict25 in dashed lines)

Figure 3: Mid-game scenario

proper exploration scheme. Indeed, for a retreat action to be successful, the policy has to select an
entire group of units (retreating half of the army causes the loss of the other half), and commit to this
action for a few seconds until the group reaches a safe place.

On the population trained with GAS, we don’t observe any such plateau. At a given time, different
agents are training at different levels of detail and exploring a diverse set of strategies (3b). For
Time resolution for instance, progress is not monotonic: even after reaching the finest resolution,
it still makes sense to explore at a coarser resolution to discover new strategies, before refining the
strategy at the finest level, as shown by the level of actions schedule of the best final agent. Periods
of exploration and exploitation alternate at the scale of the population as well. We report in 3c the
minimum and maximum number of training iterations for archived models, and compare it to the
number of training iterations for the most recent common ancestor of the archived population. When
the gap with the common ancestor increases, so does the overall diversity of the policies. When a
new and significantly stronger policy is discovered, it gradually fills the archive slots, trading-off
diversity for performance.

5.3 FULL GAMES

Finally, we run GAS vs. baseline (no GAS) experiments on the full game setting. Games are played
on a single two-player map, and we observe that we are able to learn unit control from scratch. We
observe the same strategies as in the mid-game scenario, of controlling the center of the map and
engaging in base trades. In this experiment we do not use any reward shaping nor do we include the
fixed baselines in our evaluation to rank the population (see Table 1), we still manage to obtain an
above 50% winrate vs. CPI in about 50 hours of training (see Figure 4). Though sometimes there are
plateaus, the winrate consistently improves.
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Figure 4: Win rate of the best so far agent
vs. CPIRestrict25 (dashed lines) and CPI for
different ablations in full games.

GAS Win Rate against Agent without GAS (%)
Agent 1h 5h 10h 20h 40h 60h

1h 63.9 42.0 36.7 33.3 31.7 26.5
5h 73.3 60.0 23.3 40.0 23.3 57.1
10h 76.7 76.7 66.7 63.3 46.7 38.5
20h 70.0 56.7 73.3 63.3 50.0 30.0
40h 90.2 96.7 40.0 83.3 70.0 56.2
60h 69.6 86.7 78.9 80.0 72.2 66.7

Table 2: Win rates obtained in a tournament of the
best agents obtained from two separate training
runs after a specific amount wall clock time, in the
full games setting.

In Table 2, we extract the best GAS and baseline agent during different times in the training, and play
them against each other in a tournament with 30 games per matchup. The difference is even bigger in
this case, it took the baseline 40 hours of training before beating the best GAS agent at 10 hours of
training. We suspect GAS allows agents to learn more robust and more diverse policies, instead of
exploiting quirks of the environment, since the action space changes during the training.

6 CONCLUSION

In this work, we proposed methods for successively growing the action space of reinforcement
learning agents, and demonstrate it in the context of a challenging full game unit control task.
Our policy architecture and sampling scheme enable a hierarchy over actions without introducing
additional parameters. Consequently, experience obtained with coarse high-level actions directly
helps training low-level actions. Experiments on StarCraft: Brood War demonstrate that agents
trained while growing the action space make faster progress and enjoy superior exploration. This
is supported quantitatively by comparing win rates and rankings against fixed baseline agents and
between populations; and qualitatively by analyzing the exhibited strategies. We also find that
population based training is an efficient way to discover a suitable growing schedule. Combined with
self-play, GAS enables us to beat a strong rule-based baseline in mid-game scenarios.
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