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ABSTRACT

There has recently been a heated debate (e.g. Schwartz-Ziv & Tishby (2017), Saxe
et al. (2018), Noshad et al. (2018), Goldfeld et al. (2018)) about measuring the
information flow in Deep Neural Networks using techniques from information
theory. It is claimed that Deep Neural Networks in general have good generalization
capabilities since they not only learn how to map from an input to an output but also
how to compress information about the training data input (Schwartz-Ziv & Tishby,
2017). That is, they abstract the input information and strip down any unnecessary
or over-specific information. If so, the message compression method, Information
Bottleneck (IB), could be used as a natural comparator for network performance,
since this method gives an optimal information compression boundary. This claim
was then later denounced as well as reaffirmed (e.g. Saxe et al. (2018), Achille
et al. (2017), Noshad et al. (2018)), as the employed method of mutual information
measuring is not actually measuring information but clustering of the internal layer
representations (Goldfeld et al. (2018)). In this paper, we will present a detailed
explanation of the development in the Information Plain (IP), which is a plot-type
that compares mutual information to judge compression (Schwartz-Ziv & Tishby
(2017)), when noise is retroactively added (using binning estimation). We also
explain why different activation functions show different trajectories on the IP.
Further, we have looked into the effect of clustering on the network loss through
early and perfect stopping using the Information Plane and how clustering can be
used to help network pruning.

1 INTRODUCTION

Deep Neural Networks (DNNs) have recently achieved promising results in many areas especially
computer vision and natural language processing. Yet, the learning process and design principles
of configuring DNN architecture are under-investigated (Tishby & Zaslavsky, 2015). There are
some recent attempts towards addressing this challenge. From an information theoretic viewpoint,
Schwartz-Ziv & Tishby (2017) have investigated the learning dynamics of DNN – how the mutual
information (MI) of the layer activation with input and target develops over the course of training.
The finding is that DNNs generally first increase the MI of the layers with both, but then reduce
the MI with the input. This perceived compression has led to promising results of DNN in many
applications1. This compression behaviour resembles the IB-method, a constraint method which
aims to retain maximum information content for given compression levels (Tishby et al. (1999)) and
these possible maxima are depicted by the IB-bound.2 Through the similarity, the IB-bound could
be used as a way to judge network architecture (Schwartz-Ziv & Tishby (2017)). The closer to the
IB-bound the better the NN is likely to perform. However, this finding is controversial, which has
been supported by e.g. Achille et al. (2017); Achille & Soatto (2017); Noshad et al. (2018) and denied.
Most prominently, Saxe et al. (2018) have argued that this does not generalize for all activation
functions and that compression does not necessarily lead to good generalization.

Nonetheless Alemi et al. (2016), Kolchinsky et al. (2017), Nguyen & Choi (2018), Banerjee &
Montúfar (2018) and Alemi et al. (2018) have tried to implement the IB-constraint as optimization
parameter for DNN training leading to promising results. Amjad & Geiger (2018) criticize these
attempt claiming that they were not really sticking to the IB for their optimization process since in
deterministic NNs the mutual information is either infinite or constant. Hence, the IB cannot produce

1Good results are debatable see appendix F.
2see appendix E for more details.
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optimizeable gradients. They therefore reason, that the results of these authors were only possible by
giving up a hard IB constraint.

Recent success with fully invertible neural networks (which cannot experience any form of compres-
sion) cast doubt on the notion of compression being a necessary factor for good generalization (e.g.
(Jacobsen et al., 2018), (Chang et al., 2017), (Ardizzone et al., 2019), (Song et al., 2019)).
Finally, a recent paper by Goldfeld et al. (2018) assessed that measuring MI in this scenario is actually
tracking how clustered the internal layer representations of the samples are.

Building on Goldfeld et al. (2018), this work attempts to explain the trajectories in the IP created
through MI estimation using binning. Through this we will shed more light on the investigation of
the learning dynamics of DNNs through usage of the IP. Section 2.2.1 shows that the smaller the
bin size for the binning estimator, the more the layers drift towards a fixed point in the IP. Section
2.2.2 highlights that higher layers strongly influence the shape of lower layers in the IP. Section 2.3
explains why the IP looks the way it does.3 Clustering is then examined as a design parameter. This
is done by investigating the connection between the loss function and clustering through the usage
of early and perfect stopping in section 2.4.1. Here, no clear connection is found. Lastly, network
pruning is attempted in section 2.5 using the IP, where slightly positive indications are found. At first
though, the experimental setup is outlined.4

2 EXPERIMENTS

This section will introduce the experiments undertaken with the framework. Firstly, set goals are
explained. Secondly, the experimental design is layed out. Lastly, the results are presented.

