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ABSTRACT

Coreference resolution is an important task for gaining more complete under-
standing about texts by artificial intelligence.The state-of-the-art end-to-end neu-
ral coreference model considers all spans in a document as potential mentions and
learns to link an antecedent with each possible mention. However, for the verba-
tim same mentions, the model tends to get similar or even identical representations
based on the features, and this leads to wrongful predictions. In this paper, we pro-
pose to improve the end-to-end system by building an attention model to reweigh
features around different contexts. The proposed model substantially outperforms
the state-of-the-art on the English dataset of the CoNLL 2012 Shared Task with
73.45% F1 score on development data and 72.84% F1 score on test data.

1 INTRODUCTION

Coreference is one of the most frequent phenomena in English and the other languages. Coreference
resolution is a crucial task before artificial intelligent systems capable of fully understanding the
human language. Supervised methods, especially the models using neural-network-generated word
representations, achieve outstanding performances Clark & Manning (2016); Lee et al. (2017; 2018).
However, for similar or identical text units, the problem of wrongfully getting the same coreferences
is still puzzling. For example, the following conversation has the sentences, A and B.

A: Yeah,it’s not far.Through the S-bahn here.I mean it’s like twenty minutes.

B: Or something.And so,if I do it,I’d love to have you join me.It’s a fancy wedding too.

The pronoun “it’s” in the sentence A and the “it’s” in the sentence B are obviously referring to the
different things. As they are likely to get similar or even the same expression, a false link between
them is often predicted. A similar case in sentence B. Due to different lemma and lexeme, the
model would not predicate that “I” in A and ”you” in B are coreferential. On the opposite, a false
coreference between “I” in A and “I” in B would be predicted.

In coreference resolution tasks, words referring each other are called mentions, while a mention
could be a common noun, a proper noun or a pronoun. Taking the above example, a coreference
system partitions the mentions in a sentence into one coreference chain-(”it’s”, ”it’s”), and single-
ton: ”the S-bahn” for speaker1. One coreference chain-(”I”, ”I’d”,”me”), and singleton: ”It’s” for
speaker2 and one coreference chain-(”I”, ”you”) between two speakers.

In recent years, several supervised approaches have been proposed to coreference resolution. The
work can be categorized into three classes. 1) mention-pair models: A mention pair model is a bi-
nary classifier that determines whether a pair of mentions is co-referring or not McCarthy & Lehnert
(1995). One of the common limitation of the mention-pair model is that it cannot capture infor-
mation beyond the mention pair. The information that can be obtained from the two markables to
determine their coreferential status is very limited.; 2) entity-mention models: The entity-mention
model aims to classify whether an NP (Noun phrase) is coreferent with a preceding cluster Yangy
et al. (2004); Culotta et al. (2007); Daumé III & Marcu (2005). This strategy considers the candi-
dates independently. It cannot measure how likely a candidate is the antecedent for a given anaphor,
relative to the other candidates; 3) ranking models: Ranking models allows candidate antecedents
of a mention to be ranked simultaneously Iida et al. (2003); Denis & Baldridge (2008); Durrett &
Klein (2013).
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In the above three classes, the ranking models recently obtained the state-of-the-art performance
Wiseman et al. (2015; 2016); Clark & Manning (2016). More recently, Lee et al. (2018) proposed
the first state-of-the-art end-to-end neural coreference resolution system. They consider all spans as
potential mentions and learn distributions over possible antecedents for each. In addition, they use a
fully differentiable approximation to higher-order inference to iteratively refine span representations,
and the model only uses a minimal set of hand-engineered features (speaker ID, document genre,
span distance, span width). This leads to the problem that identical mentions tend to get similar or
even identical representations, and further misled coreference resolutions to make mistakes.

In this paper, we demonstrate a novel method utilizing attention mechanism to adaptively exploit
features to represent identical mentions with different contexts. Inspired by the recent success of
attention mechanism, we focus on this issue and develop a general attention mechanism that learns
the importance/weight of each feature based on mention’s contexts and then add this information to
the end-to-end neural model. The entire model could be trained end-to-end with gradient descent.

The proposed model is evaluated on the CoNLL 2012 Shared Task Pradhan et al. (2012). The
results show that the method outperforms the baselines. Meanwhile, we made a statistic of the
different features’ weights in the attention mechanism. The statistic shows that the feature attention
algorithm does help to distinguish the features for identical mentions based on different contexts.

