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ABSTRACT

We address the challenging problem of efficient deep learning model deployment,
where the goal is to design neural network architectures that can fit different
hardware platform constraints. Most of the traditional approaches either manually
design or use Neural Architecture Search (NAS) to find a specialized neural network
and train it from scratch for each case, which is computationally expensive and
unscalable. Our key idea is to decouple model training from architecture search to
save the cost. To this end, we propose to train a once-for-all network (OFA) that
supports diverse architectural settings (depth, width, kernel size, and resolution).
Given a deployment scenario, we can then quickly get a specialized sub-network by
selecting from the OFA network without additional training. To prevent interference
between many sub-networks during training, we also propose a novel progressive
shrinking algorithm, which can train a surprisingly large number of sub-networks
(> 10'%) simultaneously, while maintaining the same accuracy as independently
trained networks. Extensive experiments on various hardware platforms (CPU,
GPU, mCPU, mGPU, FPGA accelerator) show that OFA consistently achieves the
same level (or better) ImageNet accuracy than SOTA NAS methods while reducing
orders of magnitude GPU hours and CO5 emission than NAS. In particular, OFA
requires 16 x fewer GPU hours than ProxylessNAS, 19x fewer GPU hours than
FBNet and 1,300 x fewer GPU hours than MnasNet under 40 deployment scenarios.

1 INTRODUCTION

Deep Neural Networks (DNN5s) deliver state-of-the-art accuracy in many machine learning applica-
tions. However, the explosive growth in model size and computation cost gives rise to new challenges
on how to efficiently deploy these deep learning models on diverse hardware platforms, since they
have to meet different hardware efficiency constraints (e.g., latency, energy). For instance, one
mobile application on App Store has to support a diverse range of hardware devices, from a high-end
iPhone-11 with a dedicated neural network accelerator to a 5-year-old iPhone-6 with a much slower
processor. With different hardware resources (e.g., on-chip memory size, #arithmetic units), the
optimal neural network architecture varies significantly. Even running on the same hardware, under
different battery conditions or workloads, the best model architecture also differs a lot.

Given different hardware platforms and efficiency constraints (defined as deployment scenarios),
researchers either design compact models specialized for mobile (Howard et al., 2017; Sandler et al.,
2018; Zhang et al., 2018) or accelerate the existing models by compression (He et al., 2018) for
efficient deployment. However, designing specialized DNNs for every scenario is engineer-expensive
and computationally expensive, either with human-based methods or NAS. Since such methods need
to repeat the network design process and retrain the designed network from scratch for each case.
Their total cost grows linearly as the number of deployment scenarios increases, which will result in
excessive energy consumption and C'Os emission (Strubell et al., 2019). It makes them unable to
handle the vast amount of hardware devices (23.14 billion IoT devices till 2018") and highly dynamic
deployment environments (different battery conditions, different latency requirements, etc.).

This paper introduces a new solution to tackle this challenge — designing a once-for-all network that
can be directly deployed under diverse architectural configurations, amortizing the training cost. The

"https://www.statista.com/statistics/47 1264/iot-number-of-connected-devices-worldwide/
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Figure 1: Left: a single once-for-all network is trained to support versatile architectural configurations
including depth, width, kernel size, and resolution. Given a deployment scenario, a specialized sub-
network is directly selected from the once-for-all network without training. Middle: this approach
reduces the cost of specialized deep learning deployment from O(N) to O(1). Right: once-for-all
network followed by model selection can derive many accuracy-latency trade-offs by training only
once, compared to conventional methods that require repeated training.

inference is performed by selecting only part of the once-for-all network. It flexibly supports different
depths, widths, kernel sizes, and resolutions without retraining. A simple example of Once for All
(OFA) is illustrated in Figure 1 (left). Specifically, we decouple the model training stage and the
model specialization stage. In the model training stage, we focus on improving the accuracy of all
sub-networks that are derived by selecting different parts of the once-for-all network. In the model
specialization stage, we sample a subset of sub-networks to train an accuracy predictor and latency
predictors. Given the target hardware and constraint, a predictor-guided architecture search (Liu et al.,
2018a) is conducted to get a specialized sub-network, and the cost is negligible. As such, we reduce
the total cost of specialized neural network design from O(N) to O(1) (Figure 1 middle).