2.1 EXPERIMENTAL DESIGN

To make the experiments replicable and comparable, we use the same experiment setup of Schwartz-
Ziv & Tishby (2017) and Saxe et al. (2018). To do so networks with the following designs have been
chosen:

• 5 fully connected intermediate layers with 10-7-5-4-3 neurons;

• input and output layer size depend on the used dataset; that is, 12-2 for Schwartz-Ziv &
Tishby (2017) and 784-Amount of Classes for MNIST;

• Softmax activation function for output as all experiments are classifications.

The activations of each layer are tracked for each iteration. Full tracking in beginning since the fastest
movement is to be expected there and increased gaps for later iterations will help reduce computation
complexity. Then the activations are binned. To judge the clustering of the activations, bin histograms
are used for different layers. We also follow the same design by using and comparing networks with
TanH and ReLU activations functions. Additionally combinations of the two are used to check for
potential interference. Hence these 4 combinations:

• Input-TanH-TanH-TanH-TanH-TanH-Softmax

• Input-ReLU-ReLU-ReLU-ReLU-ReLU-Softmax

• Input-TanH-TanH-ReLU-ReLU-ReLU-Softmax

• Input-ReLU-ReLU-TanH-TanH-TanH-Softmax

The first one is the activation setup by Schwartz-Ziv & Tishby (2017) and the second one is by Saxe
et al. (2018). All of the networks do not include any form of regularization and use SGD. Initially
the experiments are run on the same dataset as in Schwartz-Ziv & Tishby (2017). Additionally, the
MNIST-dataset (Lecun et al. (1998)) is used as in Saxe et al. (2018) to have a more complicated case
with more features.5

3If needed, relevant information theoretic concepts are briefly explained in appendix A.
4Code can be found at https://drive.google.com/open?id=

1CwBthST4bwtvMtw39Fy1bWMQ6hrz0Hzo
5To simplify the computation, a subset of MNIST is used. Results for MNIST can be seen in Appendix D.
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The batch size is standardized to 256. To estimate mutual information binning is used as it allows to
easily track the clustering. Different bin sizes are considered: 0.01, 0.07, 0.15 and 0.3. Schwartz-Ziv
& Tishby (2017) have used the amount of bins, but to allow a better comparison between TanH- and
ReLU-networks, it is chosen to change to use bin size instead since 20 bins for a given range of 2 and
an undefined range are deemed less compare-able.
The size of 0.07 corresponds to the 30 bins chosen in Schwartz-Ziv & Tishby (2017); Saxe et al.
(2018); that is, Distance 2\30 ≈ 0.07. 0.01 has been chosen as a smaller bin size because as stated
in Cover & Thomas (2005) and Kraskov et al. (2004) smaller bin sizes make it more likely that
the estimation error is small and more reliable results are achieved. The bigger bin sizes have been
chosen to investigate the influence on a wider range of values. The resulting information planes are
plotted in a different way than in prior works. The idea is to plot the IP with different colours for the
different layers to make them distinguishable. After that the information planes for early stopping
and perfect stopping (stop at minimum validation loss) are investigated. Lastly, we have looked into
whether an early stopping IP of a bigger network gives indications if layers can be pruned.

2.2 RESULTS

2.2.1 INFLUENCE OF BIN SIZE

From Figures 1a, 1b, 1c and 1d in that order, one interesting find is that for TanH-networks depending
on the bin size more layers drift towards the top right when the bin size decreases (therefore the
amount of bins increases). The effect is stronger the higher level the layer is. Also, the output layers
end point is not affected by that. Thus, the bin size is clearly having a big effect on the IP.

(a) Bin Size 0.01 (b) Bin Size 0.07

(c) Bin Size 0.15 (d) Bin Size 0.3

Figure 1: Information planes for different bin sizes for with batch size 256 (Schwartz-Ziv & Tishby
(2017)-dataset)

2.2.2 MIXED NETWORKS

Looking at the results of the mixed networks, one can see that ReLU-layers influence deeper TanH-
layers. Figure 2a shows the IP of a network where the higher layers are ReLU and the lower TanH.
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One can see that the layers following the ReLU-layers changed their pathway to a similar shape than
the ReLU-layer itself and not the ”normal” pathway of 2 compression phases. This effect gets weaker
the deeper in the network. Figure 2b shows the IP for a network with TanH in higher and ReLU in
lower layers. Here there is a significant impact of the TanH-layers on the ReLU-layers findable. The
ReLU-layers take on a similar behaviour to the TanH-layers even though the TanH-layers show no
compression at all. The effect gets also weaker the further the layer is apart from the TanH effect.