2 THE MODEL

2.1 TASK

In an end-to-end coreference resolution, the input is a document D with T words along with meta-
data, and the output is a set of mention clusters. Let N be the number of possible text spans in D.
We consider all possible spans up to a predefined maximum width. Denote the start and end indices
of a span i in D respectively by START (i) and END(i). For each span i the system needs to as-
sign an antecedent ai∈{ε,1,...,i-1} from all preceding spans or a dummy antecedent ε. The dummy
antecedent represents two cases: (1) the span i is not an entity mention, or (2) the span i is an entity
mention but not coreferential with any previous span. Finally, all spans, that are connected by a set
of antecedent predictions, are grouped.

2.2 METHODOLOGY

The section elaborates the model. We adopt a similar span representation approach as it in Lee
et al. (2018) using bidirectional LSTMs and a headfinding attention. In our approach, we investi-
gate grammatical numbers and use a general attention mechanism reweighing span features based
on mention’s contexts to generate the new feature representation. Thereafter, the scores of how
likely spans could be entity mentions are generated by a feed forward network. We also propose
an attention model of antecedent scoring to reweigh pair-wise features and produce the new feature
vectors.

Span Representation Illustrated in Figure 1,we assume vector representation of a sentence with L
words as {x1,x2,...,xL}, while xt denotes the concatenation of fixed pretrained word embeddings
and CNN character embeddings Santos & Zadrozny (2014) for t-th word. Then Bidirectional LSTMs
Hochreiter & Schmidhuber (1997) are used to encode each xt:

←−
ht = LSTMbackward(

←−−
ht+1, xt) (1)

−→
ht = LSTMforward(

−−→
ht+1, xt) (2)

x∗t = [
←−
ht ,
−→
ht ] (3)

Then, the model learns a task-specific notion of headedness using the attention mechanism Bahdanau
et al. (2014) over words in each span:
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Figure 1: The model of computing the span embedding representations.

at = wa · FFNN(x∗t ) (4)

ai,t =
exp(at)∑END(i)

k=START (i) exp(ak)
(5)

x̂i =

END(i)∑
t=START (i)

ai,t · xt (6)

Where xi is a weighted sum of word vectors in span i. FFNN is a feed forward network. Then the
final representation gi of span i was produced by:

gi = [x∗START (i), xEND(i)∗, x̂i, ϕ(i)] (7)

Where in Lee et al. (2018), ϕ(i) is a 20-dimensional feature vector encoding only span width infor-
mation. In our model, we incorporate one more feature, grammatical numbers. The grammatical
numbers are reinforced with the feature attention method by reweighing contextual features. A new
feature vector ϕ∗. is generated by the method.

Feature Attention Shown in Figure 2, we use a general attention mechanism that learns the im-
portance/weight of each feature based on contexts. Suppose the initial feature vectors is ϕ =
[ϕ1, ϕ2, . . . , ϕV ], where ϕi ∈ R20 indicates the i-th feature and xu is the contexts vectors gen-
erated by Bi-LSTM. Then the model learns the weight of each feature based on the contexts, and
generate the new feature vectors ϕ∗:

a′j = wa · FFNN(ϕjf(xu)) (8)

a′j,u =
exp(a′j)∑V
v=1 exp(a

′
v)

(9)

ϕ∗ = ⊕V
j=1a

′
j,u · ϕj (10)

Where ⊕ is the concatenate operation and i is a linear function to map xu to the same dimension
with the feature vector. ϕ∗ is the new reweighed feature vectors and a

′

j,u is the weight of each
feature based on the contexts.

Mention Scoring The new span representation is encoded to a FFNN to compute the mention score
measuring if it is an entity mention, where FA is the feature attention algorithm:
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Figure 2: The Feature Attention model. The model learns to weigh each feature based on contexts.

