
Under review as a conference paper at ICLR 2020

OVERPARAMETERIZED NEURAL NETWORKS
CAN IMPLEMENT ASSOCIATIVE MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Identifying computational mechanisms for memorization and retrieval is a long-
standing problem at the intersection of machine learning and neuroscience. In this
work, we demonstrate empirically that overparameterized deep neural networks
trained using standard optimization methods provide a mechanism for memoriza-
tion and retrieval of real-valued data. In particular, we show that overparameter-
ized autoencoders store training examples as attractors, and thus, can be viewed
as implementations of associative memory with the retrieval mechanism given
by iterating the map. We study this phenomenon under a variety of common
architectures and optimization methods and construct a network that can recall
500 real-valued images without any apparent spurious attractor states. Lastly,
we demonstrate how the same mechanism allows encoding sequences, including
movies and audio, instead of individual examples. Interestingly, this appears to
provide an even more efficient mechanism for storage and retrieval than autoen-
coding single instances.

1 INTRODUCTION

Training neural networks to act as a model of associative memory is a problem dating back to the in-
troduction of Hopfield networks (Little, 1974; Hopfield, 1982). Hopfield networks are able to store
binary training patterns as attractive fixed points; thus, the network allows for recall of the train-
ing patterns given corrupted inputs. In this work, we demonstrate that modern overparameterized
deep neural networks trained using standard optimization methods also provide a method for mem-
orization and retrieval by storing training instances as attractors. Moreover, we show that through
autoencoding and sequence encoding, the training examples can be recovered from random inputs
to the trained network. We are not aware of any observation of this phenomenon in the literature,
with the exception of Zhang et al. (2019), which studies the case of memorizing a single image.

Autoencoding. We begin with the example of an autoencoder neural network implementing a family
of continuous functions in the space F = {f : Rd → Rd}. Given training examples {x(i)}ni=1,
gradient descent is used to minimize the following autoencoder objective:

argmin
f∈F

∑n

i=1
‖f(x(i))− x(i)‖22

After training in the overparameterized regime, we obtain a function f satisfying f(x(i)) ≈ x(i) for
all i, i.e., the function interpolates the training images. In Figure 1a, we analyze the function that
is learned after training a fully connected autoencoder (architecture detailed in Appendix B) on 10
examples from the CIFAR10 dataset (Krizhevsky, 2009). Note that inputting random images causes
the autoencoder to produce outputs that are visually similar to training examples.
While the ability to recall training examples from random inputs can be inspected visually as in
Figure 1a, we can also quantify the number of training examples that can be recalled by viewing
autoencoders from a dynamical systems perspective. Namely, since an autoencoder is a map from
the feature space to itself, we can iteratively apply the autoencoder to the output starting from any
input and investigate whether the sequence of iterates converges to a training example. A training
example is called an attractor, when there exists a set of instances with non-zero measure for which
iterating the trained autoencoder map converges to the training example. This happens if the largest
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(a) (b)

Figure 1: (a) Fully connected autoencoder trained on 10 images from CIFAR10. When fed Gaussian
noise or test images from CIFAR10 the model outputs an image that is visually indistinguishable
from a training image. (b) A fully connected network trained to encode a sequence of 389 frames of
size 128× 128 from the Disney film “Steamboat Willie.” Inputting Gaussian noise and iterating the
network yields the entire video.

eigenvalue (in absolute value) of the Jacobian of the autoencoding map at the training example is less
than 1 (see Section 2). While the network trained in Figure 1a already outputs an image that is visu-
ally indistinguishable from a training example in one iteration, further iterations of the autoencoder
result in increasingly more accurate reconstructions of the training examples (see Figure 2a).

As we demonstrate throughout this paper, overparameterized autoencoders store training examples
as attractors, and so training examples can be recovered through iterating a trained autoencoder
on random input. We note that for a fixed point to be an attractor, all eigenvalues of the Jacobian
matrix do not exceed one in absolute value. This is a highly restrictive condition as the number
of these eigenvalues is equal to the dimension of the space. Thus, we do not expect a fixed point
of an arbitrary high-dimensional map to be an attractor. In that regard, the fact that deep neural
networks produce attractors so readily is rather surprising. Moreover, even if an autoencoder stores
training examples as attractors, there could be additional spurious attractors outside the training
set. Interestingly, in this paper, we present several examples of autoencoders for which we could not
discover any attractors outside the training set through iteration from random instances. In particular,
we now provide an example of a fully connected autoencoder that stores 500 real-valued training
examples as attractors with no other observable attractors.