These effects have not always been present or prominent for every time mixture networks have been
trained (see fig. 9 in appendix B and fig. 12a in appendix D). Nonetheless, there seems to be an
influence of the previous layers on the compression in the lower layers.

(a) Leading ReLU (b) Leading TanH

Figure 2: Information plane for Mix-Network for batch size 256 and bin size 0.07 (Schwartz-Ziv &
Tishby (2017) dataset)

2.3 THE EFFECT OF THE INTRODUCTION OF NOISE THROUGH BINNING ON THE
INFORMATION PLANE

According to Goldfeld et al. (2018); Saxe et al. (2018); Amjad & Geiger (2018), in the TanH-networks,
mutual mutual information is either infinite (for continuous input features) or constant (for discrete
input features). Because the datasets in usage here are both discrete, the mutual information has
to be a constant; that is, MI of the input with the output I(X;Y ) has to be the same as the MI of
the layers with the output I(Ti;Y ). Also given the input X I(T |X), the conditional entropy of the
layer activities T is 0, which is explained in Appendix A.1. Therefore, we calculate these values for
comparison and Table 1 shows the results for the binning estimator6.

Comparing these values to the top right points in figures 1 and 11 (MNIST) one can see that these
values seem to exactly represent the most extreme point of the information plane on the top right
where the layers drift towards if the bin size is reduced (H(X) as max I(X;T ) and I(X;Y ) as max
I(T ;Y )). Hence, this gives evidence, that the mutual information is as claimed constant and that
conditional entropy I(T |X) = 0 which results in I(X;T ) = H(X).

Dataset I(X;Y) H(X)

Schwartz-Ziv & Tishby (2017) 0.9976734295143714 11.677719641641012
MNIST 1.5849625007211579 10.550746785383243

Table 1: Mutual information between input and output and entropy of input for Schwartz-Ziv &
Tishby (2017)- and MNIST-dataset

However, this leads to the question: why does the information plane not show constant MI?. Accord-
ing to Saxe et al. (2018), using a binning method, one loses the invertibility of the TanH function and
a bin almost by definition loses information about the value put in the bin (e.g. if one puts 2.53 and

6H(X) is simply log2(N) where N is the number of samples since each sample is different and each have a
probability of p(xi) =

1
N

. log2(x) > 0 for x > 1.
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2.54 in the 2.55 bin one cannot trace which one is which afterwards). The smaller the bin size and
therefore, the more bins there are, the better is the estimation by default (see appendix G). Section
2.2.1 establishes that the more bins the estimator uses the more of the layers drift towards the top
right which indicates that mutual information is indeed constant.

Referring to Appendix A.1, mutual information of the input X with a layer T is defined as I(X;T ) =
H(X)−H(X|T ). Since H(X) is a constant, a change in mutual information with the layer has to
be a result of a change in H(X|T ). Because H(X|T ) is only 0 if X is a function of T, one can infer
that if there is no direct mapping between X and T , there will be an increase in H(X|T ) which will
reduce the mutual information between the two. The same applies to the output Y .

Figure 3 shows different sample cases of how one can lose mutual information through binning.
In the first case there are two samples from two different classes placed into one bin. This makes
it impossible to differentiate between classes given only the bin number. This leads to a decrease
in mutual information of the layer with the output since there is no direct mapping between the
array which contains this bin and an output class possible (see Appendix G where array building
is explained). Also, since there are two samples in one bin, one cannot differentiate between the
two samples and therefore one loses mutual information with the input of the network since it is not
possible to directly map between the input and the bin. The second and third case have two samples
of the same class. Hence, it will only lead to a decrease in I(X;T ).

For example, two samples from two different classes are producing the activations 0.1, 0.33, 0.4 and
0.1, 0.34, 0.4. If no binning was performed, this could lead to the arrays 0103304 and 0103404 (this
is just an explanatory example in reality they get transformed to binary first). Each sample is uniquely
identifiable and each sample can get a class allocated. However, if there was binning in 0.05 steps
one would end up with the two arrays 0103504 and 0103504 and no differentiation is possible.

Count

bins
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1

2
4

5

6
7

(a) (b) (c) (d)

Figure 3: Example cases of how to lose mutual information. Different colours (and circled) represent
different classes and different numbers are different samples (a) two different classes in one bin→
decrease I(T;Y) and I(X;T) (b) two samples of same class in one bin → decrease I(X;T) (c) two
samples of the other class in one bin→ decrease I(X;T) (d) single sample in a bin→ no information
loss

If one plots the bins in a histogram at the beginning of training, at half of the epochs and after training
(see fig. 5) and compares it with the movement in the information plane (see fig. 4), one can see
that this roughly seems to fit this notion. As the layers which show compression with respect to the
input also show that their amount of empty bins increases over the course of the training and their
clustering into smaller amounts of bins increases.

