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ABSTRACT

Recurrent neural networks (RNNs) are particularly well-suited for modeling long-
term dependencies in sequential data, but are notoriously hard to train because the
error backpropagated in time either vanishes or explodes at an exponential rate.
While a number of works attempt to mitigate this effect through gated recurrent
units, skip-connections, parametric constraints and design choices, we propose a
novel incremental RNN (iRNN), where hidden state vectors keep track of incre-
mental changes, and as such approximate state-vector increments of Rosenblatt’s
(1962) continuous-time RNNs. iRNN exhibits identity gradients and is able to
account for long-term dependencies (LTD). We show that our method is computa-
tionally efficient overcoming overheads of many existing methods that attempt to
improve RNN training, while suffering no performance degradation. We demon-
strate the utility of our approach with extensive experiments and show competitive
performance against standard LSTMs on LTD and other non-LTD tasks.

1 INTRODUCTION

Recurrent neural networks (RNNs) in each round store a hidden state vector, hk ∈ RD, and upon
receiving the input vector, xk+1 ∈ Rd, linearly transform the tuple (hk, xk+1) and pass it through
a memoryless non-linearity to update the state over T rounds. Subsequently, RNNs output an
affine function of the hidden states as its prediction. The model parameters (state/input/prediction
parameters) are learnt by minimizing an empirical loss. This seemingly simple update rule has had
significant success in learning complex patterns for sequential input data.

Nevertheless, that training RNNs can be challenging, and that performance can be uneven on tasks
that require long-term-dependency (LTD), was first noted by Bengio et al. (1994) and later by
other researchers. Pascanu et al. (2013b) attributed this to the fact that the error gradient back-
propagated in time (BPTT), for the time-step k, is dominated by product of partials of hidden-state
vectors,

∏T−1
j=k

∂hj+1

∂hj
, and these products typically exhibit exponentially vanishing decay or explosion,

resulting in incorrect credit assignment during training and test-time.

Rosenblatt (1962), on whose work we draw inspiration from, introduced continuous-time RNN
(CTRNN) to mimic activation propagation in neural circuitry. CTRNN dynamics evolves as follows:

τ ġ(t) = −αg(t) + φ(Ug(t) +Wx(t) + b), t ≥ t0. (1)

Here, x(t) ∈ Rd is the input signal, g(t) ∈ RD is the hidden state vector of D neurons, ġi(t) is the
rate of change of the i-th state component; τ ∈ R+, referred to as the post-synaptic time-constant,
impacts the rate of a neuron’s response to the instantaneous activation φ(Ug(t) +Wx(t) + b); and
U ∈ RD×D, W ∈ RD×d, b ∈ RD are model parameters. In passing, note that recent RNN works
that draw inspiration from ODE’s (Chang et al., 2019) are special cases of CTRNN (τ = 1, α = 0).

Vanishing Gradients. The qualitative aspects of the CTRNN dynamics is transparent in its integral
form:

g(t) = e−α
t−t0
τ g(t0) +

1

τ

∫ t

t0

e−α
t−s
τ φ(Ug(s) +Wx(s) + b)ds (2)

This integral form reveals that the partials of hidden-state vector with respect to the initial condition,
∂g(t)
∂g(t0)

, gets attenuated rapidly (first term in RHS), and so we face a vanishing gradient problem. We
will address this issue later but we note that this is not an artifact of CTRNN but is exhibited by ODEs
that have motivated other RNNs (see Sec. 2).
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Shannon-Nyquist Sampling. A key property of CTRNN is that the time-constant τ together with
the first term −g(t), is in effect a low-pass filter with bandwidth ατ−1 suppressing high frequency
components of the activation signal, φ((Ug(s)) + (Wx(s)) + b). This is good, because, by virtue
of the Shannon-Nyquist sampling theorem, we can now maintain fidelity of discrete samples with
respect to continuous time dynamics, in contrast to conventional ODEs (α = 0). Additionally, since
high-frequencies are already suppressed, in effect we may assume that the input signal x(t) is slowly
varying relative to the post-synaptic time constant τ .

Equilibrium. The combination of low pass filtering and slowly time varying input has a significant
bearing. The state vector as well as the discrete samples evolve close to the equilibrium state, i.e.,
g(t) ≈ φ(Ug(t) +Wx(t) + b) under general conditions (Sec. 3).

Incremental Updates. Whether or not system is in equilibrium, the integral form in Eq. 2 points to
gradient attenuation as a fundamental issue. To overcome this situation, we store and process incre-
ments rather than the cumulative values g(t) and propose dynamic evolution in terms of increments.
Let us denote hidden state sequence as hk ∈ RD and input sequence xk ∈ Rd. For k = 1, 2, . . . , T ,
and a suitable β > 0

τ ġ(t) = −α(g(t)± hk−1) + φ(U(g(t)± hk−1) +Wxk + b), g(0) = 0, t ≥ 0 (3)

hβ·τk , g(β · τ)

Incremental RNN (iRNN) achieves Identity Gradient. We propose to discretize Eq. 3 to realize
iRNN (see Sec. 3). In round k, it takes the previous state hk−1 ∈ RD and input xk ∈ Rd and
outputs hk ∈ RD after simulating the CTRNN evolution in discrete-time, for a suitable number of
discrete steps. We show that the proposed RNN approximates the continuous dynamics and solves
the vanishing/exploding gradient issue by ensuring identity gradient1. In general, we consider two
options, SiRNN, whose state is updated with a single CTRNN sample, similar to vanilla RNNs, and,
iRNN, with many intermediate samples. SiRNN is well-suited for slowly varying inputs.

Contributions. To summarize, we list our main contributions:
(A) iRNN converges to equilibrium for typical activation functions. The partial gradients of hidden-
state vectors for iRNNs converge to identity, thus solving vanishing/exploding gradient problem!
(B) iRNN converges rapidly, at an exponential rate in the number of discrete samplings of Eq. 1.
SiRNN, the single-step iRNN, is efficient and can be leveraged for slowly varying input sequences. It
exhibits fast training time, has fewer parameters and better accuracy relative to standard LSTMs.
(C) Extensive experiments on LTD datasets show that we improve upon standard LSTM accuracy as
well as other recent proposals that are based on designing transition matrices and/or skip connections.
iRNNs/SiRNNs are robust to time-series distortions such as noise paddings
(D) While our method extends directly (see Appendix A.1) to Deep RNNs, we deem these extensions
complementary, and focus on single-layer to highlight our incremental perspective.

2 RELATED WORK

Gated Architectures. Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is
widely used in RNNs to model long-term dependency in sequential data. Gated recurrent unit
(GRU) (Cho et al., 2014) is another gating mechanism that has been demonstrated to achieve similar
performance of LSTM with fewer parameters. Some recent gated RNNs include UGRNN (Collins
et al., 2016), and FastGRNN (Kusupati et al., 2018). While mitigating vanishing/exploding gradients,
they do not eliminate it. Often, these models incur increased inference, training costs, and model size.

Unitary RNNs. Arjovsky et al. (2016); Jing et al. (2017); Zhang et al. (2018); Mhammedi et al. (2016)
focus on designing well-conditioned state transition matrices, attempting to enforce unitary-property,
during training. Unitary property does not generally circumvent vanishing gradient (Pennington et al.
(2017)). Also, it limits expressive power and prediction accuracy while also increasing training time.