Memory and Recall of 500 Images as Attractors of an Autoencoder. We train a fully connected
autoencoder (architecture detailed in Appendix B) on 500 black and white CIFAR10 training images
until the training loss is less than 10−8. We find that all 500 examples are stored as attractors since
the top eigenvalue of the Jacobian for all of these examples is less than 1. Lastly, upon iterating
10,000 black and white examples from CIFAR10 and 10,000 examples of Gaussian random noise,
we are unable to find any attractors outside the training set.

Sequence Encoding. Remarkably, this phenomenon extends from encoding single instances (such
as images) to sequences. Instead of autoencoding, where the loss is the reconstruction loss on single
images, we train f such that f(x(i)) ≈ f(x((i+1) mod n)). In Figure 1b we trained a network to
encode 389 frames of size 128 × 128 from the Disney film “Steamboat Willie” by mapping frame
i to frame i + 1 mod 389. As is shown in the attached video and in Figure 1b, inputting random
noise to the trained network f and iterating the network yields the original video. In fact, after a few
iterations from a random image, one of the frames of the original video is recovered to numerical
precision, and since the network is trained to map i to frame i+1 mod 389, once one of the frames
of the original video is recovered, the remaining frames are all recovered. Interestingly, we show in
Section 4 that encoding a sequence of instances in this manner appears to provide a more efficient
mechanism for storage and retrieval than autoencoding each instance in the sequence separately.

We can similarly apply the sequence encoding objective to audio. Given an 8 second sample audio,
we trained a fully connected network to map each second i of frequencies (represented as a 22k
dimensional vector) to second i+1 mod 8. As demonstrated in the attached audio file, performing
iteration starting from random noise yields the entire audio sequence. These two examples demon-
strate that both long sequences as well as high-dimensional sequences can be stored and recalled
using fully connected networks. In Appendix A, we describe these examples in further detail, and
also provide an example of a recurrent network memorizing sequences of text.

2



Under review as a conference paper at ICLR 2020

(a) Average log(MSE) between 500 Gaussian
Noise inputs iterated 20 times and the closest
training example.

(b) Identifying attractors from iterating 1000 test
examples from CIFAR10 and 1000 examples of
Gaussian noise.

(c) Top eigenvalue of Jacobian at each training image.

Figure 2: Fully connected autoencoder trained on 10 images from CIFAR10.

In the following sections, we will demonstrate that a variety of network architectures can be used
to implement associative memory when in the overparameterized setting. In Section 2, we provide
some background on dynamical systems and describe how to quantify the number of attractors or
limit cycles of autoencoders and sequence encoders. In Section 3, we study the impact of optimizer,
nonlinearity, and initialization on the number of training examples stored as attractors for a fixed
fully connected network topology. In this section, we also show that convolutional autoencoders,
similar to fully connected autoencoders, can store training examples as attractors. We then conclude,
in Section 4, with a study of the amount of overparameterization (i.e., depth and width) needed
for autoencoders to store individual examples as attractors as compared to the amount needed for
sequence encoders to store the same data as limit cycles. Interestingly, we show that sequences can
be stored as limit cycles using smaller networks. Details on all architectures and hyperparameters
used are provided in Appendix B.

2 DYNAMICAL SYSTEMS PERSPECTIVE

After training a fully connected autoencoder f on 10 examples from CIFAR10, we observed in
Figure 1a that inputting a random image x to the autoencoder yields an output f(x) that is close∗ to
one of the training examples. Since autoencoders are maps from the feature space to itself, the map
can be iterated through k compositions fk(x) = f(. . . (f(x))). Figure 2a shows that iteration of the
map started at a random image converges to a training example. More precisely, Figure 2a shows
that when iterating the convolutional autoencoder on 500 samples of standard Gaussian noise, the
distance between the iterated image and the nearest training example decreases monotonically and
the reconstruction becomes increasingly accurate. To better understand when this iteration converges
to a training image, we take a dynamical systems perspective.