So why do the bins empty out? This is driven by the Softmax output-layer whose neurons during
training are going to be driven to output either 1 or 0 for each sample to learn to correctly classify.
Hence, by definition this layer is going to reduce its filled bins down to two bins - 0 and 1. This
explains where the output layer is drifting towards I(X;T ) = 1 since the entropy will be 1 and there
is only 1 bit of information needed to find out which state the activation is in.

Figure 5 shows that the deeper the layer, the more the activations get binned into the extreme bins
for TanH and the more training proceeds the more bins are emptied out. The output layer seems to
force the next higher layer to take on extreme values as well as itself gets more and more decisive on
the sample classes. This gets propagated to the next layer and so on, but loses intensity. Figure 4
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demonstrates that this matches the corresponding information plane. The two layers that get clustered
show compression while the others do not.7

Therefore, one can derive that a concentration of the activations into a smaller amount of bins results
in lower estimated mutual information with the input.

(a) TanH-Network IP (Bin size 0.07) (b) ReLU-Network(Bin size 0.07)

Figure 4: Information planes for TanH and ReLU where bins were tracked. TanH is different than in
fig. 2b because it is from a different notebook that did not gather all data at the same time.

The situation with the output Y is different, since information is only lost when there are samples
of different classes in one bin leading to equal arrays (see above example). In the beginning we
have very low mutual information of the layers and the output. This is because we have random
weight initialization and the samples are more or less randomly allocated to the bins. This will cause
a lot of bins to have samples of different classes. As training goes on, the network learns to better
differentiate between classes and will be more likely to put samples from the same classes in the same
binning areas. The best example is the output layer where the network either produces 0 or 1 at the
end of training. Since Softmax is used this will produce an array of multiple zeros (depending on the
number of classes -1) and one 1 (see appendix G: activations get transformed into continuous array
for binning). This allows to uniquely identify which class the sample is allocated to by the network.

The next question about the pathway of the layers in the information plane is: why do ReLU-layers
take such a different path than TanH-layers?. The reason is that ReLUs has an inbuilt bin, because
activations can only be non negative. The weights of the network get initialized randomly and often
are negative values. This make the input of the ReLU activation function negative and because of that
the result will be 0. Hence, a lot of the activations are going to be 0 in the beginning. This means that
the total range of our bins will have less activations available to fill bins and for the same argument as
before this will lead to a lower entropy which will lead to less estimated mutual information. Over
the course of training more and more of the activation functions are leaving the 0-bin and filling
previously empty bins and this ”frees” information which results in the ReLU-layers path towards the
top right. This can be observed in the plots 5b, 5d and 5f in Figure 5 together with the IP in Figure 4b
where there is a wider spread of activations in bins. As training goes on, the amount of empty bins is
decreasing for the ReLU-layers. Thus entropy is increasing, which in return increases the estimated
mutual information.

Figures 5e and 5f also show why the the output layer initially drifts to an increase in MI with the
input. It is because there is an initial drop in empty bins since in the beginning the spread in the bins
is very small (big aggregation in the center at the beginning). Figures 14-13 presents the same trend
for the MNIST-dataset8.

The remaining question is why a larger bin size results in the layers drifting away from the “real”
mutual information. Naturally, larger bins result in fewer total bins which makes it more likely that

7It is important to note though that empty bins are just an indicator. It could be that there are few empty bins
but some with large sample concentration for the same result.

8Here the bin size has been increased since a too small bin size results in very thin bins that are not visible.
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(a) Layer 4 (TanH) (b) Layer 4 (ReLU)

(c) Layer 5 (TanH) (d) Layer 5 (ReLU)

(e) Output Layer (TanH) (f) Output Layer (ReLU)

Figure 5: Bin histograms for TanH and ReLU network at epochs 1, 4000 and 8000 for Schwartz-Ziv
& Tishby (2017) dataset.

multiple activations land in the same bin. Thus, it is more likely that the built array is the same which
in returns leads to information loss.

2.4 BOTTLENECKING

Another way to show that clustering is at play is if one inserts a bottleneck into the NN. Figure 6
shows the IP for a network with a 12-3-2-12-2-2 layer-neuron composition. The 3rd layer which
is the bottleneck actually shows higher compression than the 4th. If one considers data processing
inequality this should be impossible, but it is purely a result of many samples being in the same bins.

In summary, there seems to be a strong indication that the information plane is merely tracking
clustering as suggested by Goldfeld et al. (2018). Hence, the advantages of clustering should be
investigated. This is done in the following section.
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Figure 6: IP for Bottleneck network for Schwartz-Ziv & Tishby (2017) dataset.

