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ABSTRACT

Recent progress on physics-based character animation has shown impressive
breakthroughs on human motion synthesis, through imitating motion capture data
via deep reinforcement learning. However, results have mostly been demonstrated
on imitating a single distinct motion pattern, and do not generalize to interactive
tasks that require flexible motion patterns due to varying human-object spatial con-
figurations. To bridge this gap, we focus on one class of interactive tasks—sitting
onto a chair. We propose a hierarchical reinforcement learning framework which
relies on a collection of subtask controllers trained to imitate simple, reusable
mocap motions, and a meta controller trained to execute the subtasks properly to
complete the main task. We experimentally demonstrate the strength of our ap-
proach over different single level and hierarchical baselines. We also show that
our approach can be applied to motion prediction given an image input. A video
highlight can be found at https://youtu.be/XWU3wzz1ip8.

1 INTRODUCTION

The capability of synthesizing realistic human-scene interactions is an important basis for simulating
human living space, where robots can be trained to collaborate with humans, e.g. avoiding collisions
or expediting the completion of assistive tasks.

Motion capture (mocap) data, by offering high quality recordings of articulated human pose, has
provided a crucial resource for human motion synthesis. With large mocap datasets and deep learn-
ing algorithms, kinematics-based approaches have recently made rapid progress on motion synthesis
and prediction (Fragkiadaki et al., 2015; Jain et al., 2016; Holden et al., 2016; Ghosh et al., 2017;
Bütepage et al., 2017; Martinez et al., 2017; Holden et al., 2017; Zhou et al., 2018; Li et al., 2018;
Gui et al., 2018a;b; Yan et al., 2018). However, the lack of physical interpretability in their syn-
thesized motion has been a major limitation of these approaches. The problem becomes especially
clear when it comes to motions that involve substantial human-object or human-human interactions.
Without modeling the physics, the sythensized interactions are often physically unrealistic, e.g.
body parts penetrating obstacles or not reacting to collision. This generally limits the use of these
approaches to either non-interactive motions, or a carefully set up virtual scene with high fidelity to
the captured one.

The graphics community has recently witnessed impressive progress on physics-based character
animation (Peng et al., 2017; 2018a;b). These approaches, through imitating mocap examples via
deep reinforcement learning, can synthesize realistic motions in physics simulated environments.

Figure 1: Synthesizing the motion of sitting. Left: Input image and 3D chair detection. Middle: Physics sim-
ulated environment for learning human-chair interactions. Right: Two examples of the synthesized motions.
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Consequently, they can adapt to different physical contexts and thus attain a better generalization
performance for interaction-based motions, e.g. walking on uneven terrain or stunt performance
under obstacle disturbance. Nonetheless, these approaches still suffer from a drawback—a single
model is trained for performing a single task with a distinct motion pattern (often time from a single
mocap clip). As a result, they might not generalize to higher-level interactive tasks that require
flexible motion patterns. Take the example of a person sitting down on a chair. A person can start in
any location and orientation relative to the chair (Fig. 1). A fixed motion pattern (e.g. turn left and
sit) will be incapable of handling such variations.

In this paper, we focus on one class of high-level interactive tasks—sitting onto a chair. As earlier
mentioned, there are many possible human-chair configurations and different configurations may
require different sequences of actions to accomplish the goal. For example, if the human is facing
the chair, it needs to walk, turn either left or right, and sit; if the human is behind the chair, it
needs to walk, side-walk and sit. To this end, we propose a hierarchical reinforcement learning (RL)
method to address the challenge of generalization. Our key idea is the use of hierarchical control:
(1) we assume the main task (e.g. sitting onto a chair) can be decomposed into several subtasks (e.g.
walk, turn, sit, etc.), where the motion of each subtask can be reliably learned from mocap data,
and (2) we train a meta controller using RL which can execute the subtasks properly to “complete”
the main task from a given configuration. Such strategy is in line with the observation that humans
have a repertoire of motion skills, and different subset of skills is selected and executed for different
high-level tasks.

