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ABSTRACT

Contextual representation models like BERT have achieved state-of-the-art per-
formance on a diverse range of NLP tasks. We propose a cross-lingual contextual
representation model that generates language-independent contextual representa-
tions. This helps to enable zero-shot cross-lingual transfer of a wide range of NLP
models, on top of contextual representation models like BERT. We provide a for-
mulation of language-independent cross-lingual contextual representation based
on mono-lingual representations. Our formulation takes three steps to align se-
quences of vectors: transform, extract, and reorder. We present a detailed discus-
sion about the process of learning cross-lingual contextual representations, also
about the performance in cross-lingual transfer learning and its implications.

1 INTRODUCTION

A cross-lingual text representation can generate language-independent representations: for pieces
of text that are semantically similar, the produced representations are also similar, regardless of the
language of the text. This provides a basis for dealing with multiple languages in NLP. Training
a model on cross-lingual representations is a common approach for cross-lingual transfer learning
(Huang et al., 2013; Artetxe & Schwenk, 2019).

To achieve desirable transfer learning performance, the cross-lingual representation model should
be effective in two aspects: 1) the quality of text representation; and 2) the quality of cross-lingual
mapping.

The current state-of-the-art text representation models are a family of pre-trained language model
representations such as BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019). These models
produce contextual representations of text, i.e., a sequence of vectors corresponding to the sequence
of text tokens. Each vector represents “a token in context,” e.g., the semantics of a word in its local
context and in the global context of the sentence.

Research on cross-lingual representation has so far been largely concentrated on word embeddings
(Mikolov et al., 2013; Gouws et al., 2015; Ruder et al., 2017) and sentence embeddings (Schwenk
& Douze, 2017; Artetxe & Schwenk, 2019). Word embeddings are static representations and are
less expressive than contextual representations. Sentence embeddings perform respectably in some
tasks but inferior in others, because there is information loss when too much information is crammed
into a single vector (Conneau et al., 2018a). However, word embeddings and sentence embeddings
are relatively easy to generalize to cross-lingual representations because they do not have dynamic
inter-dependency among vectors.

We regard it as an interesting topic to investigate cross-lingual contextual representations. First, it
is an interesting problem in its own to match two (or more) sequences of vectors, where each vector
sequence has its order and locality relationships. Second, we hope to further improve cross-lingual
transfer learning by leveraging the state-of-the-art text representation models.

In this study, we try to clarify the definition and characteristics of cross-lingual contextual represen-
tations, and propose a formulation to learn a cross-lingual contextual representations model based on
existing mono-lingual pre-trained language models. We perform experiments to analyze the effect
of the ingredients in our formulation and the final performance in transfer learning.
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We also hope our investigation help to understand the nature of text representations in different lan-
guages: what are the commonalities between representations, how to cover the gaps, and ultimately
what is transferable across languages with the help of state-of-the-art representation models.

Related work Multilingual BERT learns a multi-lingual representation by training on a combined
corpus of multiple languages. For dissimilar languages, the transfer performance is not satisfactory
(Pires et al., 2019). XLM (Lample & Conneau, 2019) uses parallel corpus and a translational ob-
jective, and has achieved good transfer performance for many languages. However, XLM does not
produce the same representation for different languages, so there is no guarantee of the performance
in transfer learning. In multi-way neural machine translation (Firat et al., 2016) the situation is simi-
lar: multiple encoders produce the representation for each language, but because the representations
are not language-independent, the decoder still needs to be trained on multiple language inputs.

A recent work on aligning contextual representations is (Schuster et al., 2019), which treats vectors
in contextual representations as individual embeddings and learns a matrix to transform the embed-
dings space of different languages. The idea resembles the “transform” step in our formulation.

2 CROSS-LINGUAL CONTEXTUAL REPRESENTATIONS

First we define “language-independent cross-lingual contextual representations (CLCR)” and estab-
lish mathematical notations that we use in the following discussion.