2.4.1 EARLY AND PERFECT STOPPING

Since it does not seem that the highest level of compression is beneficial for generalization (see
appendix F or (Saxe et al., 2018), it makes sense to see what happens when one uses a fairly standard
way of trying to achieve good generalization - early stopping.

Figure 7a shows the results of early stopping and fig. 7b for perfect stopping compared to the full
8000 iterations for a TanH-network9. It seems that early stopping occurs when the network is starting
to enter the compression phase of the output-layer (early stop point is in the curve turning point).
The same happens for a ReLU network (see fig. 10a). This stopping does not generalize to the
MNIST-dataset (see Figure 15 in Appendix D).

Figure 7b presents that early stopping does not guarantee to stop at the global minimum, as it
is decided to see what the information plane shows at the global minimum for a “perfect” stop.
Therefore, there seems to be a not general connection between compression and the first minimum
but no connection to the global minimum.

2.5 CLUSTERING FOR PRUNING

We believe, that in deep neural networks, layers at the end of the network are more susceptible to
be pushed into a clustered state by the output layer when they are less needed by the network to
map the input to the output, since the network is essentially just passing the information through
without refining it. It has been shown that sometimes much smaller networks can perform similar
generalization performance than bigger ones (e.g. le Cun et al. (1990), Giles & Omlin (1994), Srinivas
& Babu (2015), Zhang et al. (2017)). Hence, clustering could potentially be used to identify less
effective layers at the end which could be safely removed to reduce computational complexity.

To investigate this the amount of hidden layers is doubled by adding additional 3 neuron layers at the
end, assuming that these are potentially prune-able. Additionally early stopping is performed to have
a more realistic scenario. The resulting IPs10 can be seen in Figure 8. The goal is to remove layers
that have similar trajectories from the network; e.g. layers 5,6 and 7 in Figure 8a. This process is
repeated until there are no similar layers and for each pruning, we re-plot the IP. Table 2 presents the
scores after each pruning. Both network types have shown prune-able layers until all added layers
have been removed. All pruning actions does not result in decreased score. We are aware that this is
a very much designed scenario, but it shows that this clustering-based pruning might be worthy of
further investigation.

9Results for ReLU network in fig. 10 in appendix C
10Because running time is limited, here only Schwartz-Ziv & Tishby (2017) dataset is used.
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(a) TanH (b) TanH

Figure 7: Comparison of information planes for early (left) and perfect (right) stopping (top) and full
iterations (bottom) of TanH network on Schwartz-Ziv & Tishby (2017)-dataset with batch size 256
and bin size 0.07

(a) Big TanH-Network IP (b) Big ReLU-Network

Figure 8: Big TanH and ReLU-networks on Schwartz-Ziv & Tishby (2017)-dataset

3 DISCUSSION

It has been reaffirmed that the information plane only seems to track clustering of the activations,
and now we will revisit and summarise the previous findings. We have highlighted the effect of
mixing activation functions. Adding ReLU-layers before TanH-layers changes the behaviour on the
TanH-layers, which is often observed on ReLu-layer. With clustering in mind, the reason can be that
in the beginning of training ReLU-layers often have 0 as activation11 which is going to be transmitted
to the TanH neurons. No matter what the weight of the connection is, TanH is going to receive a
0. This will lead to a clustering of the TanH-activations in the 0-bin which will lead to an initial
reduced mutual information with the input and the output. The longer training goes the more will the

11Random weight initialization leading to negative weights.
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Network type Big 1st Prunning 2nd 3rd

TanH 0.8768 0.8780 0.8732 0.8805
ReLU 0.8780 0.8646 0.8805

Table 2: Accuracy scores for big and prunned networks for Schwartz-Ziv & Tishby (2017)-dataset

ReLU-layer usually diversify the activations which in return will also lead to a diversification in the
TanH activations. Hence I(X;T ) and I(T ;Y ) will increase.

When there is a TanH-layer in front of a ReLU-layer, in the beginning there will be many negative
activations sent to the ReLU-layers since TanH ranges from -1 to 1 and this will force more activations
of the ReLU-layer to be 0. Random weight initialization will sometimes make this effect stronger or
weaker (see Appendix B). This will lead to an initial decrease in the MI before the network stabilizes
and learns to adjust the weights accordingly. Therefore, the composition of the network will influence
the clustering in the network.

On the one hand there seems to be a connection between clustering in the output-layer and Early
Stopping, on the other hand this does not apply to global minima. The results on the MNIST dataset
have shown that this connection does not generalize for different datasets. This is another indication
that the claims of Schwartz-Ziv & Tishby (2017) do not generally hold even when translated from
compression to clustering. Nonetheless, the pruning experiments have shown that clustering might be
useful for NN design.