Formally, we let f : Rd → Rd denote the function learned by an autoencoder trained on a dataset
X = {x(i)}ni=1 ⊂ Rd. We now consider the sequence {fk(x)}k∈N where fk denotes k composi-
tions of f and x ∈ Rd. When f(x) = x, then the sequence {fk(x)} trivially converges to x, and
we refer to such points x ∈ Rd as fixed points of the function f . Since overparameterized autoen-
coders interpolate the training data, it holds that f(x(i)) ≈ x(i) for each training example x(i) ∈ X
and hence all training examples are fixed points of f .† In the following, we formally define what it
means for a fixed point to be an attractor and provide a sufficient condition for this property.
∗As measured by mean-squared error (MSE).
†To ensure f(x(i)) ≈ x(i), it is essential that we interpolate to numerical precision i.e. training loss less

than 10−8 when possible.
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Definition. A fixed point x∗ ∈ Rd is an attractor if there exists an open neighborhood of x∗, such
that for any x in that neighborhood the sequence {fk(x)}k∈N converges to x∗ as k → ∞. The set
S of all such points is called the basin of attraction of x∗.
Proposition 1. A fixed point x∗ ∈ Rd is an attractor of a differentiable map f if all eigenvalues
of the Jacobian of f at x∗ are strictly less than 1 in absolute value. If any of the eigenvalues are
greater than 1, x∗ cannot be an attractor.

Proposition 1 is a well-known condition in the theory of dynamical systems and follows from the
Banach Fixed Point theorem (Rudin, 1964). The condition intuitively means that the function f is
“flatter” around an attractor x∗.

Returning to overparameterized autoencoders, where each training example is a fixed point, com-
puting the top eigenvalue (in absolute value) of the Jacobian for each training example can be used
to determine whether the example is an attractor. Figure 2c lists the maximal eigenvalue of the Ja-
cobian for each training example in this application; 7 out of the 10 training examples are attractors
and can hence be recovered through iteration.

To investigate whether there are additional attractors outside of the training examples, we sample
random images and iterate the map until convergence. More precisely, we say that iterative applica-
tion of the autoencoder has converged for an input x if for some k, ‖fk(x)−fk+1(x)‖2 < 10−8. We
then compare the output fk(x) to each of the training examples and say that it has converged to one
of the training examples if the MSE to the nearest training example is less than 10−2. In Figure 2b,
we iterated 1000 test examples from CIFAR10 and 1000 examples of standard Gaussian noise until
convergence. The histogram indicates the number of input patterns whose iterations converged to
each training example. Note that no instances converged to the training examples 2, 6 and 9, which
is consistent with the fact that these training examples are not attractors (the maximal eigenvalue of
the Jacobian is larger than 1). Interestingly, every one of the 2000 instances converged to a training
example, i.e., no attractors were found outside the training set. In addition, while it is conceivable
that this iterative map may diverge for some inputs x, empirically the map converged in all instances.

We end this section by considering the equivalent of an attractor for sequence encoding, namely
discrete limit cycles. Since each training example maps to the next example in the sequence, none
of the training examples are fixed points after training.

Proposition 2. Let f : Rd → Rd be trained to interpolate the training sequence x(1), . . . , x(n), i.e.,
f(x(i)) = f(x((i+1) mod n). Then the training sequence {x(i)}ni=1 forms a discrete limit cycle if
the largest eigenvalue of the Jacobian of fn(x(i)) is (in absolute value) less than 1 for any i.

This follows directly from Proposition 1 by considering the map fn, since x(i) = fn(x(i)). To
determine other limit cycles of length n, one can check whether iterating the sequence encoder from
a random point yields a convergent sequence of period n.

3 IMPACT OF ARCHITECTURE AND OPTIMIZER

We start this section by analyzing how different optimizers, initializations and nonlinearities influ-
ence the number of training examples that are stored as attractors for fully connected autoencoders;
we discuss convolutional autoencoders at the end of this section. For fully connected networks, we
base our analysis of storage and retrieval on a dataset of 100 black and white images from CIFAR10‡.