Our contributions are three folds: (1) we extend the prior work on physics-based motion imitation
to the context of higher-level interactive tasks using a hierarchical approach; (2) we experimentally
demonstrate the strength of our hierarchical approach over different single level and hierarchical
baselines; (3) we show at the end that our approach can be applied to motion synthesis in human
living space with the help of 3D scene reconstruction.

2 RELATED WORK

Kinematics-based Models Kinematic modeling of human motions has a substantial literature in
both vision and graphics domains. Conventional methods such as motion graphs (Kovar et al., 2002)
require a large corpus of mocap data and face challenges in generalizing to new behaviors in new
context. Recent progress in deep learning enables researchers to explore more efficient algorithms
to model human motions, again, from large-scale mocap data. The focus in the vision community
is often motion prediction (Fragkiadaki et al., 2015; Jain et al., 2016; Ghosh et al., 2017; Bütepage
et al., 2017; Martinez et al., 2017; Zhou et al., 2018; Li et al., 2018; Gui et al., 2018a;b; Yan et al.,
2018; Villegas et al., 2018), where a sequence of mocap poses is given as historical observation and
the goal is to predict future poses. Recent work has even started to predict motions directly from a
static image (Chao et al., 2017; Walker et al., 2017; Yao et al., 2018). In the graphics community,
the focus has been primarily on motion synthesis, which aims to synthesis realistic motions from
mocap examples (Yamane et al., 2004; Agrawal & van de Panne, 2016; Holden et al., 2016; 2017).
Regardless of the focus, this class of approaches still faces the challenge of generalization due to the
lack of physical plausibility in the synthesized motion, e.g. foot sliding and obstacle penetrations.

Physics-based Models Physics simulated character animation has a long history in computer
graphics (Liu et al., 2016; Liu & Hodgins, 2017; Peng et al., 2017; Liu & Hodgins, 2018; Peng
et al., 2018a; Clegg et al., 2018; Peng et al., 2018b). Our work is most related to the recent work
by Peng et al. (Peng et al., 2017; 2018a), which trained a virtual character to imitate mocap data
using deep reinforcement learning. They demonstrated robust and realistic looking motions on a
wide array of skills including locomotion and acrobatic motions. Notably, they have used a hierar-
chical model for the task of navigating on irregular terrain (Peng et al., 2017). However, their meta
task only requires a single subtask (i.e. walk), and the meta controller focuses solely on steering.
We address a more complex task (i.e. sitting onto a chair) which requires the execution of diverse
subtasks (e.g. walk, turn, and sit). Another recent work that is closely related to ours is that of Clegg
et al. (2018), which addressed the task of dressing also with a hierarchical model. However, their
subtasks are executed in a pre-defined order, and the completion of subtasks is determined by hand-
coded rules. In contrast, our meta controller is trained and is free to select any subtask at any time
point. This is crucial when the main task cannot always be completed by a fixed order of subtasks.
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Figure 2: Left: Overview of the hierarchical system. Right: Illustration of the subtasks.

Note that humanoid control in physics simulated environments is also a widely-used benchmark
task in the RL community, for example, to investigate how to ease the design of the reward function
(Heess et al., 2017; Merel et al., 2017). However, work in this domain focuses less on realistic
motions.

Hierarchical Reinforcement Learning Our model is inspired by a series of recent work on hi-
erarchical control in deep reinforcement learning (Heess et al., 2016; Kulkarni et al., 2016; Tessler
et al., 2017). Although in different contexts, they share the same attribute that the tasks of concern
have high-dimensional action space, but can be decomposed into simpler, reusable subtasks. Such
decomposition may even help in generalizing to new high-level tasks due to the shared subtasks.