Deep RNNs. These are nonlinear transition functions incorporated into RNNs for performance
improvement. For instance, Pascanu et al. (2013a) empirically analyzed the problem of how to

1Does this imply infinite input recall and poor generalization?. No. Models such as hk = hk−1 and
hk = hk−1 +Wxk have identity gradient but cannot recall inputs. iRNNs state-vector responds to changes in
input. As such it cannot recall.
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construct deep RNNs. Zilly et al. (2017) proposed extending the LSTM architecture to allow step-
to-step transition depths larger than one. Mujika et al. (2017) proposed incorporating the strengths
of both multiscale RNNs and deep transition RNNs to learn complex transition functions from one
timestep to the next. While Deep RNNs offer richer representations relative to single-layers, it is
complementary to iRNNs.

Residual/Skip Connections. Jaeger et al. (2007); Bengio et al. (2013); Chang et al. (2017); Campos
et al. (2017); Kusupati et al. (2018) feed-forward state vectors to induce skip or residual connections,
to serve as a middle ground between feed-forward and recurrent models, and to mitigate gradient
decay. Nevertheless, these connections, cannot entirely eliminate gradient explosion/decay. For
instance, Kusupati et al. (2018) suggest hk = αhk + βφ(Uhk−1 +Wxk + b), and tune α ≈ 1 and
β ≈ 1− α, while realizing near identity gradient can conflict with good accuracy, as also observed in
our experiments.

Linear RNNs. (Bradbury et al., 2016; Lei et al., 2018; Balduzzi & Ghifary, 2016) have focused on
speeding up recurrent neural networks by replacing recurrent connections, such as hidden-to-hidden
interactions, with light weight linear components. While this has led to reduced training time, it has
resulted in significantly increasing model size. For example, Lei et al. (2018) typically requires twice
the number of cells for LSTM level performance.

ODE/Dynamical Perspective. There are a few works that draw inspiration from ODEs, and attempt
to address training stability, but in the end do not eliminate vanishing/exploding gradients. Talathi &
Vartak (2015) proposed a modified weight initialization strategy based on a simple dynamical system
perspective on weight initialization process that leads to successfully training RNNs composed of
ReLUs. Niu et al. (2019) analyzed RNN architectures using numerical methods of ODE and propose
a family of ODE-RNNs. Chang et al. (2019), propose Antisymmetric-RNN. Their key idea is to
express the transition matrix in Eq. 1, for the special case α = 0, τ = 1, as a difference: U = V −V T
and note that the eigenspectrum is imaginary. Nevertheless, Euler discretization, in this context
leads to instability, necessitating damping of the system, and as such vanishing gradient cannot be
completely eliminated. Its behavior is analogous to FastRNN Kusupati et al. (2018), in that, identity
gradient conflicts with high accuracy. In summary, we are the first to propose evolution over the
equilibrium manifold, and demonstrating identity gradients.

3 METHOD

We use Euler’s method to discretize Eq. 3 in steps δ = ητ . Denoting the ith step as gi = g(iδ)

τ
gi − gi−1

δ
= −α(gi−1 + hk−1) + φ(U(gi−1 + hk−1) +Wxk + b), g0 = 0, i ∈ [K] (4)

Rearranging terms we get a compact form for IRNN. We run the recursion for i ∈ [K] with g0 = 0.
We generalize the method and allow tuning parameters, η to depend on step i and round k ηik

gi = gi−1 + ηik(φ(U(gi−1 + hk−1) +Wxk + b)− α(gi−1 + hk−1)) (5)

hKk = gK

In many of our examples, we find the input sequence is indeed slowly varying, and K = 1 is often
sufficient. We refer to this as single-step-incremental-RNN (SiRNN) and drop the superscript K = 1,

hk = ηk(φ(U(hk−1) +Wxk + b)− αhk−1) (6)

Figure 1: iRNN Block Implementation as a feedforward
block.

We learn parameters, U,W, b and any additional
parameters in the loss function, νk by solving
an empirical risk minimization problem, in a
conventional manner, using back-propagation.

Implementation: Such update rules can be ef-
ficiently implemented using networks, as illus-
trated in Fig. 1, where ⊕,	 denote the entry-
wise plus and minus operators, and each square
denotes a learnable parameter or function with
parameters of the network. Once K is fixed,
iRNN can be readily converted into feedforward
network leveraging the blocks of Fig. 1.
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3.1 IDENTITY GRADIENT PROPERTY AND CONVERGENCE GUARANTEES.

Let us now collect a few properties of Eq. 3 and Eq. 5. First, denote the equilibrium solutions for an
arbirary input x ∈ Rd, arbitrary state-vector ν ∈ RD, in an arbitrary round:

Meq(x, ν) = {µ ∈ RD | α(µ+ ν) = φ(U(µ+ ν) +Wx+ b)}
Whenever the equilibrium set is a singleton, we denote it as a function heq(x, ν). For simplicity, we
assume below that ηik is a positive constant independent of k and i.
Proposition 1. Suppose, φ(·) is a 1-Lipshitz function in the norm induced by ‖ · ‖, and ‖U‖ < α,
then for any xk ∈ Rd and hk−1 ∈ RD, it follows thatMeq(x, ν) is a singleton and as K →∞, the
iRNN recursions converge to this solution, namely, hk = limK→∞ gK = heq(xk, hk−1)

Proof. Define T : RD → Rd, with T (g) = (1− ηα)g + η(φ(U(g + hk−1) +Wxk + b)− hk−1).
It follows that T (·) is a contraction:
‖T (g)− T (g′)‖ ≤(1− ηα)‖g − g′‖+ η‖φ(U(g + hk−1) +Wxk + b)− φ(U(g′ + hk−1) +Wxk + b)‖

≤ (1− ηα+ ‖U‖η)‖g − g′‖ < ‖g − g′‖.
We now invoke the Banach fixed point theorem, which asserts that a contractive operator on a
complete metric space converges to a unique fixed point, namely, TK(g)→ g∗. Upon substitution,
we see that this point g∗ must be such that, φ(U(g∗ + hk−1) +Wxk + b)− (g∗ + hk−1) = 0. Thus
equilibrium point exists and is unique. Result follows by setting hk , heq(xk, hk−1).

Next we show for η > 0, iRNN converges at a linear rate, which follows directly from Proposition 1.
Proposition 2. Under the setup in Proposition 1, it follows that,

‖hKk − heq(xk, hk−1)‖ ≤ (1− αη + η‖U‖)K‖h1k − heq(xk, hk−1)‖

Remark. Prop. 1 accounts for typical activation functions ReLU, tanh, sigmoids as well as deep
RNNs (appendix A.1).
Prop. 2 justifies SiRNN; if xk is slowly varying, h1k ≈ heq(xk, hk−1) resulting in rapid convergence.