3.1 MEMORIZATION AND RECALL ACROSS OPTIMIZERS AND NONLINEARITIES

We begin by studying how changing the optimizer and nonlinearity affects the number of training
examples stored as attractors. In Figure 3, we provide the number of training examples that become
attractors when using popular training algorithms including gradient descent (GD), GD with mo-
mentum, GD with momentum and weight decay, RMSprop, and Adam (Ch. 8 of Goodfellow et al.
(2016)) with popular nonlinearities including ReLU, Leaky ReLU, SELU, cosid (i.e. cosx − x),
Swish (Xu et al., 2015; Ramachandran et al., 2017; Eger et al., 2018) . We used a learning rate of
‡We chose to use black and white images in order to make convergence to MSE ≤ 10−8 and the computa-

tion of the Jacobian comptationally feasible (for each of the 100 examples the top eigenvalue among all 1024
eigenvalues of the Jacobian needs to be computed).
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Opt.

Act.
ReLU Leaky

ReLU SELU Swish cos x−x x+ sin 10x
5

GD 28/100 34/100 10/100 NA∗ 5/100 19/100

GD +
Momentum 14/100 23/100 10/100 NA∗ 2/100 21/100

GD +
Momentum
+ Weight

Decay

NA∗ NA∗ 18/100 NA∗ 22/100 NA∗

RMSprop 97/100 98/100 100/100 49/100 100/100 100/100

Adam 38/100 53/100 30/100 14/100 100/100 100/100

Figure 3: Impact of optimizer and nonlinearity on number of training examples stored as attractors.
In all experiments, we used a fully connected network with 11 hidden layers, 256 hidden units per
layer, and default PyTorch initialization. (∗) NA indicates that the training error did not decrease
below 10−5 in 1,000,000 epochs.

10−1 for GD methods and 10−4 for RMSprop and Adam. We used a momentum value of 0.009
and weight decay of 0.0001. Overall, we observed that using adaptive methods with a learning rate
per parameter can significantly alter the number of training examples stored as attractors. Notably,
we found that RMSprop consistently led to nearly all 100 examples being stored as attractors even
across different nonlinearities. We note that methods using gradient descent were very slow to con-
verge; in particular, the loss often did not reduce to less than 10−5 in over a million epochs (denoted
by NA in Figure 3).§

Interestingly, when analyzing whether there are any attractors other than the training examples, we
observed that the GD methods tended to have a larger number of attractors outside the training
set than adaptive methods. Figures 11a and 11b in Appendix C show the distribution of attractors
found through iteration for SELU networks trained using GD with momenutm and weight decay and
RMSprop. Figure 11c in Appendix C provides examples of attractors outside the training set for the
network trained with GD + momentum + weight decay.

With respect to nonlinearities, Figure 3 shows that trigonometric nonlinearities allow for all 100
training examples to be stored as attractors when using RMSprop or Adam. Figure 12 in Appendix C
provides the distributions of attractors found through iteration for a subset of these settings. Overall,
these plots indicate that the trignometric nonlinearities have fewer attractors outside the training set
than the piecewise activation functions (ReLU, Leaky ReLU, SELU). Notably, we did not find any
attractors outside the training set using the cosid nonlinearity and the Adam optimizer.

3.2 MEMORIZATION AND RECALL ACROSS INITIALIZATIONS

In the following, we study the impact of initialization on the number of training examples that are
stored as attractors of the learned map. For all experiments in this section, we used a fully connected
network with 11 hidden layers and 256 hidden units per layer that is trained using Adam until MSE
≤ 10−8. Thus far, we have been using the default initialization provided from PyTorch (Paszke
et al., 2017).¶ Under this initialization scheme, each layer’s weights are drawn i.i.d. from a uniform
distribution U [−a, a] with a = 1/

√
h, where h is the number of hidden units in that layer. Since our

architecture has 256 hidden units per layer, a = 0.0625 for all but the last layer by default. We note
that since we use 256 hidden units in each layer, with appropriate constants, this initialization is the
same as the Xavier or Kaiming uniform initializers for almost all layers (Glorot & Bengio, 2010; He
et al., 2015).

In Figure 4, we demonstrate the tradeoff between nonlinearity and uniform initialization scheme. We
observe that as we increase a, the number of training examples stored as attractors mostly decreases.
In fact, for large values of a such as a = .15, not only are fewer training examples attractors for
these activation functions, but iteration starting from random examples often diverges. In Figure 13

§Unlike our other experiments, we here choose an MSE threshold of 10−5, as almost none of non-adaptive
optimizers could reduce the loss below 10−8 in under 1, 000, 000 iterations.
¶We used PyTorch version 0.4; note that the default initialization scheme may be different in later versions.
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Init.