Object Affordances Our work is connected to the learning of object affordances in the vision
domain. Affordances express the functionality of objects and how humans can interact with them.
Prior work attempted to detect affordances of a scene, represented as a set of plausible human
poses, by training on large video corpora (Delaitre et al., 2012; Zhu et al., 2015; Wang et al., 2017).
Instead, we learn the motion in a physics simulated environment using limited mocap examples and
reinforcement learning. Another relevant work also detected affordances using mocap data (Gupta
et al., 2011), but focused only on static pose rather than motion.

3 OVERVIEW

Our main task is the following: given a chair and a skeletal pose of a human in the 3D space, generate
a sequence of skeletal poses that describes the motion of the human sitting onto the chair from the
given pose (Fig. 1). Our system builds upon a physics simulated environment which contains an
articulated structured humanoid and a rigid body chair model. Each joint of the humanoid (except
the root) can receive a control signal and produce dynamics from the physics simulation. The goal
is to learn a policy that controls the humanoid to successfully sit on the chair.

Fig. 2 (left) illustrates the hierarchical architecture of our policy. At the lower level is a set of subtask
controllers, each responsible for generating the control input of a particular subtask. As illustrated
in Fig. 2 (right), we consider four subtasks: walk, left turn, right turn, and sit. 1 To synthesize
realistic motions, the subtask policies are trained on mocap data to imitate real human motions.
At the higher level, a meta controller is responsible for controlling the execution of subtasks to
ultimately accomplish the main task. The subtask controllers and meta controller generate control
input at different timescales—60 Hz for the former and 2Hz for the latter. The physics simulation
runs at 240 Hz. Each subtask as well as the meta controlling task is formulated as an independent
reinforcement learning problem. We leverage recent progress in deep RL and approximate each
policy using a neural network.

1We consider quick, in-place turns, which is distinct from moderate angled steering during walking. sit is
also an in-place motion and should be distinguished from the main sitting task that involves locomotion.
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4 SUBTASK CONTROLLER

A subtask controller is a policy network π(at|st) that maps a state vector st to an action at at each
timestep t. The state representation s is extracted from the current configuration of the simulation
environment, and may vary for different subtasks. For example, turn requires only proprioceptive
information of the humanoid, while sit requires not only such information, but also the pose of the
chair relative to the humanoid. The action a is the signal for controlling the humanoid joints for
each subtask. We use a humanoid model with 21 degrees of freedom, i.e. a ∈ R21. The network
architecture is fixed across the subtasks: we use a multi-layer perceptron with two hidden layers
of size 64. The output of the network parameterizes the probability distribution of a, modeled by
a Gaussian distribution with a fixed diagonal covariance matrix, i.e. π(a|s) = N (µ(s),Σ) and
Σ = diag({σi}). We can generate at at each timestep by sampling from π(at|st).

Each subtask is formulated as an independent RL problem. At timestep t, the state st given by the
simulation environment is fed into the policy network to output an action at. The action at is then
fed back to the simulation environment to generates the state st+1 at the next timestep and a reward
signal rt. The design of the reward function is crucial and plays a key role in shaping the style of the
humanoid’s motion. A heuristically crafted reward may yield a task achieving policy, but may result
in unnatural looking motions and behaviors (Heess et al., 2017). Inspired by Peng et al. (2018a), we
set the reward function of each subtask by a sum of two terms that simultaneously encourages the
imitation of the mocap reference and the achievement of the task objectives:

rsub = rS + rG. (1)
rS and rG account for the similarly to the reference motion and the achievement of the subtask
goals, respectively. We use a consistent similarity reward rS across all subtasks:

rS = ωprp + ωvrv, (2)
where rp and rv encourage the similarity of local joint angles qj and velocities q̇j between the
humanoid and the reference motion, and ωp and ωv are the respective weights. Specifically,

rp = exp

−αp
∑
j

d(qj , q̂j)
2


rv = exp

−αv
∑
j

(q̇j − ˆ̇qj)
2

 ,

(3)