However, training the once-for-all network is a non-trivial task, since it requires joint optimization
of the weights to maintain the accuracy of a large number of sub-networks (more than 10 in
our experiments). It is computationally prohibitive to enumerate all sub-networks to get the exact
gradient in each update step, while randomly sampling a few sub-networks in each step will lead
to significant accuracy drops. The challenge is that different sub-networks are interfering with
each other, making the training process of the whole once-for-all network inefficient. To address
this challenge, we propose a progressive shrinking algorithm for training the once-for-all network.
Instead of directly optimizing the once-for-all network from scratch, we propose to first train the
largest neural network with maximum depth, width, and kernel size, then progressively fine-tune the
once-for-all network to support smaller sub-networks that share weights with larger ones. As such, it
provides better initialization by selecting the most important weights of larger sub-networks, and the
opportunity to distill smaller sub-networks, which greatly improves the training efficiency. It also
prevents smaller sub-networks from hurting the accuracy of larger sub-networks by optimizing in the
local space around well-trained larger sub-networks.

We extensively evaluated the effectiveness of OFA on ImageNet with many hardware platforms (CPU,
GPU, mCPU, mGPU, FPGA accelerator) and efficiency constraints. Under all deployment scenarios,
OFA consistently achieves the same level (or better) ImageNet accuracy than SOTA hardware-aware
NAS methods while saving the GPU hours, dollars, and C'O2 emission by orders of magnitude when
handling multiple diverse deployment scenarios.

2 RELATED WORK

Efficient Deep Learning. Many efficient neural network architectures are proposed to improve the
hardware efficiency, such as SqueezeNet (Iandola et al., 2016), MobileNets (Howard et al., 2017;
Sandler et al., 2018), ShuffleNets (Ma et al., 2018; Zhang et al., 2018), etc. Orthogonal to architecting
efficient neural networks, model compression (Han et al., 2016) is another very effective technique
for efficient deep learning, including network pruning that removes redundant units (Han et al., 2015)
or redundant channels (He et al., 2018; Liu et al., 2017), and quantization that reduces the bit width
for the weights and activations (Han et al., 2016; Courbariaux et al., 2015; Zhu et al., 2017).

Neural Architecture Search. Neural architecture search (NAS) focuses on automating the archi-
tecture design process (Zoph & Le, 2017; Zoph et al., 2018; Real et al., 2019; Cai et al., 2018a; Liu
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etal., 2019). Early NAS methods (Zoph et al., 2018; Real et al., 2019; Cai et al., 2018b) search for
high-accuracy architectures without taking hardware efficiency into consideration. Therefore, the
produced architectures (e.g., NASNet, AmoebaNet) are not efficient for inference. Recent hardware-
aware NAS methods (Tan et al., 2018; Cai et al., 2019; Wu et al., 2019) directly incorporate the
hardware feedback into architecture search. As a result, they are able to improve the inference
efficiency. However, given new inference hardware platforms, these methods need to repeat the
architecture search process and retrain the model, leading to prohibitive GPU hours, dollars and C'O5
emission. They are not scalable to a large number of deployment scenarios. The individually trained
models do not share any weight, leading to large total model size and high downloading bandwidth.

Dynamic Neural Networks. To improve the efficiency of a given neural network, some work
explored skipping part of the model based on the input image. For example, Wu et al. (2018); Liu &
Deng (2018); Wang et al. (2018) learn a controller or gating modules to adaptively drop layers; Huang
et al. (2018) introduce early-exit branches in the computation graph; Lin et al. (2017) adaptively
prune channels based on the input feature map. Recently, Slimmable Nets (Yu et al., 2019; Yu &
Huang, 2019b) propose to train a model to support multiple width multipliers (e.g., 4 different global
width multipliers), building upon existing human-designed neural networks (e.g., MobileNetV2 0.35,
0.5, 0.75, 1.0). Such methods can adaptively fit different efficiency constraints at runtime, however,
still inherit a pre-designed neural network (e.g., MobileNet-v2), which limits the degree of flexibility
(e.g., only width multiplier can adapt) and the ability in handling new deployment scenarios where
the pre-designed neural network is not optimal. In this work, in contrast, we enable a much more
diverse architecture space (depth, width, kernel size, and resolution) and a significantly larger number
of architectural settings (10'° v.s. 4 (Yu et al., 2019)). Thanks to the diversity and the large design
space, we can derive new specialized neural networks for many different deployment scenarios rather
than working on top of an existing neural network that limit the optimization headroom. However, it
is more challenging to train the network to achieve this flexibility, which motivates us to design the
progressive shrinking algorithm to tackle this challenge.