Act. ReLU Leaky ReLU SELU Swish cos x− x x + sin 10x
5

U[−0.01, 0.01] 62/100 78/100 78/100 16/100 26/100 93/100

U[−0.02, 0.02] 43/100 65/100 71/100 20/100 31/100 70/100

U[−0.05, 0.05] 55/100 55/100 29/100 32/100 100/100 89/100

U[−0.1, 0.1] 36/100 43/100 13/100 30/100 100/100 NA∗

U[−0.15, 0.15] 34/100 38/100 13/100 6/100 100/100 NA∗

Figure 4: Impact of initialization on number of training examples stored as attractors. In all ex-
periments, we used a fully connected network with 11 hidden layers and 256 hidden units per layer
trained using the Adam optimizer (lr=10−4). (∗) NA indicates that the training error did not decrease
below 10−8 in 1,000,000 epochs.

of Appendix C, we again provide the distribution of attractors found through iteration for a subset
of these settings.

3.3 MEMORIZATION AND RECALL IN CONVOLUTIONAL AUTOENCODERS

Thus far, we have provided several examples showing that fully connected autoencoders can store
training examples as attractors. We now demonstrate that convolutional autoencoders can also ex-
hibit this behavior. For this, we trained a U-Net convolutional autoencoder (detailed in Appendix B)
on 10 CIFAR10 training examples (Ronneberger et al., 2015; Ulyanov et al., 2017). We performed
this analysis only on 10 training images due to the high computational cost of training a U-Net con-
volutional autoencoder to MSE ≤ 10−8 (roughly 9 hours on 10 training images) and computing the
top eigenvalue for each of the 10 examples (∼ 1 hour). For this reason, we also focused the analysis
in the previous sections on fully connected networks.

Figure 5a shows that, as for fully connected networks, inputting test examples from CIFAR10 or
Gaussian noise into the trained U-Net convolutional autoencoder leads to images that are visually
indistinguishable from the training examples. In fact, since the eigenvalues of the Jacobian are less
than 1 for each training example, all 10 training examples are attractors. In addition, Figure 5b
shows that iterating the map starting in 1000 examples of CIFAR10 test examples or 1000 examples
of Gaussian noise did not lead to the discovery of any attractors outside the training set.

4 MEMORIZATION AND RECALL OF SEQUENCES

We have thus far considered the impact of optimizer, nonlinearity, and initialization on the number of
training examples stored as attractors in autoencoders. In this section, we first study how changing

(a) (b)

Figure 5: (a) U-Net convolutional autoencoder trained on 10 images from CIFAR10. When fed
Gaussian noise or test images from CIFAR10 the model outputs images that are visually indistin-
guishable from training images. All training images are attractors (EV is eigenvalue). (b) Identifying
attractors from iterating the trained autoencoder starting in 1000 test examples from CIFAR10 and
1000 examples of Gaussian noise. No attractors are found outside the training set.

6



Under review as a conference paper at ICLR 2020

Depth

Width 128 256 512

1 0 0 0

6 0 4 12

11 2 8 24

16 22 38 49

21 56 68 75

26 83 86 94

31 92 90 99

Figure 6: Impact of width and depth
on number of MNIST examples (out of
100) stored as attractors. The networks
used have SELU activations, default ini-
tialization and are trained using Adam
until MSE ≤ 10−8.

(a) Width/Depth = 128/1 (b) Width/Depth = 128/16

(c) Width/Depth = 256/16 (d) Width/Depth=512/31

Figure 7: Top eigenvalues of Jacobian for all 100 train-
ing examples.

the width and depth of a fully connected autoencoder impacts the number of training examples
stored as attractors. In particular, we observe that the number of training examples that are stored
as attractors increases as depth and width increase. We then study how sequence encoders can
store the same data as limit cycles. Interestingly, we find that storing the data as a sequence in a
limit cycle requires less width and depth than storing the images individually. In order to improve
computational efficiency when training to a loss of 10−8 using Adam and computing the eigenvalues
of the Jacobian, in this section, we use 100 examples from MNIST as training data. In all of our
experiments, we use fully connected SELU networks and fix the random seed prior to training for
reproducibility.