In passing we point out that, in our experiments, we learn parameters ηik, and a result that accounts for
this case is desirable. We describe this case in Appendix A.2. A fundamental result we describe below
is that partials of hidden-state vectors, on the equilibrium surface is unity. For technical simplicity,
we assume a continuously differentiable activation, which appears to exclude ReLU activations.
Nevertheless, we can overcome this issue, but requires more technical arguments. The main difficulty
stems from ensuring that derivatives along the equilibrium surface exist, and this can be realized
by invoking the implicit function theorem (IFT). IFT requires continuous differentiability, which
ReLUs violate. Nevertheless, recent results 2 suggests that one can state implicit function theorem
for everywhere differentiable functions, which includes ReLUs.
Theorem 1. Suppose φ(·) is a continuously differentiable, 1-Lipshitz function, with ‖U‖ < α. Then
as K → ∞, ∂hk

∂hk−1
→ ∂heq(xk,hk−1)

∂hk−1
= −I . Furthermore, as K → ∞ the partial gradients over

arbitrary number of rounds for iRNN is identity.
∂hm
∂hn

=
∏

m≥k>n

∂hk
∂hk−1

= (−1)m−nI⇒
∥∥∥∥∂hm∂hn

∥∥∥∥ = 1. (7)

Proof. Define, ψ(g, hk−1) = φ(U(g + hk−1) +Wxk + b)− α(g + hk−1). We overload notation
and view the equilibrium point as a function of hk−1, i.e., g∗(hk−1) = heq(xk, hk−1). Invoking
standard results3 in ODE’s, it follows that g∗(hk−1) is a smooth function, so long as the Jacobian,
∇gψ(g∗, hk−1) with respect to the first coordinate, g∗, is non-singular. Upon computation, we see
that, ∇gφ(g∗, hk−1) = ∇φ(g∗, hk−1)U − αI , is non-singular, since ‖∇φ(g∗, hk−1)U‖ < ‖U‖. It
follows that we can take partials of the state-vectors. By taking the partial derivatives w.r.t. hk−1 in
Eq. 5, at the equilibrium points we have [∇ψ(g∗, hk−1)− αI][ ∂g∗

∂hk−1
+ I] = 0. The rest of the proof

follows by observing that the first term is non-singular.

2terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/
3http://cosweb1.fau.edu/~jmirelesjames/ODE_course/lectureNotes_

shortVersion_day1.pdf
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Figure 2: Phase-space trajectory with tanh activa-
tion of RNN, FastRNN, iRNN. X-axis denotes 1st
dimension, and Y-axis 2nd dimension of 2D hidden
state subject to random walk input with variance
10 for 1000 time-steps. Parameters U,W, b are ran-
domly initialized. RNN states are scaled to fit plot
since FastRNN is not required to be in the cube.

Remark. We notice that replacing hk−1 with
−hk−1 in Eq. 11 will lead to ∂heq

∂hk−1
= I, which

also has no impact on magnitudes of gradients. As
a result, both choices are suitable for circumventing
vanishing or exploding gradients during training,
but still may converge to different local minima and
thus result in different test-time performance. Fur-
thermore, notice that the norm preserving property
is somewhat insensitive to choices of α, so long as
the non-singular condition is satisfied.

3.2 IRNN DESIGN IMPLICATIONS:
LOW-RANK MODEL PARAMETRIZATION

Fig. 2 depicts phase portrait and illustrates salient
differences between RNN, FastRNN (RNN with skip connection), and iRNN (K=5). RNN and
FastRNN exhibit complex trajectories, while iRNN trajectory is smooth, projecting initial point
(black circle) onto the equilibrium surface (blue) and moving within it (green). This suggests that
iRNN trajectory belongs to a low-dimensional manifold.

Variation of Equilibrium w.r.t. Input. As before, heq be an equilibrium solution for some tuple
(hk−1, xk). It follows that,

(αI−∇φ(U(heq + hk−1) +Wxk + b)U)∂heq = ∇φ(U(heq + hk−1) +Wxk + b)W∂xk

This suggests that, whenever the input undergoes a slow variation, we expect that the equilibrium
point moves in such a way that U∂heq must lie in a transformed span of W . Now W ∈ RD×d with
d� D, which implies that (αI−∇φ(U(heq + hk−1) +Wxk + b)U is rank-deficient.

Low Rank Matrix Parameterization. For typical activation functions, note that whenever the
argument is in the unsaturated regime, ∇φ(·) ≈ I. We then approximately get span(αI − U) ≈
span(W ). We can express these constraints as U = αI + V H with low-rank matrices V ∈
RD×d1 , H ∈ Rd1×D, and further map both Uhk and Wxk onto a shared space. Since in our
experiments the signal vectors we encounter are low-dimensional, and sequential inputs vary slowly
over time, we enforce this restriction in all our experiments. In particular, we consider,

φ
(
P [U(hKk + hk−1) +Wxk + b]

)
− (hKk + hk−1) = 0. (8)

The parameter matrix P ∈ RD×D maps the contributions from input and hidden states onto the same
space. To decrease model-size we let P = U = (I+ V H) learn these parameters.

4 EXPERIMENTS

We organize this section as follows. First, the experimental setup, competing algorithms will be
described. Then we present an ablative analysis to highlight salient aspects of iRNN and justify some
of our experimental choices. We then plot and tabulate experimental results on benchmark datasets.

4.1 EXPERIMENTAL SETUP AND BASELINES

Choice of Competing Methods: We choose competing methods based on the following criteria:
(a) methods that are devoid of additional application or dataset-specific heuristics, (b) methods that
leverage only single cell/block/layer, and (c) methods without the benefit of complementary add-ons
(such as gating, advanced regularization, model compression, etc.). Requiring (a) is not controversial
since our goal is methodological. Conditions (b),(c) are justifiable since we could also leverage
these add-ons and are not germane to any particular method4. We benchmark iRNN against standard
RNN, LSTM (Hochreiter & Schmidhuber, 1997), (ungated) AntisymmetricRNN (Chang et al., 2019),
(ungated) FastRNN (Kusupati et al., 2018).

4These conditions eliminate some potential baselines. We provide specific justifications in the appendix A.4.
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Figure 3: Exploratory experiments for the Add task (a) Convergence with varying K; (b) Ratio ‖ ∂hT
∂h1
‖/‖ ∂hT

∂hT−1
‖

illustrates Vanishing/Exploding gradient (‖ ∂hT
∂hT−1

‖ and loss gradients are omitted but displayed in A.6.8. For
iRNN (a) and (b) together show strong correlation of gradient with accuracy in contrast to other methods.

Unitary RNN Variants. Results for methods based on unitary transitions (such as Arjovsky et al.
(2016); Wisdom et al. (2016); Vorontsov et al. (2017); Zhang et al. (2018)) are not reported in the
main paper (when available reported in appendix) for the following reasons: (a) They are substantially
more expensive, and requiring large model sizes; (b) Apart from the benchmark copy and add tasks,
results tabulated by FastRNN and Antisymmetric authors (see Zhang et al. (2018); Chang et al.
(2019)) show that they are well below SOTA; (c) iRNN dominates unitary-RNN variants on add-task
(see Sec. 4.3.1); (d) On copy task, while unitary invariants are superior, Vorontsov et al. (2017)
attributes it to modReLU or leaky ReLU activations. Leaky ReLUs allow for linear transitions, and
copy task being a memory task benefits from it. With hard non-linear activation, unitary RNN variants
can take up to 1000’s of epochs for even 100-length sequences (Vorontsov et al. (2017)).

Implementation. For all our experiments, we used the parametrized update formulation in Eq. 8 for
iRNN . We used tensorflow framework for our experiments. For most competing methods apart from
AntisymmetricRNN, which we implemented, code is publicly available. All the experiments were
run on an Nvidia GTX 1080 GPU with CUDA 9 and cuDNN 7.0 on a machine with Intel Xeon 2.60
GHz CPU with 20 cores.

Datasets. Pre-processing and feature extraction details for all publicly available datasets are in the
appendix A.3. We replicate benchmark test/train split with 20% of training data for validation to tune
hyperparameters. Reported results are based on the full training set, and performance achieved on the
publicly available test set. Table 4 (Appendix) and A.3 describes details for all the data sets.

Hyper Parameters We used grid search and fine-grained validation wherever possible to set the
hyper-parameters of each algorithm, or according to the settings published in (Kusupati et al., 2018;
Arjovsky et al., 2016) (e.g. number of hidden states). Both the learning rate and η’s were initialized
to 10−2. The batch size of 128 seems to work well across all the data sets. We used ReLU as the
non-linearity and Adam (Kingma & Ba (2015)) as the optimizer for all the experiments.