3 METHOD

3.1 PROBLEM FORMALIZATION

Assuming the weights of the once-for-all network as W, and the architectural configurations as
{arch;}, we then can formalize the problem as

H‘}}? Z Cval (C(WO,(ITC}L»L)), (1)

arch;

where C (W, arch;) denotes a selection scheme that selects part of the model from the once-for-all
network W, to form a sub-network with architectural configuration arch;. The overall training
objective is to optimize W, to make each supported sub-network maintain the same level of accuracy
as independently training a network with the same architectural configuration.

3.2 ARCHITECTURE SPACE

Our once-for-all network provides one model but supports many sub-networks of different sizes,
covering four important dimensions of the convolutional neural networks (CNNs) architectures, i.e.,
depth, width, kernel size, and resolution. Following the common practice of many CNN models (He
et al., 2016; Sandler et al., 2018; Huang et al., 2017), we divide a CNN model into a sequence of
units with gradually reduced feature map size and increased channel numbers. Each unit consists of a
sequence of layers where only the first layer has stride 2 if the feature map size decreases (Sandler
et al., 2018). All the other layers in the units have stride 1.

We allow each unit to use arbitrary numbers of layers (denoted as elastic depth); For each layer,
we allow to use arbitrary numbers of channels (denoted as elastic width) and arbitrary kernel sizes
(denoted as elastic kernel size). In addition, we also allow the CNN model to take arbitrary input
image sizes (denoted as elastic resolution). For example, in our experiments”, the input image size

2We use the same architecture space as ProxylessNAS [4], without SE [15] and Swish activation function
[27] that are orthogonal to boost the accuracy [31].
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kernel size K and resolution R. It leads to a large space comprising diverse sub-networks (> 109).
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ranges from 128 to 224 with a stride 4; the depth of each unit is chosen from {2, 3, 4}; the width
expansion ratio in each layer is chosen from {4, 5, 6}; the kernel size is chosen from {3, 5, 7}.
Therefore, with 5 units, we have roughly ((3 x 3)% + (3 x 3)3 + (3 x 3)*)5 ~ 2 x 10 different
neural network architectures and each of them can be used under 25 different input resolutions. Since
all of these sub-networks share the same weights (i.e., W,) (Cheung et al., 2019), we only require
5.1M parameters to store all of them. Without sharing, the total model size will be prohibitive.

3.3 TRAINING THE ONCE-FOR-ALL NETWORK

Naive Approach. Training the once-for-all network can be cast as a multi-objective problem, where
each objective corresponds to one sub-network. From this perspective, a naive training approach
is to directly optimize the once-for-all network from scratch using the exact gradient of the overall
objective, which is derived by enumerating all sub-networks in each update step, as shown in Eq. (1).
The cost of this approach is linear to the number of sub-networks. Therefore, it is only applicable to
scenarios where a limited number of sub-networks are supported (Yu et al., 2019), while in our case,
it is computationally prohibitive to adopt this approach.

Another naive training approach is to sample a few sub-networks in each update step rather than
enumerate all of them, which does not have the issue of prohibitive cost. However, with such a large
number of sub-networks that share weights thus interfere with each other, we find it suffers from
significant accuracy drop. In the following section, we introduce a solution to address this challenge
by adding a progressive shrinking training order to the training process. Correspondingly, we refer to
the naive training approach as random order.