2.1 DEFINITION

A cross-lingual contextual representation (CLCR) of text is a parameterized representation model
f(θ) : (a0, ..., aL) → (r0, ..., rN ), where a0, ..., aL is the sequence of text tokens in a sentence
s, and r0, ..., rN is the sequence of vectors produced by f as the representation of s. A language-
independent f satisfies the following conditions:

1. (cross-lingual correspondence) if sentence si in i-th language and sentence sj in j-
th language are translations of each other, then by some distance metric D we have
D(f(si; θ), f(sj ; θ)) < δ, where δ is a threshold.

2. (isometric property) if for some semantic metric S, sentence si in i-th language and sen-
tence sj in j-th language satisfy S(si, sj) < γ, i.e., si and sj are close in meaning, then
by some distance metric D we have D(f(si; θ), f(sj ; θ)) < δ(γ), where δ is a monotonic
increasing function of γ.

3. (contextual representation) ∃f1, f2, f3 s.t. ri = f3(f2(ai), f1(a0...L\i)). The vector ri can
roughly be interpreted as a representation of token ai in the context of the whole sentence.

Condition 1 and 2 ensure that CLCR produces similar representations for sentences with similar
meaning, independent of language. Condition 3 is a characteristic of contextual representation mod-
els such as pre-trained language models like BERT.

2.2 EXISTENCE OF CLCR

To show that such cross-lingual contextual representation exists, we provide a formulation of CLCR
based on mono-lingual contextual representations. We propose that one can generate CLCR with a
three-step process. Starting from mono-lingual representations, each of the three steps corresponds
to one problem that needs to be solved, in order to arrive at a cross-lingual contextual representation.

1. Alignment: the vectors of mono-lingual representation of different languages reside in
different spaces. First we align the vector spaces Ri with transformations Ti : ri → rC , to
transform into a common space RC .

2. Granularity: different languages have different token granularities. Some language use
several tokens to represent a word. Token alignment between translations si and sj can
be represented by a set A = {((aim, ..., ain), (ajp, ..., ajq))}, where tokens (aim, ..., a

i
n) and

(ajp, ..., a
j
q) are aligned “phrases.”
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Definition of Finest Common Granularity: find the token alignment A∗ that can-
not be broken into a finer alignment. The finest common granularity for si w.r.t.
language i and j is defined as a grouping of the token sequence of si in A∗:
FCG(si) = {(ai0, ..., ain0

), (ain0+1, ..., a
i
n1
), ..., (ainm+1, ..., a

i
L)}, where each element

(aini+1, ..., a
i
ni+1

) ∈ A∗.
In a nutshell, we want to group a series of tokens (ain0+1, ..., a

i
n1
) into a “phrase token”

(key-point token), so that the key-point tokens have one-to-one correspondence between
two languages. With key-point tokens derived from FCG, translations si and sj have the
same number of key-point tokens, and can then be represented by the same number of
vectors.

3. Order: many different word orders exist in different languages, for example the SVO
(subject-verb-object) and the SOV (subject-object-verb) order. We define an order map-
ping to map the orders of token from language i to language j: Ri→j : m|si → w,
where ((ainm+1, ..., a

i
nm+1

), (ajnw+1, ..., a
j
nw+1

)) ∈ A. The order mapping Ri→j maps the
position of a key-point token in the source sentence to the position of the corresponding
key-point token in the target language.

To generate cross-lingual representations, we perform alignment transformation on the vectors of
two mono-lingual representations, find their common granularity, and then reorder the vectors, to
make the two representations similar.

2.3 TRANSFER LEARNING WITH CLCR

Language-independent cross-lingual representations enables zero-shot transfer learning across lan-
guages. CLCR allows the most versatile models to be trained on cross-lingual representations. For
a model M taking contextual representations (r0, ..., rN ) as input, M can be trained on dataset
{(si, l)} in language i, by first using CLCR f to encode inputs: M(f(si)) → l. In testing, model
can perform inference on input in any language within f ’s input languages.