where d(·, ·) computes the angular difference between two angles. We empirically set ωp = 0.5,
ωv = 0.05, αp = 1, and αv = 10. Next, we detail the state representation s and task objective
reward rG for each subtask.
1) Walk The state swalk ∈ R52 consists of a 50-d proprioceptive feature and a 2-d goal feature
that specifies an intermediate walking target. The proprioceptive feature includes the local joint
angles and velocities, the height and linear velocity of the root (i.e. torso) as well as its pitch and roll
angles, and a 2-d binary vector indicating the contact of each foot with the ground (Fig. 3). Rather
than walking in random directions, target-directed locomotion (Agrawal & van de Panne, 2016) is
necessary for accomplishing high-level tasks. Assuming a target is given, represented by a 2D point
on the ground plane, the 2-d goal feature is given by [sin(ψ), cos(ψ)]>, where ψ is the azimuth
angle to the target in the humanoid centric coordinates. The generation of targets will be detailed in
the meta controller section (Sec. 5).

We observe that it is challenging to directly train a target-directed walking policy with mocap exam-
ples. Therefore we adopt a two-stage training strategy where each stage uses a distinct task objective
reward. In the first stage, we encourage similar steering patterns to the reference motion, i.e. the
linear velocity of the root v ∈ R3 should be similar between the humanoid and reference motion:

rG = 0.5 · exp

(
−10 ·

∑
i

(vi − v̂i)2
)
. (4)

In the second stage, we reward motion towards the target:

rG = 0.1 · 1

1 + exp(10 · V walk)
, (5)
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Figure 3: State representation of the humanoid and
chair. The red and green dots on the humanoid de-
note the root and non-root joints. The red dots on
the ground and chair denote the walk target and the
center of the seat surface.

Figure 4: Curriculum learning for the meta con-
troller. The humanoid spawn location is initially set
to less challenging states (Zone 1), and later moved
to more challenging states (Zone 2 and 3).

where V walk = (Dwalk
t+1 −Dwalk

t )/δt. Dwalk
t denotes the horizontal distance between the root and

the target, and δt is the length of the timestep.
2) Left/Right Turn The states slturn, srturn ∈ R50 reuse the 50-d proprioceptive feature from the
walk subtask. The task objective reward encourages the rotation of the root to be matched between
the humanoid and reference motion:

rG = 0.1 · exp

(
−10 ·

∑
i

d(θi, θ̂i)
2

)
, (6)

where θ ∈ R3 consists of the root’s pitch, yaw, and roll.
3) Sit The sit subtask assumes that the humanoid is initially standing roughly in front of the chair
and facing away. The task is simply to lower the body and be seated. Different from walk and turn,
the state for sit should capture the pose information of the chair. Our state ssit ∈ R57 consists of the
same 50-d proprioceptive feature used in walk and turn, and additionally a 7-d feature describing the
state of the chair in the humanoid centric coordinates. The 7-d chair state includes the displacement
vector from the pelvis to the center of the seat surface, and the rotation of the chair in the humanoid
centric coordinates represented as a quaternion (Fig. 3). The task objective reward encourages the
pelvis to move towards the center of the seat surface:

rG = 0.5 · (−V sit), (7)

where V sit = (Dsit
t+1 −Dsit

t )/δt and Dsit
t is the 3D distance between the pelvis and the center of

the seat surface.

5 META CONTROLLER

The meta controller is also a policy network and shares the same architecture as the subtask con-
trollers. As the goal now is to navigate the humanoid to sit on the chair, the input state smeta should
encode the pose information of the chair. We reuse the 57-d state representation from the sit sub-
task which contains both the proprioceptive and chair information. Rather than directly controlling
the humanoid joints, the output action ameta now controls the execution of subtasks. Specifically,
ameta = {aswitch, atarget} consists of two components. aswitch ∈ {walk, left turn, right turn, sit}
is a discrete output which at each timestep picks a single subtask out of the four to execute.
atarget ∈ R2 specifies the 2D target for the walk subtask, which is used to compute the goal state
in swalk. Note that atarget is only used when the walk subtask is picked for execution. The output
of the policy network parameterizes the probability distributions of both aswitch and atarget, where
aswitch is modeled by a categorical distribution as in standard classification problems, and atarget
is modeled by a Gaussian distribution following the subtask controllers.