4.2 ABLATIVE ANALYSIS

We perform ablative analysis on the benchmark add-task (Sec 4.3.1) for sequence length 200 for
1000 iterations and explore mean-squared error as a metric. Fig. 3 depicts salient results.

(a) Identity Gradients & Accuracy: iRNN accuracy is correlated with identity gradients. Increasing
K improves gradients, and correlates with increased accuracy (Fig. 3). While other models ht =
αht−1 + βφ((U − γI)ht−1 + Wxt), can realize identity gradients for suitable choices; linear
(α = 1, β = 1, γ = 0, U = 0), FastRNN (α ≈ 1, β ≈ 0, γ = 0) and Antisymmetric (α =
1, β = 1, U = V − V T , ‖U‖ ≤ γ), this goal may not be correlated with improved test accuracy.
FastRNN(η = 0.001), Antisymmetric (γ = 0.01, ε = 0.001) have good gradients but poorer test
accuracy relative to FastRNN(η = 0.01), Antisymmetric(γ = 0.01, ε = 0.1), with poorer gradients.

(b) Identity gradient implies faster convergence: Identity gradient, whenever effective, must be
capable of assigning credit to the informative parts, which in turn results in larger loss gradients, and
significantly faster convergence with number of iterations. This is borne out in figure 3(a). iRNN for
larger K is closer to identity gradient with fewer (unstable) spikes (K = 1, 5, 10). With K = 10,
iRNN converges within 300 iterations while competing methods take about twice this time (other
baselines not included here exhibited poorer performance than the once plotted).
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Figure 4: Following Arjovsky et al. (2016) we display average Cross Entropy for the Copy Task (Sequence
Length (with baseline memoryless strategy)): (a) 200 (0.09) (b) 500 (0.039). Mean Squared Error for the Add
Task, baseline performance is 0.167 (Sequence Length) : (c) 200 (d) 750

(c) SiRNN (iRNN with K = 1 is generally sufficient). Fig. 3(a) illustrates that iRNN K = {5, 10}
achieves slightly faster convergence than SiRNN, but the computational overhead per iteration roughly
doubles or triples in comparison. Nevertheless, SiRNN is faster relative to competitors. For this
reason, we only tabulate SiRNN, whenever it is SOTA in a benchmark experiments.

4.3 LONG-TERM DEPENDENCY AND OTHER TASKS

We list five types of datasets, all of which in some way require effective gradient propagation: (1)
Conventional Benchmark LTD tasks (Add & Copy tasks) that illustrate that iRNN can rapidly learn
long-term dependence; (2) Benchmark vision tasks (pixel MNIST, perm-MNIST) that may not require
long-term, but nevertheless, demonstrates that iRNN achieves SOTA for short term dependencies but
with less resources. (3) Noise Padded (LTD) Vision tasks (Noisy MNIST, Noisy CIFAR), where a
large noise time segment separates information segments and the terminal state, and so the learner
must extract information parts while rejecting the noisy parts; (4) short duration activity embedded in
a larger time-window (HAR-2, Google-30 in Appendix Table 4 and many others A.6), that usually
arise in the context of smart IoT applications and require a small model-size footprint. Chang
et al. (2019) further justify (3) and (4) as LTD, because for these datasets where only a smaller
unknown segment(s) of a longer sequence is informative. (5) Sequence-sequence prediction tasks
(PTB language modeling) that are different from terminal prediction (reported in appendix A.6).

4.3.1 STANDARD BENCHMARK LTD TASKS : ADDITION & COPY MEMORY

Addition and Copy tasks (Hochreiter & Schmidhuber, 1997) have long been used as benchmarks in
the literature to evaluate LTD (Hori et al., 2017; Zhang et al., 2018; Arjovsky et al., 2016; Martens &
Sutskever, 2011). We follow the setup described in Arjovsky et al. (2016) to create the adding and
copying tasks. See appendix A.3 for detailed description.

Figure 4 show the average performance of various methods on these tasks. For the copying task
we observe that iRNN converges rapidly to the naive baseline and is the only method to achieve
zero average cross entropy. For the addition task, both FastRNN and iRNN solves the addition
task but FastRNN takes twice the number of iterations to reach desired 0 MSE. 5 In both the tasks,

5 Note that LSTM solves the addition problem in Arjovsky et al. (2016) only with more than 10k iterations.
We only use 2k iterations in our experiments to demonstrate the effectiveness of our method.
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iRNN performance is much more stable across number of online training samples. In contrast, other
methods either takes a lot of samples to match iRNN ’s performance or depict high variance in the
evaluation metric. This shows that iRNN converges faster than the baselines (to the desired error).
These results demonstrate that iRNN easily and quickly learns the long term dependencies . We
omitted reporting unitary RNN variants for Add and Copy task. See Sec. 4.1 for copy task. On
Add-task we point out that our performance is superior. In particular, for the longer T = 750 length,
Arjovsky et al. (2016), points out that MSE does not reach zero, and uRNN is noisy. Others either
(Wisdom et al., 2016) do not report add-task or report only for shorter lengths (Zhang et al., 2018).

Table 1: Results for Pixel-by-Pixel MNIST and Permuted MNIST datasets. K denotes pre-defined recursions
embedded in graph to reach equilibrium.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params

Pixel-MNIST FastRNN 96.44 15.10 33k
RNN 94.10 45.56 14k

LSTM 97.81 26.57 53k
Antisymmetric 98.01 8.61 14k

iRNN (K=1) 97.73 2.83 4k
iRNN (K=3) 98.13 2.93 4k

Permute-MNIST FastRNN 92.68 9.32 8.75k
LSTM 92.61 19.31 35k

Antisymmetric 93.59 4.75 14k
iRNN (K=1) 95.62 2.41 8k

4.3.2 NON LTD VISION TASKS: PIXEL MNIST, PERMUTE MNIST

Next, we perform experiments on the sequential vision tasks: (a) classification of MNIST images on
a pixel-by-pixel sequence; (b) a fixed random permuted MNIST sequence (Lecun et al., 1998). These
tasks typically do not fall in the LTD categories (Chang et al., 2019), but are useful to demonstrate
faster training, which can be attributed to better gradients.

For the pixel-MNIST task, Kusupati et al. (2018) reports that it takes significantly longer time for
existing (LSTMs, Unitary, Gated, Spectral) RNNs to converge to reasonable performance. In contrast,
FastRNN trains at least 2x faster than LSTMs. Our results (table 1) for iRNN shows a 9x speedup
relative LSTMs, and 2x speedup in comparison to Antisymmetric. In terms of test accuracy, iRNN
matches the performance of Antisymmetric, but with at least 3x fewer parameters. We did not gain
much with increased K values6. For the permuted version of this task, we seem to outperform the
existing baselines 7. In both tasks, iRNN trained at least 2x faster than the strongest baselines. These
results demonstrate that iRNN converges much faster than the baselines with fewer parameters.

4.3.3 NOISE PADDING TASKS: NOISY-MNIST, NOISY-CIFAR

Additionally, as in Chang et al. (2019), we induce LTD by padding CIFAR-10 with noise exactly
replicating their setup, resulting in Noisy-CIFAR. We extend this setting to MNIST dataset resulting
in Noisy-MNIST. Intuitively we expect our model to be resilient to such perturbations. We attribute
iRNN’s superior performance to the fact that it is capable of suppressing noise. For example, say
noise is padded at t > τ and this results in Wxt being zero on average. For iRNN the resulting states
ceases to be updated. So iRNN recalls last informative state hτ (modulo const) unlike RNNs/variants!
Thus information from signal component is possibly better preserved.