3 LEARNING CROSS-LINGUAL CONTEXTUAL REPRESENTATIONS

In this section, we detail our approach to learn CLCR based on the formulation in Section 2.2. We
use two mono-lingual contextual representation models on language 1 and 2 to learn a cross-lingual
contextual representation model.

3.1 TRANSFORM

In the first step, we learn a transformation T parameterized by a multi-layer network:
T (r) = Linear(r) + Linear(Relu(Linear(r))) (1)

The network is trained to minimize the discrepancy between the transformed representation in lan-
guage 1 and the representation in language 2: D(T (r10, ..., r

1
M )||(r20, ..., r2N )). Because we do not

have alignment between the two sequences of vectors yet, we define D with attention matching
between the two sequences:

D(T (r10, ..., r
1
M )||(r20, ..., r2N )) =

∑
i

1

N
||T (Attention(r2i , (r10, ..., r1M ))− r2i || (2)

where Attention is defined as using r2i as query to perform a weighted-sum of (r10, ..., r
1
N ).

To train transformation T , we minimize the above loss D on a parallel corpus {(s1, s2)}. We
observed that straightforward gradient descent does not converge. We therefore used attention an-
nealing during training to help our model converge to an optimal matching:

softmax(a0, ..., aN ) =
ea0/T∑
i e

ai/T
(3)

where T = 1/(1 + β · step). As training progresses softmax will gradually be replaced by max,
which let the model find a one-to-one matching between the tokens. This is exactly required by the
next step.
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3.2 EXTRACT

In this step, we want to extract “key-points” from a sentence. These key-points are summarizations
of local information (which may consist of multiple tokens), and the granularity of “key-points” is
ideally consistent across different languages.

We extract key-points based on finest common granularity (FCG) between two languages: for a
group of tokens (ain0+1, ..., a

i
n1
) ∈ FCG(si), we use a single vector rn0 to represent them. The

number of vectors in the CLCR of si is thus equal to |FCG(si)|.
Next, we train a network P to predict key-points in FCG(si). Although we can generate FCG(si)
by aligning parallel documents, in general CLCR should not rely on parallel documents and should
predict key-points in a single sentence independently:

rik is the representation for key-point token (ain0+1, ..., a
i
n1
) (4)

⇐⇒ ∃! aik ∈ {ain0+1, ..., a
i
n1
}, P (aik) = 1 (5)

The prediction network predicts one of the tokens in a key-point token to be the “pivot token.” And
the vector for that pivot token is regarded as the representation for the whole key-point token.

Finally, we need to generate ground-truth labels for training key-point prediction. In the definition
above, the question “which word is the pivot token in a phrase?” do not have definite answers.
Therefore, we train our representation model and let the model determine the pivot token in a key-
point token. This is achieved by forced alignment via annealing in Section 3.1. After training
the transformations T , we calculate the pairwise distance between r1i and r2j : D(T (r1i )||r2j ) +
D(T (r2j )||r1i ), and use a threshold to find aligned pivot tokens.

Aligned pivot tokens (which is at the same time aligned key-point tokens) generated in this fashion
closely resembles key-point tokens derived from FCG. As we do not have ground-truth word align-
ment of parallel corpus to generate real FCGs, we use our aligned key-points as pseudo-groundtruth
alignments and use them as labels to train predictors in this and the next section.

One caveat of using parallel corpus is that translations are not unique. There can be multiple valid
translations of a sentence. Thus labels derived from parallel corpus are intrinsically noisy and non-
unique. We generate more reliable labels to train our prediction network, with a technique similar
to (Liu & Tao, 2015).