Progressive Shrinking. The once-for-all network comprises many sub-networks of different sizes
where small sub-networks are nested in large sub-networks. To prevent interference between the
sub-networks, we propose to enforce a training order from large sub-networks to small sub-networks
in a progressive manner. We name this training order as progressive shrinking (PS). An example
of the training process with PS is provided in Figure 2, where we start with training the largest
neural network with the maximum kernel size (i.e., 7), depth (i.e., 4), and width (i.e., 6). Next, we
progressively fine-tune the network to support smaller sub-networks by gradually adding them into
the sampling space (larger sub-networks may also be sampled). Specifically, after training the largest
network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while
the depth and width remain the maximum values. Then, we support elastic depth and elastic width
sequentially, as is shown in Figure 2. The resolution is elastic throughout the whole training process,
which is implemented by sampling different image size for each batch of training data. We also use
the knowledge distillation technique after training the largest neural network (Hinton et al., 2015;
Ashok et al., 2018; Yu & Huang, 2019b). It combines two loss terms using both the soft labels given
by the largest neural network and the real labels.

Compared to the naive approach, PS prevents small sub-networks from interfering large sub-networks,
since large sub-networks are already well-trained when the once-for-all network is fine-tuned to
support small sub-networks. Additionally, during fine-tuning, the model is optimized in the local
space around the well-trained large sub-networks by using a small learning rate and revisiting (i.e.,
sampling) well-trained large sub-networks. Regarding the small sub-networks, they share the weights
with the large ones. Therefore, PS allows initializing small sub-networks with the most important
weights of well-trained large sub-networks, which expedites the training process. We describe the
details of the PS training flow as follows:

o Elastic Kernel Size (Figure 3 left). We let the center of a 7x7 convolution kernel also serve as
a 5x5 kernel, the center of which can also be a 3x3 kernel. Therefore, the kernel size becomes
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Figure 3: Left: Kernel transformation matrix for elastic kernel size. Right: Progressive shrinking for
elastic depth. Instead of skipping each layer independently, we keep the first D layers and skip the
last (4 — D) layers. The weights of the early layers are shared.
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elastic. The challenge is that the centering sub-kernels (e.g., 3x3 and 5x5) are shared and need
to play multiple roles (independent kernel and part of a large kernel). The weights of centered
sub-kernels may need to have different distribution or magnitude as different roles. Forcing them
to be the same degrades the performance of some sub-networks. Therefore, we introduce kernel
transformation matrices when sharing the kernel weights. We use separate kernel transformation
matrices for different layers. Within each layer, the kernel transformation matrices are shared
among different channels. As such, we only need 25 x 25 4+ 9 x 9 = 706 extra parameters to store
the kernel transformation matrices in each layer, which is negligible.

o Elastic Depth (Figure 3 right). To derive a sub-network that has D layers in a unit that originally
has N layers, we keep the first D layers and skip the last N — D layers, rather than keeping any
D layers as done in current NAS methods (Cai et al., 2019; Wu et al., 2019). As such, one depth
setting only corresponds to one combination of layers. In the end, the weights of the first D layers
are shared between large and small models.

o Elastic Width (Figure 4). Width means the number of channels. We give each layer the flexibility
to choose different channel expansion ratios. Following the progressive shrinking scheme, we first
train a full-width model. Then we introduce a channel sorting operation to support partial widths.
It reorganizes the channels according to their importance, which is calculated based on the L1
norm of a channel’s weight. Larger L1 norm means more important. For example, when shrinking
from a 4-channel-layer to a 3-channel-layer, we select the largest 3 channels; whose weights are
shared with the 4-channel-layer (Figure 4 left and middle). Thereby, smaller sub-networks are
initialized with the most important channels on the once-for-all network which is already well
trained. This channel sorting operation preserves the accuracy of larger sub-networks.

3.4 SPECIALIZED MODEL DEPLOYMENT WITH ONCE-FOR-ALL NETWORK

Having trained a once-for-all network, the next stage is to derive the specialized sub-network for a
given deployment scenario. The goal is to search for a neural network that satisfies the efficiency
(e.g., latency, energy) constraints on the target hardware while optimizing the accuracy. Since OFA
decouples model training from architecture search, we do not need any training cost in this stage. To
eliminate the repeated search cost, we use the predictor-guided architecture search process (Liu et al.,
2018Db) to find specialized sub-networks.