4 CONCLUSION

This paper studies the information plane as a neural network analysis tool. We have looked into the
influence of different bin sizes for binning estimation, which has led to a detailed explanation of why
certain behaviour is happening in the information plane. Thus, finding new strong evidence that the
information plane only tracks clustering as Goldfeld et al. (2018) suggested. The usage of measuring
clustering has been investigated using early stopping and perfect stopping, which we have not been
able to generalise the finding across different datasets. Clustering can be used to design a NN in
terms of pruning, which might be worthy of further investigation. The information plane holds value
as a measure of clustering and could potentially lead to advancements in Deep Learning.

One aspect that has not been part of the discussion so far is that in contrast to non-linearly saturating
activation functions like TanH, which has no binning during the real training process, ReLU in fact
has a bin. The 0-bin could actually lead to a loss in mutual information because the injectiveness of
the activation function gets lost (not invertible anymore) and mutual information is not bound to be
constant or infinite. Therefore, networks with ReLU could experience a form of compression. ReLU
does in general show better generalization capabilities than TanH, which could partially support the
claim that compressed neural networks generalize better Schwartz-Ziv & Tishby (2017). A well
known problem of ReLUs is called “dying ReLUS” which could be a case of “too high” compression.
Which would disturb the mapping between input and output.

Taking out the binning of ReLUs, like in LeakyReLUs, is almost always favorable compared to stan-
dard ReLUs in terms of generalization (Xu et al. (2015)). Since LeakyReLUs restore the invertibility
of the activation function and therefore prevent compression, this also indicates that compression
does not necessarily generalizes better in DNNs. It remains a task for future investigations, how this
can be explained in detail.
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A BACKGROUND

The following addresses some necessary aspects of information theory to then briefly introduce the
IB method and excerpts of the debate about its applicability in deep learning. Information theory is a
mathematical way to represent the transmission and processing of information (Markowsky (2017)).
It is mostly founded on work of Claude Shannon (Shannon (1948)). There lies interest in studying
information theory when trying to understand neural networks, as in a neural networks information of
an input X about an output Y gets propagated through the network in an attempt to learn the mapping
of this information and with this to then generalize this mapping on unseen data. For the later, two
important concepts ”entropy” and ”mutual information” have to be understood which are briefly
outlined in the following. After that the IB method is summarised.

A.1 ENTROPY AND MUTUAL INFORMATION

Entropy is a term coined by Clausius (1867). It originates from thermodynamics and is a measure
of disorder in a system or how uncertain events are. It denotes the average amount of information
needed to describe a random variable. For a discrete random variable X, it can be expressed the
following way:

H(p) = −
∑
x∈X

p(x)log2(p(x)) (1)

where p(x) is the probability mass function and the result is denoted in information bits.
Conditional entropy is the entropy of a random variable conditioned on another random variable’s
knowledge (Cover & Thomas (2005)). Between two distributions X and Y it is calculated like this:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (2)

an important property of conditional entropy is that the conditional entropy of X given Y H(X|Y )
is 0 is and only if X is a deterministic function of Y (Cover & Thomas (2005)).
Relative entropy also known as Kullback-Leiber divergence is a measure of instance between the two
distributions. It can also be interpreted as how inefficient it is to assume the probability distribution
q if the real one is p. If one falsely assumes q the average description length would change to
H(p) + D(p||q) which is the sum of the entropy and the Kullback-Leiber divergence. Kullback-
Leiber divergence is defined as follows:

D(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
(3)

this always non negative and only 0 if p = q (Cover & Thomas (2005)).
The other relevant metric which is Mutual Information (MI). MI measures how much information one
variable has about another one. It is therefore a measure of dependency and in contrast to the linear
correlation coefficient, it also measures dependencies that do not show in covariance. An important
property is that it is invariant to reparametizations. Having variables X and Y this means, that if
there is a direct invertible mapping between variable X and a reparametized form of it X ′ 12, then
I(X;Y ) = I(X ′;Y ) (Kraskov et al. (2004)). MI can be calculated as follows (Cover & Thomas
(2005), Schwartz-Ziv & Tishby (2017)):

I(Y ;X) = DKL[p(x, y)||p(x)p(y)] =
∑

x∈X,y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

=
∑

x∈X,y∈Y

p(x, y) log

(
p(x|y)
p(x)

)
= H(X)−H(X|Y ) (4)

12X and X ′ are homeomorphisms
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Mutual information can also be used as a measure of independence between two variables, as it is 0,
only if the two variables are strictly independent (Kraskov et al. (2004)).