3.3 REORDER

The aim of reordering is to make the order of contextual vectors (r10, ..., r
1
N ) in language 1 compat-

ible with the order in language 2. This can be achieved by learning an order prediction model, to
predict the order mapping R1→2. We propose two methods for order prediction:

• Absolute order prediction: learn a prediction model to directly predict the position of token
a1i in language 2:

P (a1i ) = R1→2(i) (6)

Inference:

minimize
mi∈Z∗

∑
i

cost(P (ai) = mi) s.t. mi 6= mj ∀i, j (7)

• Relative order prediction: learn a model to predict the relative order of two tokens a1i and
a1j in language 2:

P (a1i , a
1
j ) = sgn(R1→2(i)−R1→2(j)) (8)

Inference:

minimize
mi∈Z∗

∑
i

∑
j>i

cost(P (ai, aj) = sgn(mi −mj)) s.t. mi 6= mj ∀i, j (9)

The learned order prediction is R1→2 : i|s1 → mi. The vectors in language 1 can be reordered
according to R1→2, so that the reordered vectors have the order of language 2. The reordered vector
sequence is (r1R2→1(0)

, ..., r1R2→1(N)), where R2→1 is the reverse mapping of R1→2.
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4 EXPERIMENTS

In this section, we perform experiments to learn language-independent cross-lingual contextual rep-
resentation based on the approach in Section 3. We also perform transfer learning and analysis
experiments to examine the characteristics of CLCR.

4.1 LEARNING

We sequentially examine the details and the effectiveness of each of the three steps in our formula-
tion to generate CLCR: transform, extract, and reorder.

The basic experiment setup is: we use mono-lingual pre-trained language models from Google
BERT (Devlin et al., 2019), for English and Chinese1. The 12-layer BERT-base model is used. We
use parallel corpus from The United Nations Parallel Corpus v1.0 (Ziemski et al., 2016). Experi-
ments are performed with Pytorch (Paszke et al., 2017).

Transform As shown in Table 1, training transformation T to minimize distance D with atten-
tion annealing managed to converge to a low distance between the two representations. Lower
distance indicates that a better alignment is found (because unaligned and misaligned tokens always
contribute to high distance). And a good alignment is also conducive to learning a better transfor-
mation.

Table 1: Distance D achieved by transformation T

Model D(T (s1)||s2) D(T (s2)||s1)

Linear Regression 0.055 0.078
Attention (w/o annealing T = 1) 0.138 0.207
Attention (with annealing β = 0.001) 0.028 0.048
Attention (with annealing β = 0.01) 0.025 0.037

During training, we alternately optimize the representation model for language 1 and 2, so that they
do not learn a trivial solution of producing the same constant representation. The learning curve is
shown in Figure 1.

The produced alignment is used as labels in the next two steps.
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Figure 1: Learning curve of distance D. Training phase 1 (left): fix both model, learn T only.
Training phase 2 (middle): finetune language 1 representation model with annealing. Training phase
3 (right): finetune language 2 representation model with annealing.

Extract A binary classifier is trained to predict whether a token is a pivot token of a key-point. An
example prediction is illustrated in Figure 2. It can be observed that only tokens possess significant
meaning is predicted as pivot tokens. For languages (e.g., Chinese) that use multiple tokens to
represent a word, only one token per word is predicted as pivot tokens. Considering the labels are

1https://github.com/google-research/bert
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pseudo-groundtruth produced from only one translation per sentence, the overall prediction accuracy
is respectable (see Table 2).

Using confident labels slightly improves prediction accuracy, and makes the prediction significantly
less ambiguous. This is very important for producing consistent predictions of key-points, such that
transfer learning models on top of CLCR can be trained on a consistent representation.

Table 2: Key-point prediction accuracy

Model Accuracy Precision Recall
en zh en zh en zh

Finetune 0.859 0.823 0.886 0.854 0.936 0.847
Confident labels 0.864 0.826 0.875 0.838 0.959 0.872

And
that

' s , kind
of , where

I see
what

m
y
job

is and
what

our
team

' s job
is .

And
that

' s , kind
of , where

I see
what

m
y
job

is and
what

our
team

' s job
is .

Figure 2: An example of predicted key-points, with (below) and without (above) confident labels

Reorder In absolute order prediction, we use an N-way classifier to predict the absolute position
of a token. In relative order prediction, a binary classifier is used to predict the relative order of a
pair of tokens. During inference, beam search is used to find the best order assignment of tokens, so
that the total cost is minimized. We simply use the probability p of the classifier output as the cost
of a particular assignment.