Specifically, we randomly sample 16K sub-networks with different architectures and input image
sizes, then measure their accuracy on 10K validation images sampled from the original training set.
These [architecture, accuracy] pairs are used to train an accuracy predictor to predict the accuracy of
a model given its architecture and input image size’. Additionally, we build a latency lookup table
(Cai et al., 2019) on each target hardware platform to predict the latency. Given a target hardware and
latency constraint, we conduct evolutionary search (Real et al., 2019) based on the predictors to get a
specialized sub-network. Since the cost of searching with predictors is negligible, we only need 40
GPU hours to collect the data pairs, and the cost stays constant regardless of #deployment scenarios.

3Details of the accuracy predictor is provided in Appendix A.
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Sub-networks W=4 W=6 W=4 W=6

K=3 K=7 | K=3 K=7[|K=3 K=7]K=3 K=7
Parameters 28M 29M | 33M  35M | 37M 40M | 47M  5.1IM
FLOPs 191M  233M | 266M 328M | 329M 419M | 473M  607M
Independently Train 68.7 70.5 70.9 72.6 72.8 74.3 74.6 75.4
Random Order 67.3 69.8 69.2 71.3 71.4 72.7 72.6 73.5
Progressive Shrink (ours) | 68.7 71.2 71.0 73.3 73.3 74.8 74.8 75.9
A Acc. +1.4 +1.4 +1.8 +2.0 +1.9 +2.1 +2.2 +2.4

Table 1: ImageNet topl accuracy (%) performances of sub-networks under resolution 224 x 224.
“D=d, W=w, K=£k)” denotes a sub-network with d layers in each unit, and each layer has an
width expansion ratio w and kernel size k.
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Figure 5: Progressive shrinking significantly improves the training efficiency and accuracy of the
once-for-all network compared to random order.

4 EXPERIMENTS

In this section, we first apply the progressive shrinking algorithm to train the once-for-all network on
ImageNet (Deng et al., 2009). Then we demonstrate the effectiveness of our trained once-for-all
network on various hardware platforms (Samsung Note8, Google Pixell, Pixel2, NVIDIA 1080Ti,
2080Ti, V100 GPUs, Intel Xeon CPU, Jetson TX2, Xilinx ZU9EG and ZU3EG FPGAs) with different
latency constraints. In total, we have 40 deployment scenarios with 10 hardware platforms and 4
latency constraints on each hardware platform.

4.1 TRAINING THE ONCE-FOR-ALL NETWORK ON IMAGENET

Training Details. We use the standard SGD optimizer with Nesterov momentum 0.9 and weight
decay 4e~® to train models on ImageNet. The initial learning rate is 0.4, and we use the cosine
schedule (Loshchilov & Hutter, 2016) for learning rate decay. The independent models are trained
for 150 epochs with batch size 2048 on 32 GPUs. For training the once-for-all network, we use
the same training setting with larger training cost (roughly 8 x), taking around 1,200 GPU hours on
V100 GPUs. This is one-time training cost which can be amortized by many deployment scenarios.
Conventional models, even trained longer, can not achieve the same accuracy (2nd row of Table 2).

Results. The topl accuracy of both independently trained models and the once-for-all networks
under the same architectural settings are reported in Table 1. Due to space limits, we take 8 sub-
networks for comparison, and each of them is denoted as “(D =d, W = w, K = k)”. It represents a
sub-network that has d layers for all units while the expansion ratio and kernel size are set to w and k
for all layers. Compared to independently trained models, the once-for-all network trained by PS
can maintain the same level (or better) accuracy under all architectural settings. We hypothesize that
knowledge is transferred from larger sub-networks to smaller sub-networks, which enable them to
learn better jointly. In contrast, without PS (i.e., using random order), the top-1 ImageNet accuracy
drops significantly on all settings.