Results for Noisy-MNIST and Noisy-CIFAR are shown in Table 2. Note that almost all timesteps
contain noise in these datasets. LSTMs perform poorly on these tasks due to vanishing gradients. This

6 For some existing comparisons LSTM have achieved roughly 98.9 with dataset specific heuristics (Cooij-
mans et al., 2016), but we could not achieve this performance in our comparison (and so have many others like
(Kusupati et al., 2018; Zhang et al., 2018; Arjovsky et al., 2016)).

7Note that there’s no standard permutation in the literature. This may be the main reason we could not
replicate Chang et al. (2019) performance on the permute MNIST task.
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Table 2: Results for Noise Padded CIFAR-10 and MNIST datasets. Since the equilibrium surface is smooth and
resilient to small perturbations, iRNN achieves better performance than the baselines with faster convergence.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params

Noisy-MNIST FastRNN 98.12 8.93 11k
LSTM 10.31 19.43 44k

Antisymmetric 97.76 5.21 10k
iRNN (K=1) 98.48 2.39 6k

Noisy-CIFAR FastRNN 45.76 11.61 16k
LSTM 11.60 23.47 64k

Antisymmetric 48.63 5.81 16k
iRNN (K=1) 54.50 2.47 11.5k

is consistent with the earlier observations (Chang et al., 2019). iRNN outperforms the baselines very
comprehensively on CIFAR-10, while on MNIST the gains are smaller, as it’s a relatively easier task.
These results show that iRNN is more resilient to noise and can account for longer dependencies.

Table 3: Results for Activity Recognition Datasets. iRNN outperforms the baselines on all metrics even with
K = 1. Its worth noticing that although K = 5 increases test time, it’s well within LSTM’s numbers, the overall
train time and resulting performance are better than K = 1.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params Test

Time (ms)
HAR-2 FastRNN 94.50 0.063 7.5k 0.01

RNN 91.31 0.114 7.5k 0.01
LSTM 93.65 0.183 16k 0.04

Antisymmetric 93.15 0.087 7.5k 0.01
iRNN (K=1) 95.32 0.061 4k 0.01
iRNN (K=5) 96.30 0.018 4k 0.03

Google-30 FastRNN 91.60 1.30 18k 0.01
RNN 80.05 2.13 12k 0.01

LSTM 90.31 2.63 41k 0.05
Antisymmetric 90.91 0.54 12k 0.01

iRNN (K=1) 93.77 0.44 8.5k 0.01
iRNN (K=5) 94.23 0.44 8.5k 0.05

4.3.4 SHORT DURATION EMBEDDED ACTIVITY RECOGNITION TASKS: HAR-2, GOOGLE-30

We are interested in detecting activity embedded in a longer sequence with small footprint RNNs
(Kusupati et al. (2018)): (a) Google-30 (Warden, 2018), i.e. detection of utterances of 30 commands
plus background noise and silence, and (b) HAR-2 (Anguita et al., 2012), i.e. Human Activity
Recognition from an accelerometer and gyroscope on a Samsung Galaxy S3 smartphone.

Table 3 shows accuracy, training time, number of parameters and prediction time. Even with
K = 1, we compare well against competing methods, and iRNN accuracy improves with larger K.
Interestingly, higher K yields faster training as well as moderate prediction time, despite the overhead
of additional recursions. These results show that iRNN outperforms baselines on activity recognition
tasks, and fits within IoT/edge-device budgets.

5 CONCLUSION

Drawing inspiration from Rosenblatts Continuous RNNs, we developed discrete time incremental
RNN (iRNN). Leveraging equilibrium properties of CTRNN, iRNN solves exploding/vanishing
gradient problem. We show that iRNN improved gradients are directly correlated with improved test
accuracy. A number of experiments demonstrate iRNNs responsiveness to long-term dependency
tasks. In addition, due to its smooth low-dimensional trajectories, it has a lightweight footprint that
can be leveraged for IoT applications.
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A APPENDIX

A.1 MULTI-LAYER DEEP RNN NETWORKS.

We point out in passing that our framework readily admits deep multi-layered networks within a
single time-step. Indeed our setup is general; it applies to shallow and deep nets; small and large time
steps. As a case in point, the Deep Transition RNN Pascanu et al. (2013c):

hk+1 = fh(hk, xk+1) = φh(WLφL−1(WL−1 . . .W1φ1(Uhk +Wxk+1))

is readily accounted by Theorem 1 in an implicit form:

hk+1 = fh(hk+1 + hk, xk+1)− hk.

So is Deep-RNN Hermans & Schrauwen (2013). The trick is to transform hk → hk + hk+1 and
hk+1 → hk + hk+1. As such, all we need is smoothness of fh, which has no restriction on # layers.
On the other hand, that we do not have to limit the number of time steps is the point of Theorem 1,
which asserts that the partial differential of hidden states (which is primarily why vanishing/exploding
gradient arises Pascanu et al. (2013b) in the first place) is identity!!

A.2 CONVERGENCE GUARANTEES FOR GENERAL LEARNING RATES.

Theorem 2 (Local Convergence with Linear Rate). Assume that the function F (gi) , φ(U(gi +

hk−1) +Wxk + b)− (gi + hk−1) and the parameter η(i)k in Eq. 5 satisfies

[η
(i)
k ]2‖∇F (gi)F (gi)‖2 + 2η

(i)
k F (gi)

>∇F (gi)F (gi) < 0,∀k, ∀i. (9)

Then there exists ε > 0 such that if ‖g0 − heq‖ ≤ ε where heq denotes the fixed point, the sequence
gi generated by the Euler method converges to the equilibrium solution inMeq(hk−1, xk) locally
with linear rate.

The proof is based on drawing a connection between the Euler method and inexact Newton methods,
and leverages Thm. 2.3 in Dembo et al. (1982). See appendix Sec. A.7.1 Thm. 3 and Sec. A.6.5 (for
proof, empirical verification).

Corollary 1. If ‖I+ η
(i)
k ∇F (gi)‖ < 1,∀k, ∀i, the forward propagation (Eq. 12) is stable and the

sequence {gi} converges locally at a linear rate.

The proof is based on Thm. 2.3 in Dembo et al. (1982), Thm. 2 and Prop. 2 in Chang et al. (2019).
See appendix A.7.1 Corollary. 2
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Table 4: Dataset Statistics & Long Term Dependence

Dataset Avg. Activity
Time

Input
Time

Sequence
Ratio #Train #Fts #Steps #Test

Google-30 25ms 1000ms 3/99 51,088 32 99 6,835
HAR-2 256ms 2560ms 13/128 7,352 9 128 2,947

Noisy-MNIST 28 1000 7/250 60,000 28 1000 10,000
Noisy-CIFAR 32 1000 4/125 60,000 96 1000 10,000
Pixel-MNIST 60,000 1 784 10,000

Permuted-MNIST 60,000 1 784 10,000

A.3 DATASET DETAILS

Table 4 and table 6 lists the statistics of all the datasets described below.

Google-12 & Google-30: Google Speech Commands dataset contains 1 second long utterances of
30 short words (30 classes) sampled at 16KHz. Standard log Mel-filter-bank featurization with 32
filters over a window size of 25ms and stride of 10ms gave 99 timesteps of 32 filter responses for
a 1-second audio clip. For the 12 class version, 10 classes used in Kaggle’s Tensorflow Speech
Recognition challenge8 were used and remaining two classes were noise and background sounds
(taken randomly from remaining 20 short word utterances). Both the datasets were zero mean - unit
variance normalized during training and prediction.