In Figure 6, we demonstrate how increasing depth and width lead to the storage of almost all training
examples as attractors. Note that a minimum width of 100 is needed to allow for interpolation.
Interestingly, when there is sufficient depth for storing at least 1 training example as an attractor, we
observe that increasing width leads to the storage of more training examples as attractors. Figure 7
shows that the top eigenvalues of the Jacobian for all 100 examples decrease when increasing depth
and width.

Instead of training autoencoders to store individual images as attractors, we can instead encode
MNIST digits as sequences and then use sequence encoding to store the sequences as limit cycles.
We consider the following example of encoding two 10-digit sequences from MNIST: one counting
upwards from digit 0 to 9 and the other counting down from digit 9 to digit 0. The training data is
presented in Figure 8. Using a fully connected network with a depth of 31 layers, 256 hidden units
per layer, and SELU activations trained using the Adam optimizer until MSE ≤ 10−8, we find that
iterating Gaussian inputs through the encoder leads to recovery of both training sequences. This
is quite surprising, since even though digits from the two sequences are very similar, iterating the
map converges precisely to one of the two sequences (i.e., there are no jumps between a digit of
one sequence and the other). Applying Proposition 2, we find that the maximal eigenvalues of the

Figure 8: 2 MNIST digit training sequences of length 10 stored as limit cycles of an encoder. It-
eration from random noise converges to each of the sequences. Our network has 256 hidden units
per layer, 31 hidden layers, SELU activations, default initialization, and is trained using the Adam
optimizer until MSE ≤ 10−8.
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Depth

Width
128 256 512

1 0 0 0

6 0 3 10

11 0 5 10

16 0 9 10

21 6 9 10

26 8 10 10

31 10 10 10

(a) Impact of width and depth on storing 10
MNIST sequences of length 10 as limit cycles.

Depth

Width
128 256 512

1 8 8 3

6 8 3 3

11 8 3 3

16 8 3 3

21 8 3 3

26 8 3 3

31 3 3 3

(b) Impact of width and depth on storing 1 MNIST
sequence of length 100 as a limit cycle.

Figure 9: Storing 100 MNIST examples through sequences. The networks used have SELU activa-
tions, default initialization and are trained using Adam until MSE ≤ 10−8.

Jacobian of the trained encoder composed 10 times is 0.0034 and 0.0033 for the images from the
first and second sequence, respectively. Hence, we conclude that these two sequences are indeed
limit cycles of the trained encoder.

In Figure 6, we saw that none of the analyzed fully connected networks stored all 100 training
examples as attractors. Instead of using our architecture as an autoencoder, we can instead partition
the 100 examples into sequences and train the network to encode each of the sequences. In Figure 9
we investigate whether it is easier to store shorter or longer sequences as limit cycles. In particular,
we begin by grouping the 100 training images into 10 sequences of length 10. In Figure 9a, we
study how width and depth affects the number of sequences that become limit cycles of the network.
Interestingly, while none of the analyzed architectures were able to store the 100 training images as
attractors in the autoencoding setting, already a small network of depth 6 and width 512 can store all
training examples as 10 limit cycles of length 10 when encoding the training images as sequences.

Given this intriguing observation, we end with the following experiment: Instead of encoding 10
sequences of length 10, we encode all 100 training examples into a single sequence of length 100.
Consistent with the above findings, Figure 9b shows that an even smaller network can be used to
store all 100 training images in this manner. Interestingly, the sequence of 100 images is a limit
cycle of a network with only 1 hidden layer and 512 hidden units.

5 CONCLUSION

In this work, we demonstrated experimentally that overparameterized autoencoders and sequence
encoders can be used to implement associative memory by storing training examples as attractors
or limit cycles. We showed that this remarkable phenomenon is pervasive in a range of common
architectures using the standard fully connected or convolutional layers, across several popular opti-
mizers, nonlinearities, and initializations schemes. In fact, by utilizing the architecture and optimizer
that provided the most attractors empirically, we were able to train a network that could store and
recover 500 real-valued images with no apparent spurious attractors. We further showed that in fully
connected architectures, increasing the depth or width could lead to a greater number of training
examples or sequences being stored as attractors or limit cycles. Lastly, we demonstrated that net-
works are able to store and retrieve more training examples by training to encode sequences instead
of autoencoding individual instances.