Information Bottleneck Method

Shannons information theory focused on transmission of information in signal processing. Signal
transmission, is usually subject to some form of loss as not 100% of the information reach their
recipient. This principle is known as the Data Processing Inequality (DPI), which states that the
information content of some input cannot be increased through data manipulation (e.g. by reparame-
terization) (Cover & Thomas (2005)). It is possible, that one does not need all of the information
to reconstruct the initial message. To do so, the relevant part of the information has to reach the
recipient. This means, that the original message can be compressed until it only conveys this relevant
part, which allows a direct mapping back to the original message (it is invertible).
Sometimes, one wants to compress information since information transfer is expensive.13 The stan-
dard way to determine how compressed a message is, is to calculate mutual information I(X̃;X)

where X̃ denotes the compressed message and X the original (see eq. 4). The standard way to
express how compressed a message can be is rate distortion theory which can be used to derive the
bottom optimal distortion for a given distortion rate. This smallest possible representation is called
a ”minimal sufficient statistic”. It allows to map the output to the input without mistakes (Cover &
Thomas (2005)).
Tishby et al. (1999) introduced a way to not only compress the message, but also to compress it
such that it retains a maximum of its information about an output Y measured through the mutual
information of the input with the output I(X;Y ). Therefore, X̃ becomes a minimal sufficient statistic
of X with respect to Y. This means that it is the least complex mapping of X capturing the mutual
information I(X;Y ) (Tishby & Zaslavsky (2015)). This method is called the IB method. The main
advantage is, that this optimization problem has an exact solution the Information Bound in the
IP (Tishby et al. (1999)).14

Tishby & Zaslavsky (2015) asserted that deep neural networks can be interpreted as Markov-Chains15,
since each layer is just depending on the previous layer’s output. Thus, DPI would apply and each
additional layer (ignoring single neurons) would have at most equal or less (mutual-)information
about input and output than the previous one. They therefore assume that a DNN compresses relevant
information much like the IB method down to something close to a minimal sufficient statistic.
Through this, they claim that the IB limit, the Information Bound, serves as a natural comparator of
DNN architecture performance - the closer to the IB Bound the more optimal the architecture.

13E. g. sending a JPEG image is a lot faster and cheaper than sending a raw file.
14See ap. E fig. 16 for examples.
15A series of memory-less stochastic events.

14



Under review as a conference paper at ICLR 2020

B OTHER MIX NETWORK EXAMPLES

These examples show that the trajectory of the information planes is very susceptible to how the
weights are initialised.

(a) Leading ReLU

(b) Leading TanH

Figure 9: Other information planes for mix networks for batch size 256 and bin size 0.07 (Schwartz-
Ziv & Tishby (2017) dataset)
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C ADDITIONAL RELU EARLY AND PERFECT STOP PLOTS

(a) ReLU (b) ReLU

Figure 10: Comparison of information planes for early (left) and perfect (right) stopping (top) and
full iterations (bottom) of ReLU-network on Schwartz-Ziv & Tishby (2017)-dataset with batch size
256 and bin size 0.07

D MNIST-RESULTS

Concerning the results for MNIST using binning (see figure 11), one can see, that the general
trend of the layer movement in the IP is the same as it was found for the Schwartz-Ziv & Tishby
(2017)-dataset.16 Another difference is that the mixture-networks are less susceptible to the different
activation functions in the higher layers. There is no noticeable influence iff ReLU is in the higher
layers (see the plots in figure 12a). For leading TanH-layers there is still a significant influence
perceive-able in the early periods at the bottom for the green and the yellow layer (see plots in fig.
12b).
The biggest difference is, that there is no distinct behaviour for Early Stopping on this dataset findable
(see fig. 15). Hence, the connection between the paths in the information plane and Early Stopping
does not seem to be a general one.
What generalizes perfectly though is that the smaller the bin size used to estimate mutual information,
the more the layers tend to be close to the maximum point in the top right. Hence the next section is
going to investigate the reasons for this. Also figures 13 and 14 show that the bins empty out and
redistribute themselves in the same way as for the Schwartz-Ziv & Tishby (2017) dataset.

16Downsampled to 3 classes (1,3 and 8) with 1000 samples each.
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(a) Bin Size 0.01 (b) Bin Size 0.07

(c) Bin Size 0.15 (d) Bin Size 0.3

Figure 11: Information planes for different bin sizes for with batch size 256 (MNIST-dataset)

(a) Leading ReLU (b) Leading TanH

Figure 12: Information plane for Mix-Network for batch size 256 and bin size 0.07 (MNIST dataset)
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(a) Layer 4 (TanH)

(b) Layer 5 (TanH)

(c) Output Layer (TanH)

Figure 13: Bin Histograms for TanH-Network at epochs 1, 4000 and 8000 for MNIST-dataset, batch
size 256 and bin size 0.07
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(a) Layer 4 (ReLU)

(b) Layer 5 (ReLU)

(c) Output Layer (ReLU)

Figure 14: Bin Histograms for ReLU-Network at epochs 1, 4000 and 8000 for MNIST-dataset, batch
size 256 and bin size 0.2 (higher batch size was needed because smaller would lead to too thin bins
that cannot be graphed.
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(a) TanH (b) ReLU

Figure 15: Comparison of information planes for Early Stopping (top) and Full iterations (bottom) of
TanH and ReLU-networks on MNIST-dataset with batch size 256 and bin size 0.07

E IB BOUND

Fig. 16 shows the Information Bound in the information plane and two explanatory achievable
compression levels for given I(X̃;Y ).