HAR-29: Human Activity Recognition (HAR) dataset was collected from an accelerometer and
gyroscope on a Samsung Galaxy S3 smartphone. The features available on the repository were
directly used for experiments. The 6 activities were merged to get the binarized version. The classes
Sitting, Laying, Walking_Upstairs and Standing, Walking, Walking_Downstairs were merged to
obtain the two classes. The dataset was zero mean - unit variance normalized during training and
prediction.

Penn Treebank: 300 length word sequences were used for word level language modeling task using
Penn Treebank (PTB) corpus. The vocabulary consisted of 10,000 words and the size of trainable
word embeddings was kept the same as the number of hidden units of architecture. This is the setup
used in (Kusupati et al., 2018; Zhang et al., 2018).

Pixel-MNIST: Pixel-by-pixel version of the standard MNIST-10 dataset 10. The dataset was zero
mean - unit variance normalized during training and prediction.

Permuted-MNIST: This is similar to Pixel-MNIST, except its made harder by shuffling the pixels
with a fixed permutation. We keep the random seed as 42 to generate the permutation of 784 pixels.

Noisy-MNIST: To introduce more long-range dependencies to the Pixel-MNIST task, we define a
more challenging task called the Noisy-MNIST, inspired by the noise padded experiments in Chang
et al. (2019). Instead of feeding in one pixel at one time, we input each row of a MNIST image at
every time step. After the first 28 time steps, we input independent standard Gaussian noise for the
remaining time steps. Since a MNIST image is of size 28 with 1 RGB channels, the input dimension
is m = 28. The total number of time steps is set to T = 1000. In other words, only the first 28 time
steps of input contain salient information, all remaining 972 time steps are merely random noise. For
a model to correctly classify an input image, it has to remember the information from a long time ago.
This task is conceptually more difficult than the pixel-by-pixel MNIST, although the total amount of
signal in the input sequence is the same.

Noisy-CIFAR: This is exactly replica of the noise paded CIFAR task mentioned in Chang et al.
(2019). Instead of feeding in one pixel at one time, we input each row of a CIFAR-10 image at
every time step. After the first 32 time steps, we input independent standard Gaussian noise for the
remaining time steps. Since a CIFAR-10 image is of size 32 with three RGB channels, the input
dimension is m = 96. The total number of time steps is set to T = 1000. In other words, only the first

8https://www.kaggle.com/c/tensorflow-speech- recognition-challenge
9https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+ smartphones

10http://yann.lecun. com/exdb/mnist/
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32 time steps of input contain salient information, all remaining 968 time steps are merely random
noise. For a model to correctly classify an input image, it has to remember the information from a
long time ago. This task is conceptually more difficult than the pixel-by-pixel CIFAR-10, although
the total amount of signal in the input sequence is the same.

Addition Task: We closely follow the adding problem defined in (Arjovsky et al., 2016; Hochreiter
& Schmidhuber, 1997) to explain the task at hand. Each input consists of two sequences of length T.
The first sequence, which we denote x, consists of numbers sampled uniformly at random U [0, 1].
The second sequence is an indicator sequence consisting of exactly two entries of 1 and remaining
entries 0. The first 1 entry is located uniformly at random in the first half of the sequence, whilst the
second 1 entry is located uniformly at random in the second half. The output is the sum of the two
entries of the first sequence, corresponding to where the 1 entries are located in the second sequence.
A naive strategy of predicting 1 as the output regardless of the input sequence gives an expected mean
squared error of 0.167, the variance of the sum of two independent uniform distributions.

Copying Task: Following a similar setup to (Arjovsky et al., 2016; Hochreiter & Schmidhuber,
1997), we outline the copy memory task. Consider 10 categories, {ai}9i=0. The input takes the form
of a T + 20 length vector of categories, where we test over a range of values of T. The first 10
entries are sampled uniformly, independently and with replacement from {ai}7i=0, and represent the
sequence which will need to be remembered. The next T − 1 entries are set to a8, which can be
thought of as the ’blank’ category. The next single entry is a9, which represents a delimiter, which
should indicate to the algorithm that it is now required to reproduce the initial 10 categories in the
output. The remaining 10 entries are set to a8. The required output sequence consists of T + 10
repeated entries of a8, followed by the first 10 categories of the input sequence in exactly the same
order. The goal is to minimize the average cross entropy of category predictions at each time step of
the sequence. The task amounts to having to remember a categorical sequence of length 10, for T
time steps.

A simple baseline can be established by considering an optimal strategy when no memory is available,
which we deem the memoryless strategy. The memoryless strategy would be to predict a8 for T + 10
entries and then predict each of the final 10 categories from the set {ai}7i=0 i=0 independently and
uniformly at random. The categorical cross entropy of this strategy is 10 log(8)

T+20

DSA-1911: This dataset is based on Daily and Sports Activity (DSA) detection from a resource-
constrained IoT wearable device with 5 Xsens MTx sensors having accelerometers, gyroscopes and
magnetometers on the torso and four limbs. The features available on the repository were used for
experiments. The dataset was zero mean - unit variance normalized during training and prediction.

Yelp-5: Sentiment Classification dataset based on the text reviews12. The data consists of 500,000
train points and 500,000 test points from the first 1 million reviews. Each review was clipped or
padded to be 300 words long. The vocabulary consisted of 20000 words and 128 dimensional word
embeddings were jointly trained with the network.

A.4 BASELINE JUSTIFICATION

In our experiments section, we stated that some of the potential baselines were removed due to
experimental conditions enforced in the setup. Here we clearly justify our choice. Mostly the
reasoning is to avoid comparing complementary add-ons and compare the bare-bone cells.

• Cooijmans et al. (2016) is removed since its an add-on and can be applied to any method.
Besides its pixel-mnist results involve dataset specific heuristics.
• Gong et al. (2018) is also an add-on and hence can be applied to any method.
• Zilly et al. (2017); Pascanu et al. (2013a); Mujika et al. (2017) denote deep transitioning

methods. They are add-ons for any single recurrent block and hence can be applied to any
recurrent cell.
• Gating variants of single recurrent cells (Chang et al., 2019; Kusupati et al., 2018) have also

been removed. Since iRNN can be extended to a gating variant and hence its just an add-on.

11https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
12https://www.yelp.com/dataset/challenge
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Table 5: Various hyper-parameters to reproduce results

Dataset Hidden Units

Google-30 80
HAR-2 80

Pixel-MNIST 128
Permuted-MNIST 128

Noisy-MNIST 128
Noisy-CIFAR 128
Addition Task 128
Copying Task 128

PTB 256
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Figure 5: Mean Squared Error shown for the Add Task (Sequence Length) : (c) 100 (d) 400

A.5 HYPER-PARAMETERS FOR REPRODUCIBILITY

We report various hyper-parameters we use in our experiments for reproduciblity. As mentioned
earlier we mainly use ’ReLU’ as the non-linearity and Adam as the optimizer. Apart from this, other
hyper-parameters are mentioned in table 5.

A.6 ADDITIONAL EXPERIMENTS

Table 6: Other Dataset Statistics & Long Term Dependence

Dataset Avg. Acitivity
Time

Input
Time

Sequence
Ratio #Train #Fts #Steps #Test

Google-12 25ms 1000ms 3/99 22,246 32 99 3,081
DSA-19 500ms 5000ms 13/125 4,560 45 125 4,560
Yelp-5 20 300 1/15 500,000 128 300 500,000
PTB 929,589 300 300 82,430

A.6.1 COPYING AND ADDITION TASKS

Figure 5 shows the results for remaining experiments for the addition task for length 100, 400.