While our paper concentrates on the question of implementing associative memory, we employ
essentially the same training procedures and neural net architectures as those used in standard su-
pervised learning. Thus the surprising fact of the existence and, indeed, the ubiquity of attractors
in these maps may shed light on the important question of inductive biases of interpolating neural
networks (Belkin et al., 2019).

Finally, another avenue for future exploration is the connection of autoencoding and sequence en-
coding to neural net memory mechanisms in biological systems. In fact, this question had been one
of the main motivations for the original work on Hopfield networks (Hopfield, 1982).
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APPENDIX A: DATASET DESCRIPTIONS AND MEMORIZATION IN RNNS

Disney “Steamboat Willie” Video Clip. In order to demonstrate that fully connected networks can
memorize long sequences, we captured 389 frames of size 128×128 from the Disney movie “Steam-
boat Wille.” The architecture used to memorize and recall the video is provided in Appendix B. We
have attached a full video titled “disney_steamboat_willie_recovered_from_noise.mp4” displaying
that iteration from random noise leads to recovery of the entire video. Note that iteration from ran-
dom noise converges so fast that it is difficult to see that we began the attached video from a random
noise image. This is more clearly displayed in Figure 1b.

Donald Trump Audio Sample. In order to demonstrate that fully connected networks can memorize
high dimensional sequences, we captured an audio clip of an 8 second recording from the Donald
Trump talking pen. Each second of the audio is roughly 22, 000 frequencies, and we trained a
fully connected network to map from the frequencies in second i to second i + 1 mod 8. We
have attached an audio sample titled “trump_quote_recovered_from_noise.mp3” demonstrating that
iteration from random noise leads to recovery of the entire quote. The full architecture used is
provided in Appendix B.

Text Memorization. In order to demonstrate that recurrent neural networks (RNNs) can also mem-
orize and recall sequences, we trained a vanilla RNN (whose architecture is detailed in Appendix B)
to encode the following sentence from our introduction: “Hopfield networks are able to store binary
training patterns as attractive fixed points.” When training the RNN, we encode each word using
1-hot representation i.e., since there are 13 words in the sentence, we represent each word with a
vector of size 13 and place a “1” in the index corresponding to the word. We train such that each
word is mapped to the next modulo 13 using the Cross Entropy Loss (as is done in practice). Un-
like the other settings, RNNs are used to generate new sequences after training by sampling a new
word from the vector output given a previous word‖. Under our architecture, we find that repeatedly
choosing the highest probability word given the previous word consistently outputs the entire train-
ing sentence regardless of the number of times this sampling process is repeated. Note that if the
number of hidden units per layer is halved in our architecture, repeating this sampling process will
only output part of the training sequence. Namely, only the sequence “Hopfield patterns as attractive
fixed points” will ever be generated.

APPENDIX B: ARCHITECTURES

1. For Figure 1a, we used a fully connected autoencoder with 31 hidden layers, 256 hidden
units per layer, SELU activation, and default PyTorch initialization (random seed 2). We
trained using the Adam optimizer until the training loss was less than 10−8.

2. For Figure 1b, we used a fully connected architecture with 16 hidden layers, 1024 hidden
units per layer, SELU activation, and default PyTorch initialization (random seed 2). We
trained using the Adam optimizer until the training loss was less than 10−7.

3. For the audio example in Section 1, we used a network with 36 hidden layers, 15 hidden
units per layer, SELU activation, and default PyTorch initialization (random seed 2). We
trained using the Adam optimizer until the training loss was less than 10−12 (we need high
precision reconstructions to avoid noisy artifacts in the audio file).

4. For the RNN example in Appendix A, we used two fully connected networks with 31
hidden layers and 128 hidden units per layer such that one constructs the next hidden state
and the other constructs the next output. We used SELU activations throughout and trained
using Adam with learning rate 10−4 to minimize the Cross Entropy Loss.

5. To encode 500 black and white CIFAR10 images as attractors, we used a fully connected
architecture with 11 hidden layers, 1024 hidden units per layer, cosid activation, and default
PyTorch initialization (random seed 2). We trained using the Adam optimizer until the
training loss was less than 10−8.