I(X̃; X)

I(Y; X̃)

achievable compression 2 achievable compression 1

preserved
I(Y;X̃) ex. 2

preserved
I(Y;X̃) ex. 1

Figure 16: Explanatory Information Plane showing the achievable compression of the message X

given a level of mutual information of the message X̃ and Y . The two dotted lines show two examples
of achievable compression levels (representation following Tishby et al. (1999))

F GENERALIZATION CAPABILITIES

In their analysis Schwartz-Ziv & Tishby (2017) focused solely on accuracy as the decisive parameter to
judge the generalization capabilities. They argued, that their model was having the best generalization
at the point of highest compression. If one takes the cross entropy loss into account as well, the
picture is very different. Since cross entropy is an information theoretic metric it makes sense to
include it into the analysis if one measures the information flow of a neural network. Figures 17a
and 17b show accuracy plotted against cross-entropy loss. One can see that the accuracy of the two
networks is indeed very good (scores of 0.946 and 0.937), but if one takes cross entropy into account
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it is obvious, that these models are very overfitted. What is shown in the plots, is on the one hand, the
model already reached a very good accuracy after roughly 1000 iterations and then just continuous
to be very high. On the other hand, the cross entropy loss starts to increase around the same region.
This means that the model is actually loosing its confidence. It still assigns almost all the samples
correctly as before, but is much more likely to change its mind and assign a sample to the wrong class.
Therefore, the model worse at 8000 iterations than it was at 1000. Hence, the maximum compression,
which is usually reached at the maximum epoch, cannot be equalled to good generalization.

(a) TanH-Network (b) ReLU-Network

Figure 17: Training and validation accuracy and cross-entropy loss for networks on Schwartz-Ziv &
Tishby (2017)-dataset with batch size 256
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G BINNING ESTIMATOR

Schwartz-Ziv & Tishby (2017) use a binning process to estimate the probability distribution of the
activations of the different layers with TanH. The idea is to separate the continuous activation range
into discrete bins. An example is shown in Figure 18 where a double linearly saturating function is
split in 12 bin compartments. For activation functions with known bounds like TanH, these bounds
are used to define the ”span-width” or the outer borders of the domain. Functions without defined
bounds approximate these through usage of the maximum and minimum occurrence in the samples.
For each epoch and layer, the recorded activations are then allocated to the bins. And the number of
samples in each bin are typically used to estimate the probability distribution. This is a very common
approach as it is easy to use (Kraskov et al. (2004)).
Schwartz-Ziv & Tishby (2017) use one sample of the inputs and all of its feature values as a whole,
meaning they do not look at the probability of a feature having a certain manifestation, but at
the probability of the sample being this feature combination as a whole. To do so the feature
manifestations of each sample get ”lined-up” as a binary array and the arrays probability is the one
actually used. The same happens with the output array and the now discrete (binned) values of the
activations.
With these the respective probabilities P (X), P (Y ) and P (T ) can be calculated. The conditional
probabilities P (Ti, X) and P (Ti, Y ) are calculated using the inverse of the X and Y arrays and their
respective already calculated probabilities. The process is as follows:

1. take the activation data where the inverse of X equals the manifestation of X (meaning
where the inverse equals the index of the i for all indices of the probability vector P (X))

2. convert these activations into continuous binary arrays like before

3. calculate the probability of these arrays as P (T,X)

With the now estimated probabilities, one can calculate the entropies using the formulas displayed in
equations 1 and 2 and with these one can calculate mutual information using equation 4.

Figure 18: Binning explanation - double linearly saturated function segmented into 12 bins (borders
as dotted lines) where x is the sum of the inputs into a neuron and y is the result of the activation

Decreasing the bin size and therefore effectively increasing the number of bins leads to a better
approximation of the mutual information as the estimation error converges to 0 (see fig. 19) (Cover
& Thomas (2005)—Kraskov et al. (2004)).
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Figure 19: Effect of different bin sizes on estimation error. Here the smaller bin size b2 allows to
approximate the distribution better than b1 (own representation)
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