The meta task is also formulated as an independent RL problem. At timestep t, the policy net-
work takes the state smeta

t from the simulation environment and output an action ameta
t . ameta

t then
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triggers one specific subtask controller to generate the control signal for the humanoid joints. The
control signal is finally fed back to the simulation to generate the next state smeta

t+1 and a reward
rmeta
t . Rather than evaluating the similarity to a mocap reference, the reward now should be pro-

viding feedback on the main task. We adopt a reward function that encourages the pelvis to move
towards and be in contact with the seat surface:

rmeta =

{
1 if zcontact = 1

0.5 · (−V sit) otherwise.
(8)

zcontact indicates whether the pelvis is in contact with the seat surface, which can be detected by the
physics simulator. V sit is defined as in Eq. 7.

6 TRAINING

Since the subtasks and meta task are formulated as independent RL problems, they can be trained
independently using standard RL algorithms. We first train each subtask controllers separately, and
then train the meta controller using the trained subtask controllers. All controllers are trained in a
standard actor-critic framework using the proximal policy optimization (PPO) algorithm (Schulman
et al., 2017).
1) Subtask Controller The training of the subtasks is also divided into two stages. First, in each
episode, we initialize the pose of the humanoid to the first frame of the reference motion, and
train the humanoid to execute the subtask by imitating the following frames. We apply the early
termination strategy (Peng et al., 2018a): an episode is terminated immediately if the height of the
root falls below 0.78 meters for walk and turn, and 0.54 meters for sit. These thresholds are chosen
according to the height of the humanoid. For turn, the episode is also terminated when the root’s
yaw angle differs from the reference motion for more than 45◦. For walk, we adopt the two-stage
training strategy described in Sec. 4. In target-directed walking, we randomly sample a new 2D
target in the front of the humanoid every 2.5 seconds or when the target is reached. For sit, the chair
is placed at a fixed location behind the humanoid, and we use reference state initialization (Peng
et al., 2018a) to facilitate training.

The training above enables the humanoid to perform the subtasks from the initial pose of the ref-
erence motion. However, this does not guarantee successful transitions between subtasks (e.g.
walk→turn), which is required for the main task. Therefore in the second stage, we fine-tune the
controllers by setting the initial pose to a sampled ending pose of another subtask, similar to the
policy sequencing method in Clegg et al. (2018). For turn and sit, the initial pose is sampled from
the ending pose of walk and turn, respectively.
2) Meta Controller Recall that the task is to have the humanoid sit down regardless of where it
starts in the environment. The task’s difficulty highly depends on the initial state: if it is already
facing the seat, it only needs to turn and sit, while if it is behind the chair, it needs to first walk
to the front and then sit down. Training can be challenging when starting from a difficult state,
since the humanoid needs to by chance execute a long sequence of correct actions to receive the
reward for sitting down. To facilitate training, we propose a multi-stage training strategy inspired
by curriculum learning (Zaremba & Sutskever, 2014). The idea is to begin the training from easier
states, and progressively increase the difficulty when the training converges. As illustrated in Fig. 4,
we begin by only spawning the humanoid on the front side of the chair (Zone 1). Once trained, we
change the initial position to the lateral sides (Zone 2) and continue the training. Finally, we train
the humanoid to start from the rear side (Zone 3).