ϕ∗(i) = FA(ϕ(i), x∗i ) (11)
gi = [x∗START (i), x

∗
END(i), x̂i, ϕ

∗(i)] (12)

sm(i) = wm · FFNNm(gi) (13)

Antecedent Scoring For antecedent scoring, we use the same features (speaker, genre, distance) as
Lee et al. (2018). And incorporate our feature attention algorithm to the features ϕ(i, j):

ϕ∗(i, j) = FA(ϕ(i, j), x∗i ⊕ x∗j ) (14)

sa(i, j) = wa · FFNNa(gi, gj , gi ◦ gj , ϕ∗(i, j)) (15)

Coreference Score The final coreference score of span i and j indicates that (1) whether span i is a
mention, (2) whether span j is a mention, and (3) whether j is an antecedent of i :

s(i, j) =

{
0, j = ε

sm(i) + smj + sa(i, j), j 6= ε
(16)

Loss Regression we use the same loss regression as Lee et al. (2018), where GOLD(i) is the set of
spans in the gold cluster containing span i :

L = −log
N∏
i=1

∑
y′∈Y (i)∩GOLD(i)

p(y′) (17)

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

Dataset and baseline. The experiments are conducted on the English subset of the CONLL2012
Shared Task data Pradhan et al. (2012) and evaluated on three standard metrics: MUC Wiseman
et al. (2016), B3 Bagga & Baldwin (1998), and CEAFϕ4 Luo (2005). We report precision, recall,
F1 for each metric and the average F1 as the final CoNLL score. We use the baseline below:
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Table 1: Results on CoNLL 2012 English development set.

System MUC B C
P R F P R F P R F Avg F1

Lee et al. (2018) 82.06 77.85 79.90 74.15 68.86 71.41 69.27 66.47 67.84 73.05
+pair-wise FA 81.53 78.54 80.01 73.06 70.03 71.77 69.29 67.27 68.26 73.36
+grammatical numbers 81.65 78.43 80.00 73.97 69.60 71.72 69.05 67.60 68.32 73.35
+span FA 82.07 78.30 80.10 74.20 69.63 71.84 69.54 67.23 68.37 73.45

Björkelund & Kuhn 2014: The system obtains significant improvements over the baseline by
modifying LaSO to delay updates until the end of each instance.

Wiseman et al. 2015: The system learns distinct feature representations for anaphoricity detec-
tion and antecedent ranking, encouraged by pre-training on a pair of corresponding subtasks.

Wiseman et al. 2016: The system proposes to use recurrent neural networks (RNNs) to learn
latent, global representations of entity clusters directly from their mentions.

Clark & Manning 2016: The system presents a neural network based coreference system that
produces high-dimensional vector representations for pairs of coreference clusters to learn when
combining clusters is desirable.

Lee et al. 2017: The first state-of-the-art end-to-end neural coreference resolution system and
only uses a minimal set of hand-craft features.

Lee et al. 2018:The improved model for Lee et al. (2017) using the antecedent distribution from
a span-ranking architecture as an attention mechanism to iteratively refine span representations.

Hyperparameters. we follow the same hyperparameters as in Lee et al. (2018): Using GloVe word
embeddings Pennington et al. (2014) with a window size of 2 for the head word embeddings and
a window size of 10 for the LSTM inputs and embedding representations from a language model
Peters et al. (2018) as the input to the LSTMs (ELMo in the results). The maximum span width was
30 words and only consider 50 antecedents. λ = 0.4 is used for span pruning. The model is trained
up to 150 epoch with early stopping.

3.2 RESULTS AND DISCUSSION

Contrast Experiments We first run the Lee2018 system1 on the development data and test data of
CONLL2012 Shared Task. To train our model, we employ the same hyper-parameters as reported in
Lee et al. (2018). Then the model is trained and compared with the Lee2018 system. We compare
the model with the baseline system with each improvement : (1) Pair-wise FA (Feature Attention):
incorporating feature attention algorithm to the pair-wise features ϕ(i, j); (2) Grammatical numbers
(GN): incorporating grammatical numbers to span features ϕ(i); (3) Span FA(Feature Attention):
using feature attention algorithm to encode span feature ϕ(i).

Comparison and Analysis To investigate the importance of each component in the proposed model,
we report the results of each part in Table 1 and Table 2, comparing with Lee2018 system.

Pair-wise Feature Attention: The performance increases by 0.31 F1 on dev dataset and 0.17
on test with the Pair-wise FA. The improvement of the precision shows that the false-positive links
for the identical or similar mentions (not coreferent) are decreased. In the baseline model, when
mention t is predicated “not coreferent” to the mention u, the other mentions identical to t will be
likely to be predicated “not coreferent” to the mention u too. But the significant improvements from
the recall indicates that such false negative links are substantially decreased by the model.

Grammatical numbers: The addition of a new span feature, grammatical numbers, helps little
with the system. This indicates that the grammatical information extraction of the whole system is
relatively sufficient. So the GN does not help much.