6. For the convolutional autoencoder used for Figure 5a, we display the architecture in Figure
10. We again used the default PyTorch initialization (random seed 2) and trained using
Adam until the MSE was less than 10−8. All of our filters have a kernel size of 3.

‖This process is usually started from inputting the all zero vector.
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Figure 10: Convolutional autoencoder architecture used in our experiments.

7. We used a random seed of 2 for all experiments in Figures 3, 4, 6, 8, 9. As these experiments
were computationally expensive, we could not run all of them across several random seeds.
However, for a few of the entries in each table, we note that other random seeds gave similar
results.

APPENDIX C: DISTRIBUTION OF ATTRACTORS DISCOVERED THROUGH
ITERATION

In this section, we provide a series of histograms indicating the attractors found by iterating test
examples from black and white versions of CIFAR10 images and from Gaussian random noise. The
histograms also indicate an estimate for the size of the basin of attraction for each attractor.

In Figure 11, we provide histograms for two different optimization methods indicating the distri-
bution of attractors found by iterating 1000 test examples from CIFAR10 and 1000 examples of
Gaussian noise. To compare different optimization methods, we used an architecture with SELU
nonlinearity and the default PyTorch initializer. The histograms demonstrate that adapative opti-
mizers such as RMSprop lead to the storage of more training examples as attractors. Furthermore,
when using RMSProp we did not observe any attractors outside the training set. On the other hand,
we identified attractors outside the training set when using GD + momentum + weight decay, and
examples of these attractors are presented in Figure 11c.

In Figure 12, we provide histograms for four different nonlinearities indicating the distribution of at-
tractors found by iterating 1000 test examples from CIFAR10 and 1000 examples of Gaussian noise.
To compare nonlinearities, we used an architecture that was trained using the Adam optimizer and
that was initialized using the default PyTorch initializer. The histograms indicate that trignometric
nonlinearities tend to store more training examples as attractors while also having fewer spurious
attractive states. Interestingly, the cosid nonlinearity stored all 100 training examples as attractors
and had 0 other observed attractors outside the training set.

In Figure 13, we provide histograms for four different initializations indicating the distribution of
attractors found by iterating 1000 test examples from CIFAR10 and 1000 examples of Gaussian
noise. To compare different initializations, we selected an architecture that was trained using the
Adam optimizer and used the SELU nonlinearity. The histograms indicate that smaller variance

(a) (b) (c)

Figure 11: Identifying attractors from random inputs across optimizers for the SELU nonlinearity.
(a) SELU network trained using GD + momentum + weight decay; 6 observed attractors outside
training set. (b) SELU network trained using RMSprop; 0 observed attractors outside training set.
(c) Examples of attractors outside training set for SELU network trained using GD + momentum +
weight decay.

11



Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

Figure 12: Identifying attractors from random inputs across nonlinearities.(a) Leaky RELU network
trained using Adam; 59 observed attractors outside trainset. (b) SELU network trained using Adam;
17 observed attractors outside trainset. (c) Network with x+ sin 10x

5 activations; 9 observed attractors
outside trainset. (d) Network with cosx− x activations; 0 observed attractors outside trainset.

initializations tend to store more training examples as attractors while also having fewer spurious
attractive states.

In Figure 14, we provide a histogram indicating the distribution of attractors found by iterating
10,000 test examples from CIFAR10 and 10,000 examples of Gaussian noise for a fully connected
network trained to store 500 examples. We selected an architecture that was trained using the Adam
optimizer, used the cosid nonlinearity, was initialized using the default PyTorch initialization, and
that had 11 hidden layers with 1024 hidden units per layer. Notably, we did not observe any other
attractor states from this network, even though we iterated 20,000 examples.
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(a) (b)

(c) (d)

Figure 13: Identifying attractors from random inputs across initializations. (a) SELU network
trained with Adam with initialization U [−0.01, 0.01]; 5 observed attractors outside the training
set. (b) SELU network trained with Adam with initialization U [−0.02, 0.02] ; 8 observed attractors
outside the training set. (c) SELU network trained with Adam with initialization U [−0.05, 0.05], 12
observed attractors outside the training set. (d) SELU network trained with Adam with initialization
U [−0.1, 0.1]; almost no inputs converged to training examples within 1000 iterations.

Figure 14: Iterating 10,000 test examples and 10,000 examples of random noise does not lead to any
observable attractors outside the training set.
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