7 RESULTS

Reference Motion We collect mocap data from the CMU Graphics Lab Motion Capture
Database (CMU). Tab. 1 shows the mocap clips we used for each subtask. We extract relevant mo-
tion segments and retarget the motion to our humanoid model. We use a 21-DoF humanoid model
provided by the Bullet Physics SDK (Bullet). Motion retargeting is performed using a Jacobian-
based inverse kinematics method (Holden et al., 2016).
Implementation Details Our simulation environment is based on OpenAI Roboschool (Schulman
et al., 2017; OpenAI), which uses the Bullet physics engine (Bullet). We use a randomly selected
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Subtask Subject # Trial #
walk 8 1, 4
left / right turn 69 13
sit 143 18

Table 1: Mocap clips adopted from the CMU
MoCap database (CMU).

Subtasks Meta Task
nsteps 8192 64
nminibatches 32 8
noptepochs 4 2
lr 1× 10−4 1× 10−4

Table 2: Hyperparamters for PPO training.
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Figure 5: Execution of subtasks. From top to bottom:
forward walking, target directed walking, left turn, right
turn, and sit.

chair model from ShapeNet (Chang et al., 2015). The PPO algorithm for training is based on the
implementation from OpenAI Baselines (Dhariwal et al., 2017). Tab. 2 shows the hyerparamters we
used for the PPO training.

Subtask First we show qualitative results of the individual subtask controllers trained using their
corresponding reference motions. Each row in Fig. 5 shows the humanoid performance of one
particular subtask: walk in one direction (row 1), following a target (row 2), turn in place both left
(row 3) and right (row 4), and sit on a chair (row 5).

Evaluation of Main Task We adopt two different metrics to quantitatively evaluate the main task:
(1) success rate and (2) minimum distance. We declare a success whenever the pelvis of the hu-
manoid has been continuously in contact with the seat surface for 3.0 seconds. We report the success
rate over 10,000 trials by spawning the humanoid at random locations. Note that the success rate
evaluates task completion with a hard constraint and does not reveal the progress when the humanoid
fails. Therefore we also compute the per-trial minimum distance (in meters) between the pelvis and
the center of the seat surface, and report the mean and standard deviation over the 10,000 trials.

As noted in Sec. 6, the task can be challenging when the initial position of the humanoid is uncon-
strained. To better analyze the performance, we consider two different initialization settings: (1)
Easy and (2) Hard. In the Easy setting, the humanoid is initialized from roughly 2 meters away on
the front half plane of the chair (i.e. Zone 1 in Fig. 4), with an orientation roughly towards the chair.
The task is expected to be completed by simply walking forward, turning around, and sitting down.
In the Hard setting, humanoid is initialized again from roughly 2 meters away but on the lateral and
rear sides of the chair (i.e. Zone 2 and 3 in Fig. 4). It needs to walk around the chair to sit down
successfully.

Easy Setting We benchmark our approach against various baselines in this setting. We start with
two non-hierarchical (i.e. single-level) baselines. The first is a kinematics-based method: we select
a mocap clip with a holistic motion sequence that successively performs walking, turning, and sitting
on a chair. When a trial begins, we align the first frame of the sequence to the humanoid’s initial pose
by aligning the yaw of the root. Once aligned, we simply use the following frames of the sequence
as the kinematic trajectory of the trial. Note that this method is purely kinematic and cannot reflect
any physical interactions between the humanoid and chair. The second method extends the first
one to a physics-based approach: we use the same kinematic sequence but now train a controller to
imitate the motion. This is equivalent to training a subtask controller except the subtask is holistic
(i.e. containing walk, turn, and sit in one reference motion). Both methods are considered non-
hierarchical as neither performs task decomposition.