1https://github.com/kentonl/e2e-coref/
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Table 2: Results on the CoNLL 2012 English test set.

System MUC B C
P R F P R F P R F Avg F1

Lee et al. (2018) 81.8 78.54 80.14 73.2 68.15 70.58 68.51 65.94 67.20 72.64
+pair-wise F A 81.71 78.84 80.24 72.82 68.60 70.67 68.82 66.26 67.51 72.81
+grammatical numbers 81.30 79.13 80.20 72.16 69.11 70.60 68.69 66.36 67.51 72.77
+span F A 81.42 79.20 80.29 72.44 68.94 70.65 69.12 66.08 67.57 72.84

Table 3: Overall performance on CoNLL 2012 English test set.

System MUC B C

P R F P R F P R F Avg F1
B&K (2014) 74.30 67.46 70.72 62.71 54.96 58.58 59.40 52.27 55.61 61.63
Wiseman et al. (2015) 76.23 69.31 72.6 66.07 55.83 60.52 59.41 54.88 57.05 63.39
Wiseman et al. (2016) 77.49 69.75 73.42 66.83 56.95 61.50 62.14 53.85 57.70 64.21
Clark & Manning (2016) 79.91 69.30 74.23 71.01 56.53 62.95 63.84 54.33 58.70 65.29
Lee et al. (2017) 78.40 73.40 75.80 68.60 61.80 65.00 62.70 59.00 60.80 67.20
Lee et al. (2018) 81.80 78.54 80.14 73.20 68.15 70.58 68.51 65.94 67.20 72.64
This work 81.42 79.20 80.29 72.44 68.94 70.65 69.12 66.08 67.57 72.84

Span Feature Attention: Finally, we consider the span feature attention. We see a contribution
of 0.1 F1 on dev dataset and 0.13 on test. The results show that the span FA does help to improve the
system, especially in the mention detection subtask.The contribution in mention detection subtask
is further discussed in Section Mention Detection Subtask.

Overall Performance Overall performance comparing with the other state-of-the-art systems are
shown in Table 3. We could see a significant improvement on average F1 scores over the previous
work, and the highest F1 scores on all three metrics especially in CEAFϕ4 metric. And the most
significant gains come fron improvements of recall. Such improvements indicate that the applying
of Feature Attention algorithm does help to distinguish the features for identical spans and men-
tions based on different contexts.That means the weights of different features are useful for making
coreference decisions.

Mention Detection Subtask To further understand the utility of Feature Attention algorithm for
mention detection subtask, we list the mention detection performance in Table 4. Compared wirh
Lee2018, the performance increases by 0.33 F1 on dev dataset and 0.31 on test. And the results show
that the model indeed performs better in the recall scores. In the baseline model, when there is a span
not predicated to be a mention, the other identical spans will unlikely to be detected as mentions,
either. However, in our model, such false negative links are decreased, being benefit from the span
FA algorithm that reweighs the features to distinguish identical spans with different representations
based on different contexts.

3.3 FEATURE WEIGHTS

To gain a further insight about how identical terms’ representations could be distinguished by the
attention mechanism, the feature attention weights are investigated. For example, span feature at-
tention weights are shown in Figure 3. For the three ”it’s” in the figure, we can observe that the first
two lines of ”it’s” that are coreferent gain similar weights for the two features: higher weight in span
width than grammatical number, but the third ”it’s” not coreferent gains the opposite results.This
indicates that the identical spans which have the same features will have the different span feature
attention weights depending on their contexts through the span feature attention and finally improves
the performance.
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Table 4: Mention Detection Results on CoNLL 2012 English data

System CoNLL-2012 Dev Set CoNLL-2012 Test Set
P R F P R F

Lee et al. (2018) 86.71 82.49 84.55 86.62 83.22 84.89
Our work 86.78 83.05 84.88 86.64 83.80 85.20

Figure 3: Example of span feature attention weights in different features. The rows show the span
feature attention weights of features of each ”it’s”.

4 CONCLUSION

Identical mentions impose difficulties on the current methods of coreference resolution as they tend
to get similar or even identical representations. The problem may directly lead a coreference res-
olution to wrong predictions. In the paper, we focus on this issue and develop an attention model
named Feature Attention to adaptively exploit features in order to represent identical mentions with
consideration of different contexts. The results show that our model with the Feature Attention algo-
rithm performed reasonably well in coreference resolution, which is evaluated on the CoNLL-2012
Shared Task in English.
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