Table 3 reports the reordering performance of two methods with different beam size n. We calculate
2-gram to 4-gram BLEU with respect to the groundtruth order. Relative order prediction performs
much better than absolute order prediction, getting 2-gram predictions correct over half of the time
and 4-gram predictions correct nearly one-third of the time.

Table 3: Reorder performance

Model BLEU (2-gram) BLEU (3-gram) BLEU (4-gram)
en zh en zh en zh

Absolute order prediction (n = 1) 0.309 0.386 0.166 0.227 0.101 0.152
Absolute order prediction (n = 10) 0.331 0.393 0.189 0.239 0.121 0.165
Relative order prediction (n = 1) 0.535 0.566 0.384 0.410 0.290 0.308
Relative order prediction (n = 10) 0.582 0.624 0.419 0.468 0.316 0.368

The example in Figure 3 illustrates that absolute order prediction suffers from ambiguity except
near the beginning of the sentence, because the exact position depends on the specific translation
and therefore does not have a unique correct answer. Relative order prediction is much more robust
because it is invariant to the location of the pair of tokens in the sentence, the classifier only makes
predictions based on the relative order relation between them.

4.2 CROSS-LINGUAL TRANSFER

Natural Language inference XNLI (Conneau et al., 2018b) is a cross-lingual natural language
inference corpus consisting of test examples in 15 languages. We use the English and Chinese test
set in our evaluation. We use MultiNLI (Williams et al., 2018), an English NLI dataset as the training
set to train the task model.
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Figure 3: A example of order prediction. From left to right: (1) ground-truth absolute order. (2)
predicted absolute order. (3) ground-truth relative order. (4) predicted relative order.

To evaluate the performance of our cross-lingual contextual representation model, we train the ESIM
model (Chen et al., 2017) with representation produced by CLCR as input. An advantage of CLCR
over multi-lingual pre-trained language models is that complex task models can be trained on top of
the representation. To examine the effect of each of the three steps in our formulation of CLCR, we
also experimented with different combinations of steps.

Our full CLCR model (T+E+R) achieved a transfer accuracy of 71.7%, much better than multilingual
BERT and even better than translating test set to English. The transfer gap is on par with state-of-
the-art models (Table 4).

It is clear that CLCR works best when all three steps are present. Without extraction and reordering,
model on top of CLCR does not perform as well. This is because the ESIM model makes use of order
information of the input sequence, the number and the order of vectors should match for successful
zero-shot transfer to another language.

It is also observed that extraction and reordering lower performance on English by roughly 1%. The
performance loss is expected, and not beyond acceptable range. During the training of CLCR, the
English representation model is finetuned to accommodate another language, and during imperfect
extraction and reordering some information is inevitably lost.

We also set an upper bound for the transfer performance of CLCR by using pseudo-groundtruth
alignments (T+pGA). Pseudo-groundtruth alignments give the “correct” extraction and reordering,
and indicates the performance of the best possible T+E+R model. The remaining transfer gap (6.4%)
is thus intrinsic to the task (variation of test set difficulty) and the mono-lingual representation mod-
els (different performance of BERT-base-en and BERT-base-zh).

Table 4: Performance of zero-shot cross-lingual transfer. T, E, R stands for Transform, Extract, and
Reorder, respectively. pGA stands for pseudo-groundtruth alignment. Gap stands for the transfer
gap from English to Chinese (the drop of accuracy in percentage)

Model XNLI test set
en Acc. zh Acc. Gap

CLCR
T+pGA 81.2 74.8 6.4
T 81.2 68.0 13.2
T+E 80.6 69.3 11.3
T+E+R 80.2 71.7 8.5
Non-CLCR models
Multilingual BERT 81.4 63.8 17.6
Translate train 81.4 74.2 7.2
Translate test 81.4 70.1 11.3
XLM 85.0 76.5 8.5
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Although the performance of our CLCR on Chinese XNLI is inferior to XLM, the transfer gap is
roughly the same. XLM uses much more data and training time than our approach, and thus starts
with better performance than BERT-base on English. Also XLM is not language-independent, which
means it is not feasible to use XLM as representations to learn models for cross-lingual transfer. One
can only fine-tune XLM itself on a language and hope that other languages also benefit from fine-
tuning.