7



Under review as a conference paper at ICLR 2020

Succ Rate (%) Min Dist (m)
Kinematics – 1.2656 ± 0.0938
Physics 0.00 1.3316 ± 0.1966
walk→left turn→sit 25.16 0.3790 ± 0.2326
walk→right turn→sit 0.92 0.7948 ± 0.2376
walk / left turn / sit 29.38 0.3913 ± 0.2847
walk / right turn / sit 23.01 0.3620 ± 0.2378
Full Model 31.61 0.3303 ± 0.2393

Table 3: Comparison of our approach with the hierarchical/non-hierarchical baselines in the Easy setting.
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Figure 6: Qualitative results of our approach and the baselines. Row 1 and 2 show failure cases from the
kinematics and physics baselines, respectively. The former violates physics rules (e.g. sitting in air), and both
do not generalize to new human-chair configurations. Row 3 to 4 show two successful cases and row 5 shows
one failure cases from our approach.

Tab. 3 shows the quantitative results. For the kinematics baseline, the success rate is not reported
since we are unable to detect physical contact between the pelvis and chair. However, the 1.2656
mean minimum distance suggests that the humanoid on average remains far from the chair. For the
physics baseline, we observe a similar mean minimum distance (i.e. 1.3316). The zero success rate
is unsurprising given that the humanoid is unable to get close to the chair in most trials. As shown
in the qualitative examples (Fig. 6), the motion generated by the kinematics baseline (row 1) is not
physics realistic (e.g. sitting in air). The physics baseline (row 2), while following physics rules
(e.g. falling on the ground eventually), still fails in approaching the chair. These holistic baselines
perform poorly since they simply imitate the mocap example and repeat the same motion pattern
regardless of their starting position.

We now turn to a set of hierarchical baselines and our approach. We also consider two baselines.
The first one always executes the subtasks in a pre-defined order, and the meta controller is only
used to trigger transitions (i.e. a binary classification). Note that this is in similar spirit to Clegg
et al. (2018). We consider two particular orders: walk→left turn→sit and walk→right turn→sit.
The second one is a degenerated version of our approach that uses either only left turn or right turn:
walk / left turn / sit and walk / right turn / sit.

As shown in Tab. 3, hierarchical approaches outperform single level approaches, validating our
hypothesis that hierarchical models, by breaking a task into reusable subtasks, can attain better
generalization. Besides, our approach outperforms the pre-defined order baselines. This is because:
(1) the main task cannot always be completed by a fixed order of subtasks, and (2) fixing the order
increases training difficulty because certain missing transitions (e.g. left turn→walk) are necessary
for recovery from mistakes. Finally, our full model outperforms the baselines that only allow turning
in one direction. This suggests the two turning subtasks are complementary and being used in
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Subtask Initial Pose Succ Rate (%)
left turn mocap 87.02

right turn mocap 67.59
sit mocap 99.25

Subtask Initial Pose Succ Rate (%)
w/o FT w/ FT

left turn walk 0.09 51.12
right turn walk 1.96 58.31

sit left or right turn 32.94 87.41

Table 4: Evaluation of individual subtasks.

0.50 0.36 0.13 0.01

0.03 0.59 0.07 0.32

0.01 0.00 0.96 0.03

0.00 0.00 0.01 0.99

walk l turn r turn sit

walk

l turn

r turn

sit

(a) left side

0.51 0.01 0.48 0.00

0.07 0.18 0.18 0.56

0.01 0.01 0.67 0.30

0.00 0.00 0.00 1.00

walk l turn r turn sit

walk

l turn

r turn

sit

(b) right side

Figure 7: Transition matrices of starting from differ-
ent sides of the chair.

Succ Rate (%) Min Dist (m)

Zone 1 31.61 0.3303 ± 0.2393

Zone 2 w/o CL 0.00 0.5549 ± 0.2549
Zone 2 10.01 0.5526 ± 0.3303

Zone 3 w/o CL 4.05 0.5636 ± 0.2263
Zone 3 w/ CL 7.05 0.5262 ± 0.2602

Table 6: Comparison of the Easy and Hard settings. Applying the curriculum learning strategy improves the
performance.

different scenarios, e.g. in Fig. 6, walk→right turn→sit when starting from the chair’s right side
(row 3), and walk→left turn→sit when starting from the chair’s left side (row 4).