A.6.2 TRADITIONAL DATASETS

Table 7 shows the results including left out baselines for Pixel-MNIST and permute-MNIST task.
Here we also include star rating prediction on a scale of 1 to 5 of Yelp reviews Yelp (2017). Table 8
shows the results for this dataset.
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Table 7: Results for Pixel-by-Pixel MNIST and Permuted MNIST datasets. K denotes pre-defined
recursions embedded in graph to reach equillibrium.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params

Pixel-MNIST FastRNN 96.44 15.10 33k
FastGRNN-LSQ 98.72 12.57 14k

RNN 94.10 45.56 14k
SpectralRNN 97.7 6k

LSTM 97.81 26.57 53k
URNN 95.1 16k

Antisymmetric 98.01 8.61 14k
iRNN (K=1) 97.73 2.83 4k
iRNN (K=2) 98.13 3.11 4k
iRNN (K=3) 98.13 2.93 4k

Permute-MNIST FastRNN 92.68 9.32 8.75k
SpectralRNN 92.7 8.5k

LSTM 92.61 19.31 35k
URNN 91.4 12k

Antisymmetric 93.59 4.75 14k
iRNN (K=1) 95.62 2.41 8k

Table 8: Results for Yelp Dataset.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Test
Time (ms) #Params

Yelp-5 FastRNN 55.38 130 3.61 0.4 32.5k
FastGRNN-LSQ 59.51 130 3.91 0.7 32.5k

FastGRNN 59.43 8 4.62
RNN 47.59 130 3.33 0.4 32.5k

SpectralRNN 56.56 89 4.92 0.3 22k
EURNN 59.01 122 72.00
LSTM 59.49 516 8.61 1.2 129k
GRU 59.02 388 8.12 0.8 97k

Antisymmetric 54.14 130 2.61 0.4 32.5k
UGRNN 58.67 258 4.34

iRNN (K=1) 58.16 97.67 0.31 0.4 25k
iRNN (K=2) 59.01 98.84 0.31 0.7 25k
iRNN (K=3) 59.34 100 1.16 1.0 25k

A.6.3 ACTIVITY RECOGNITION DATASETS

We also include activity recognition tasks: (a)Google-12 Warden (2018) , i.e. detection of utterances
of 10 commands plus background noise and silence and (b) DSA-19 Altun et al. (2010), Daily and
Sports Activity (DSA) detection from a resource-constrained IoT wearable device with 5 Xsens MTx
sensors having accelerometers, gyroscopes and magnetometers on the torso and four limbs. Table
9 shows results for these activities along with some other baselines for activity recognition tasks
mentioned in Sec. 4.3.4 and described in Sec. A.3.

A.6.4 PTB LANGUAGE MODELLING

We follow (Kusupati et al., 2018; Zhang et al., 2018) to setup our PTB experiments. We only pursue
one layer language modelling, but with more difficult sequence length (300). Table 10 reports all
the evaluation metrics for the PTB Language modelling task with 1 layer as setup by Kusupati et al.
(2018), including test time and number of parameters (which we omitted from the main paper due to
lack of space).
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A.6.5 LINEAR RATE OF CONVERGENCE TO FIXED POINT
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Figure 6: Linear convergence in iRNN .

Empirically we verify the local convergence to a fixed
point with linear rate by comparing the Euclidean distance
between the approximate solutions, h(k)

t , using Eq. 10
with g0 = 0 and the fixed points, ht, computed using
FSOLVE from SCIPY. The learnable parameters are initial-
ized suitably and then fixed. We illustrate our results in
Fig. 6, which clearly demonstrates that the approximate
solutions tend to converge with linear rate.

gi = gi−1 + ηit(φ(U(gi−1 + ht−1) +Wxt + b)− α(gi−1 + ht−1)) (10)

hKt = gK

A.6.6 THEORETICAL VERIFICATION

Here we include some experiments to show that our theoretical assumptions hold true.
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Figure 7: Histogram of the eigenvalues of∇φU− I for iRNN on HAR-2 dataset.

Non-Singularity of the matrix D For our iRNN parametrization to satisfy the conditions of having
equillibrium points to be locally asymptotically stable, the eigen values of the matrixD = (∇φ(·)U−
γI) should be negative. We plot a histogram of the eigenvalues of D for all the points in the HAR-2
dataset. As illustrated in the figure 7, all the eigenvalues are negative.

A.6.7 IDENTITY GRADIENT COMPARISON iRNN VS RNN

To verify Theorem. 1 empirically, we train RNN and iRNN on the HAR-2 data set (see more details
in Sec. 4), respectively, and plot in Fig. 8 the magnitude of gradient of the last layer hT w.r.t. the first
layer h1 in log scale to confirm that our approach leads to no vanishing or exploding gradients when
the error is back-propagated through time. We also conducted experiments to verify that the gradient
of iRNN is norm preserving (see Sec. A.6.8 and Figure . 3). As we see clearly, RNN suffers from
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(a)

Figure 8: Comparison between RNN and iRNN on the magnitudes of gradients.

serious vanishing gradient issue in training, while iRNN’s backpropagated gradients is close to 1,
and the variance arises mainly our approximation of fixed points and stochastic behavior in training
networks, demonstrating much better training stability of iRNN.

A.6.8 GRADIENT NORM W.R.T. LOSS ‖ ∂L∂h1
‖

In addition to the gradient ratio we plot in Sec.4.2, we also show in figure 9, the more popular quantity
captured in earlier works (Arjovsky et al., 2016; Zhang et al., 2018), i.e. the gradient norm w.r.t.
loss ‖ ∂L∂h1

‖. We emphasize that this quantity alone is misleading in the context of resolving the
issue of vanishing/exploding gradients. Since ‖ ∂L∂h1

‖ = ‖ ∂L∂hT ‖ ∗ ‖
∂hT
∂h1
‖. The long term component

controlling the gradients is ‖∂hT∂h1
‖, but the other component, ‖ ∂L∂hT ‖ could become zero by the virtue

that the loss is nearly zero. This happens in our addition task experiment, because MSE is close to
zero, we experience nearly 0 value for this quantity. But this is clearly because the MSE is 0. Also
note that none of our graphs have log scale, which is not the case in earlier works. The conclusion
that can be drawn from the loss-gradient is that it is somewhat stable, and can inform us about quality
of convergence.

We also plot ‖ ∂hT
∂hT−1

‖ in figure 9 in order to show that indeed iRNN achieves identity gradients

everywhere in the time horizon, since fig. 3 had shown that the ratio of ‖∂hT∂h1
‖ and ‖ ∂hT

∂hT−1
‖ equals 1

for iRNN .

A.6.9 DIFFERENT ACTIVATION FUNCTION

We also performed some experiments for sigmoid activation on HAR-2 dataset. The results for this
variant also follow similar pattern as we saw in ReLU variant.

A.7 PROOFS

A.7.1 LOCAL CONVERGENCE WITH LINEAR RATE

Recall that we rewrite the fixed-point constraints in our iRNN as the following ODE:

g′k(t) = F (gi)
def
= φ(U(gi + hk−1) +Wxk + b)− (gi + hk−1); g(0) = 0. (11)

Then based on the Euler method, we have the following update rule for solving fixed-points:

gi+1 = gi + η
(i)
k F (gi) (12)

= gi + η
(i)
k [φ(U(gi + hk−1) +Wxk + b)− (gi + hk−1)]. (13)
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Figure 9: Exploratory experiments for the Add task : (a) Gradient norms w.r.t. loss ‖ ∂L∂h1
‖, (b)

Gradient norms ‖ ∂hT
∂hT−1

‖. This together with Figure 3 shows that the gradients are identity everywhere
for K = 10
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Inexact Newton methods Dembo et al. (1982) refer to a family of algorithms that aim to solve the
equation system F (z) = 0 approximately at each iteration using the following rule:

zi+1 = zi + si, ri = F (zi) +∇F (zi)si, (14)

where ∇F denotes the (sub)gradient of function F , and ri denotes the error at the i-th iteration
between F (zi) and 0.