4.3 ANALYSIS

Table 5: Edge probing statistics of CLCR

F1 score
BERT T T+E

POS 97.6 92.4 82.2
Consts. 86.8 80.8 75.4
Deps. 95.4 92.8 84.5
Entities 96.1 94.8 90.9
SRL 89.3 86.0 83.1
Coref. 95.8 92.0 91.5
SPR 83.4 83.1 82.6
Relations 77.7 75.9 75.9

Edge probing To investigate the effect of transforma-
tion, extraction, and reordering, we measure what kind
of information is retained in CLCR by comparing the
representation before and after training. We use a tech-
nique called Edge Probing (Tenney et al., 2019b). In
edge probing, a series of tasks are used as “probes”
to measure the syntactic and semantic information con-
tained in representations. The jiant toolkit (Wang et al.,
2019) is used to perform the experiments.

Comparing CLCR with the original BERT-base English
model in Table 5, the transformation step (T) generally
lowers scores of most probes by a small fraction. This
indicates while most information remains in the repre-
sentation after training, there is a certain portion of in-
compatible syntactic and semantic representations across languages. That information is lost and
explains the performance loss on XLI on the source language (English). Extraction (E) further low-
ers scores, but mainly due to failing to predict labels on non-pivot tokens. Because the probing
model used in (Tenney et al., 2019b) is an attention pooling-based order-less model, reordering (R)
does not alter the performance on these probing tasks.

Training cost and beyond A total of 250,000 pairs of parallel sentences are used in this study.
This is less than 2% of the data used to train XLM. Increasing the size of parallel corpus does not lead
to further improvement. Also the total training time of CLCR, including the three steps is less than 5
hours, on a single GPU. This indicates that with good mono-lingual contextual representations like
BERT, learning cross-lingual alignment of representations could be a relatively easy task, without
the need for extensive supervision and training. Under our formulation, the performance of CLCR
is built upon and also limited by the quality of mono-lingual representations. But this more of an
opportunity than a problem because parallel corpus is always the more limited resource.

5 CONCLUSION

In this paper we investigated language-independent cross-lingual contextual representations. We
proposed a three-step process to learn cross-lingual contextual representations from mono-lingual
representations. In each of the three steps, an intuitive method is employed with the aim of letting
the model itself learn to ultimately align two representations. Experiments confirmed that state-
of-the-art pre-trained language models are powerful enough to learn to align two languages with
moderate supervision. This could indicate that with models like BERT now it is easier than ever to
cover the gap in cross-lingual transfer learning.

Our formulation provides a new approach to combine contextual representations with arbitrary task
models for zero-shot cross-lingual transfer learning. We experimented with the NLI task and the
ESIM model, but the method could in principle be applied to a wide range of tasks and models.

With the advancement of pre-trained language models and their availability, we hope to extend
the approach to more languages and more powerful models. We also hope our investigation could
inspire further insight into the nature of language-independent representations and cross-lingual
transfer learning.
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A METHOD OVERVIEW

We provide an overview diagram to show the whole process of generating language-independent
cross-lingual contextual representations, using an example in Figure 4.

There was no alternative but to develop a new international agreement on climate change to replace the existing Kyoto Protocol .

Ո ժ ӧ ஑ ӧ ګ ਧ ى ԭ ࿈ ۸ ݒ ײ ጱ ෛ ጱ ࢵ ᴬ ܐ ᦓ ҅ զ ݐ դ ሿ ํ ጱ Ղ ᮷ ᦓ ਧ ԡ ̶

(BERT-zh)

(BERT-en)

(T)

(E)

(E)

(R)

CLCR

Figure 4: An example illustrating CLCR in inference. For a pair of language (in this example, En-
glish and Chinese), one can decide to perform transformation and reordering on one side, and per-
form extraction on both sides. After training of the transformation (T), extraction (E) and reordering
(R) model, for input text in one of the two languages, a sequence of operation is performed: Embed-
T-E-R or Embed-E depending on the language. The generated sequence-of-vector representation
(in the box with dashed line) is the same for text in both languages, assuming perfect T, E, and R
models.