Analysis As can be seen in Tab. 3, the success rate is still low even with the full model (i.e.
31.61%). This can be attributed to three factors: (1) failures of subtask execution, (2) failures due to
subtask transitions, and (3) an insufficient subtask repertoire. First, Tab. 4 (top) shows the success
rate of individual subtasks, where the initial pose is set to the first frame of the reference motion (i.e.
as in stage one of subtask training). We can see the execution does not always succeed (e.g. 67.59%
for right turn). Second, Tab. 4 (bottom) shows the success rate for the same subtasks, but with the
initial pose set to the last frame of the execution of another subtask (i.e. as in stage two of subtask
training). With fine-tuning the success rate after transitions can be significantly improved, although
still not perfect. Finally, Fig. 6 (row 5) shows a failure case where the humanoid needs a “back up”
move when it is stuck in the state of directly confronting the chair. Building a more diverse subtask
skill set is an interesting future research problem.

To analyze the meta controller’s behavior, we look at the statistics on the switching between sub-
tasks. Fig. 7 shows the subtask transition matrices when the humanoid is started either from the
right or left side of the chair. We can see that certain transitions are more favored in certain starting
areas, e.g. walk→left turn is favored over walk→right turn when started from the left side. This is
in line with the earlier observation that the two turning subtasks are complementary.

Hard Setting We now increase the task’s difficulty by initializing the humanoid in Zone 2 and
3 (Fig. 4), and show the effect of the proposed curriculum learning (CL) strategy. Tab. 6 shows
the results from different initialization zones. First, we observe a severe drop in the success rate
when the humanoid is spawned in Zone 2 and 3 (e.g. from 31.61% to 4.05% for “Zone 3 w/o CL”).
However, the success rate is higher in both zones when the proposed curriculum learning strategy
is applied (e.g. from 4.05% to 7.05% in Zone 3). This suggests that a carefully tailored curriculum
can improve the training outcome of a challenging task. Note that the difference in the minimum
distance is less significant (e.g. 0.5549 for “Zone 2 w/o CL’ versus 0.5526 for “Zone 2”), since
without CL the humanoid can still approach the chair, but will fail to turn and sit due to the difficulty
in learning. Fig. 8 shows two successful examples when the humanoid is spawned from the rear side
of the chair. Interestingly, the humanoid learns a slightly different behavior (e.g. walk→sit without
turn) compared to when starting from the front side (row 3 and 4 in Fig. 6).
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Figure 8: Qualitative results on the Hard setting. The humanoid can sit down successfully when starting from
the back side of the chair.

Figure 9: Synthesizing sitting motions from a single image. The first column shows the 3D reconstruction
output from Huang et al. (2018).

8 MOTION SYNTHESIS IN HUMAN LIVING SPACE

We show a vision-based application of our approach by synthesizing sitting motions from a single
RGB image that depicts human living space with chairs. First, we recover the 3D scene configuration
using the method of Huang et al. (2018). We then align the observed scene with the simulated
environment using the detected chair and its estimated 3D position and orientation. This enables us
to transfer the synthesized sitting motion to the observed scene. Fig. 9 shows two images rendered
with synthesized humanoid motion. While the motion looks physically plausible in these examples,
this is not always the case in general, since we do not model the other objects (e.g. tables) in the
scene. An interesting future direction is to learn the motion by simulating scenes with cluttered
objects. It is also possible to synthesize motions based on the humans observed in the image, given
the recent advance on extracting 3D human pose from a single image (Peng et al., 2018b).

9 CONCLUSION

We address motion synthesis of an interactive task—sitting onto a chair. We introduce a hierarchical
reinforcement learning approach which relies on a collection of subtask controllers trained to imitate
reusable mocap motions, and a meta controller trained to execute the subtasks properly to complete
the main task. We experimentally demonstrate the strength of our approach over different single
level and hierarchical baselines, and show an application to motion prediction given an image.
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