By drawing the connection between Eq. 12 and Eq. 14, we can set zi ≡ gi and si ≡ η(i)k F (gi). Then
based on Eq. 14 we have

ri = F (gi) + η
(i)
k ∇F (gi)F (gi). (15)

Lemma 1 (Thm. 2.3 in Dembo et al. (1982)). Assume that

‖ri‖
‖F (zi)‖

≤ τ < 1,∀k, (16)

where ‖ · ‖ denotes an arbitrary norm and the induced operator norm. There exists ε > 0 such that,
if ‖z0 − z∗‖ ≤ ε, then the sequence of inexact Newton iterates {zi} converges to z∗. Moreover, the
convergence is linear in the sense that ‖zi+1 − z∗‖∗ ≤ τ‖zi − z∗‖∗, where ‖y‖∗ = ‖∇F (z∗)y‖.
Theorem 3 (Local Convergence with Linear Rate). Assume that the function F in Eq. 11 and the
parameter η(i)k in Eq. 12 satisfy

[η
(i)
k ]2‖∇F (gi)F (gi)‖2 + 2η

(i)
k F (gi)

>∇F (gi)F (gi) < 0,∀i,∀k. (17)

Then there exists ε > 0 such that if ‖g0 − heq‖ ≤ ε where heq denotes the fixed point, the sequence
{gi} generated by the Euler method converges to the equilibrium solution inMeq(hk−1, xk) locally
with linear rate.

Proof. By substituting Eq. 15 into Eq. 16, to prove local convergence we need to guarantee

‖F (gi) + η
(i)
k ∇F (gi)F (gi)‖ < ‖F (gi)‖. (18)

By taking the square of both sides in Eq. 18, we can show that Eq. 18 is equivalent to Eq. 17. We
then complete our proof.

Corollary 2. Assume that ‖I+ η
(i)
k ∇F (gi)‖ < 1,∀i,∀k holds. Then the forward propagation using

Eq. 12 is stable and our sequence {gi} converges locally with linear rate.

Proof. By substituting Eq. 15 into Eq. 16 and based on the assumption in the corollary, we have

‖ri‖
‖F (gi)‖

=
‖F (gi) + η

(i)
k ∇F (gi)F (gi)‖
‖F (gi)‖

≤
‖I+ η

(i)
k ∇F (gi)‖‖F (gi)‖
‖F (gi)‖

< 1. (19)

Further based on Prop. 2 in Chang et al. (2019) and Thm. 2, we then complete our proof.
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Table 9: Results for Activity Recoginition Datasets.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Test
Time (ms) #Params

HAR-2 FastRNN 94.50 29 0.063 0.01 7.5k
FastGRNN-LSQ 95.38 29 0.081 0.03 7.5k

FastGRNN 95.59 3 0.10
RNN 91.31 29 0.114 0.01 7.5k

SpectralRNN 95.48 525 0.730 0.04 134k
EURNN 93.11 12 0.740
LSTM 93.65 74 0.183 0.04 16k
GRU 93.62 71 0.130 0.02 16k

Antisymmetric 93.15 29 0.087 0.01 7.5k
UGRNN 94.53 37 0.120

iRNN (K=1) 95.32 17 0.061 0.01 4k
iRNN (K=3) 95.52 17 0.081 0.02 4k
iRNN (K=5) 96.30 18 0.018 0.03 4k

DSA-19 FastRNN 84.14 97 0.032 0.01 17.5k
FastGRNN-LSQ 85.00 208 0.036 0.03 35k

FastGRNN 83.73 3.25 2.10m
RNN 71.68 20 0.019 0.01 3.5k

SpectralRNN 80.37 50 0.038 0.02 8.8k
LSTM 84.84 526 0.043 0.06 92k
GRU 84.84 270 0.039 0.03 47k

Antisymmetric 85.37 32 0.031 0.01 8.3k
UGRNN 84.74 399 0.039

iRNN (K=1) 88.11 19 0.015 0.01 3.5k
iRNN (K=3) 85.20 19 0.020 0.02 3.5k
iRNN (K=5) 87.37 20 0.005 0.03 3.5k

Google-12 FastRNN 92.21 56 0.61 0.01 12k
FastGRNN-LSQ 93.18 57 0.63 0.03 12k

FastGRNN 92.10 5.5 0.75
RNN 73.25 56 1.11 0.01 12k

SpectralRNN 91.59 228 19.0 0.05 49k
EURNN 76.79 210 120.00
LSTM 92.30 212 1.36 0.05 45k
GRU 93.15 248 1.23 0.05 53k

Antisymmetric 89.91 57 0.71 0.01 12k
UGRNN 92.63 75 0.78

iRNN (K=1) 93.93 36 0.20 0.01 8.1k
iRNN (K=3) 94.16 37 0.33 0.03 8.1k
iRNN (K=5) 94.71 38 0.17 0.05 8.1k

Google-30 FastRNN 91.60 96 1.30 0.01 18k
FastGRNN-LSQ 92.03 45 1.41 0.01 8.5k

FastGRNN 90.78 6.25 1.77
RNN 80.05 63 2.13 0.01 12k

SpectralRNN 88.73 128 11.0 0.03 24k
EURNN 56.35 135 19.00
LSTM 90.31 219 2.63 0.05 41k
GRU 91.41 257 2.70 0.05 48.5k

Antisymmetric 90.91 64 0.54 0.01 12k
UGRNN 90.54 260 2.11

iRNN (K=1) 93.77 44 0.44 0.01 8.5k
iRNN (K=3) 91.30 44 0.44 0.03 8.5k
iRNN (K=5) 94.23 45 0.44 0.05 8.5k
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Algorithm Test Perplexity Model
Size (KB)

Train
Time (min)

Test
Time (ms) #Params

FastRNN 127.76 513 11.20 1.2 52.5k
FastGRNN-LSQ 115.92 513 12.53 1.5 52.5k

FastGRNN 116.11 39 13.75
RNN 144.71 129 9.11 0.3 13.2k

SpectralRNN 130.20 242 - 0.6 24.8k
LSTM 117.41 2052 13.52 4.8 210k

UGRNN 119.71 256 11.12 0.6 26.3k
iRNN (K=1) 115.71 288 7.11 0.6 29.5k

Table 10: PTB Language Modeling: 1 Layer. To be consistent with our other experiments we used
a low-dim U; For this size our results did not significantly improve with K. This is the dataset of
Kusupati et al. (2018) which uses sequence length 300 as opposed to 30 in the conventional PTB.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr) Activation #Params

HAR-2 iRNN (K=1) 95.32 17 0.061 ReLU 4k
iRNN (K=3) 95.52 17 0.081 ReLU 4k
iRNN (K=5) 96.30 18 0.018 ReLU 4k
iRNN (K=1) 92.16 17 0.065 Sigmoid 4k
iRNN (K=3) 93.35 17 0.078 Sigmoid 4k
iRNN (K=5) 95.30 18 0.020 Sigmoid 4k

Table 11: HAR-2 dataset (Sigmoid, ReLU activations): K denotes pre-defined recursions embedded
in graph to reach equillibrium.
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