B ZERO-SHOT CROSS-LINGUAL TRANSFER

Language-independent cross-lingual contextual representations enable zero-shot cross-lingual trans-
fer for a variety of NLP models. For example, with learned CLCR between English and Chinese,
one can train a task model with Embed-E on English, then perform inference with Embed-T-E-R on
Chinese (Figure 5).

Model
(Training)

There was no alternative but … Ո ժ ӧ ஑ ӧ ګ ਧ�ŏ

CLCR

(BERT-en)

(E)

(BERT-zh)

(T)

(E)

(R)

Model
(Inference)

Figure 5: An example of zero-shot cross-lingual transfer with CLCR
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C MODEL DETAILS AND MORE ANALYSIS

In our experiments, we use the ninth layer output of the 12-layer BERT-base model as mono-lingual
contextual representations. Based on the observation in (Tenney et al., 2019a), middle-high layers of
transformer language models typically exhibit good semantic properties. The English and Chinese
BERT-base models we used are identical except the language of the corpus used to trained the
model. We also experimented with using different pre-trained language models, for example ERNIE
(Sun et al., 2019) for Chinese (BERT-base is still used for English), but the cross-lingual transfer
performance is inferior. This shows that for best aligning of representations in CLCR, the two
mono-lingual representation models should share the same structure and objective in pre-training.

Table 6: Edge probing statistics

BERT-base T T+E (δ = 0.2) T+E (δ = 0.5)
F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec.

POS 97.6 97.3 97.8 92.4 91.7 93.2 82.2 91.5 74.6 77.6 92.8 66.7
Consts. 86.8 86.8 86.8 80.8 82.4 79.2 75.4 80.2 71.1 71.5 80.1 64.6
Deps. 95.4 96.2 94.7 92.8 94.1 91.5 84.5 90.4 79.2 78.8 89.4 70.5
Entities 96.1 96.6 95.6 94.8 95.5 94.2 90.9 95.3 86.8 87.8 95.3 81.4
SRL 89.3 91.5 87.1 86.0 89.0 83.1 83.1 88.8 78.0 80.8 88.6 74.2
Coref. 95.8 95.8 95.8 92.0 90.8 93.2 91.5 91.5 91.5 89.4 89.4 89.4
SPR 83.4 84.2 82.6 83.1 83.3 82.9 82.6 84.5 80.8 82.5 82.3 82.6
Relations 77.7 85.5 71.2 75.9 85.4 68.2 75.9 84.1 69.2 74.8 84.3 67.3

In Table 6, we list more detailed statistics in probing the cross-lingual representations. The drop
of score in the extraction (E) step is closely linked to the threshold δ used in key-point prediction.
Threshold δ controls the number of key-points predicted in a sentence. A higher δ means a smaller
number of tokens are predicted as key-points. This results in better accuracy in matching the gran-
ularity of two languages by only predicting more confident key-points, but fewer key-points means
more tokens are discarded and thus more information is potentially lost. This becomes obvious by
comparing the recall of T and T+E models in probing tasks. We empirically chose a trade-off value
of δ = 0.2 in all of our experiments.

We need to note that in E step the reduction of recall in probing tasks does not necessarily mean
reduced performance of NLP models on top of CLCR. Significant decrease of recall is mainly ob-
served on part-of-speech, constituent and dependency labeling tasks. These tasks have dense labels,
and labels on non-key-point tokens are ignored by CLCR after step E. However, in training to align
sentences the representation model is forced to summarize local information in the representation of
key-points, so that information from non-key-point tokens could still be available for task model on
top of CLCR.
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