Progressive Shrinking is Effective. We further compare the progressive shrinking algorithm with
random order under three settings corresponding to three dimensions (i.e., kernel size, width, and
depth) respectively. In the first setting, only the kernel size is elastic. We use the total delta accuracy
(AAcc) on ImageNet between the once-for-all network and independently trained models as the
metric (y-axis, the higher the better). It is calculated with three architectural configurations (all
layers use the same kernel size k € {3, 5, 7}). Each data point corresponds to training a once-for-all
network using PS or random order with a certain training cost (x-axis). In the second and third
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Model ImageNet FLOPs Mobile | Search cost | Training cost Total cost (N = 40)

Topl (%) | latency | (GPU hours) | (GPU hours) | GPU hours | C'Oze (Ibs) | AWS cost
MobileNetV2 [29] 72.0 300M | 106ms 0 150N 6k 1.7k $18.4k
MobileNetV2 #1200 73.5 300M | 106ms 0 1200N 48k 13.6k $146.9k
NASNet-A [43] 74.0 564M | 234ms 48,000N - 1,920k 544.5k $5875.2k
DARTS [22] 73.1 595M - 96N 250N 14k 4.0k $42.8k
MnasNet™ [32] 74.0 317M | 108ms 40,000N - 1,600k 453.8k $4896.0k
FBNet-C [35] 749 375M | 129ms 216N 360N 23k 6.5k $70.4k
ProxylessNAS [4] 74.6 320M 110ms 200N 300NV 20k 5.7k $61.2k
SinglePathNAS [8] 74.7 328M - 288 + 24N 384N 17k 4.8k $52.0k
AutoSlim [37] 74.2 305M | 102ms 180 300N 12k 3.4k $36.7k
Once for All w/o PS 72.5 323M | 110ms 40 1200 1.2k 0.3k $3.7k
Once for All w/ PS 75.1 332M | 109ms 40 1200 1.2k 0.3k $3.7k
Once for All w/ PS #25 75.4 332M 109ms 40 1200 + 25N 2.2k 0.6k $6.7k

Table 2: Comparison with state-of-the-art hardware-aware NAS methods on Samsung Note8. OFA
decouples model training from architecture search. The search cost and training cost both stay
constant as the number of deployment scenarios grows (N = 40 in our experiments). “#25” denotes
the specialized sub-networks are fine-tuned for 25 epochs after grabbing weights from the once-for-all
network. *We cite the results of MnasNet without SE for a fair comparison of the search methodology.
“COq€e” denotes C'O, emission which is calculated based on (Strubell et al., 2019). AWS cost is
calculated based on the price of on-demand P3.16xlarge instances.

settings, the elastic dimension changes from kernel size to width and depth respectively, while all
the other setups keep the same. The summarized results are shown in Figure 5. We find that (i)
simply increasing the training cost cannot prevent random order from accuracy drop. The increasing
trend quickly slows down in all three settings; (ii) In contrast, the PS algorithm quickly surpasses the
accuracy of individually trained models.

4.2 SPECIALIZED SUB-NETWORKS FOR DIFFERENT HARDWARE AND CONSTRAINTS

We apply our trained once-for-all network to get specialized sub-networks for different hardware
platforms. For the GPU platforms, the latency is measured with batch size 64 on NVIDIA 1080Ti,
2080Ti and V100 with Pytorch 1.0+cuDNN. The CPU latency is measured with batch size 1 on Intel
Xeon E5-2690 v4+MKL-DNN*, To measure the mobile latency, we use Samsung Note8, Google
Pixell and Pixel2 using TF-Lite with batch size 1. On Jetson TX2, we use a batch size of 2 (single
batch causes severe under-utilization). On Xilinx ZU9EG and ZU3EG FPGAs, we use DNNDK with
batch size 1.

Comparison with NAS on Mobile. Table 2 reports the comparison between OFA and state-of-the-
art hardware-aware NAS methods on the mobile platform (Samsung Note8). OFA is much more
efficient than NAS when handling multiple deployment scenarios, since the cost of OFA is constant
while others are linear to the number of deployment scenarios (V). With N = 40, the training time
of OFA is 16 faster than ProxylessNAS, 19x faster than FBNet, and 1,300 faster than MnasNet.
Without retraining, OFA achieves 75.1% topl accuracy on ImageNet, which is 1.1% higher than
MnasNet, 0.5% higher than ProxylessNAS, and 0.2% higher than FBNet while maintaining similar
(or lower) mobile latency. By fine-tuning the specialized sub-network for 25 epochs, we can further
improve the accuracy to 75.4%. Besides, we also observe that OFA with PS can achieve 2.6% better
accuracy than without PS, showing the effectiveness of PS.

Results under Different Efficiency Constraints.

. A Model Latency | Topl (%)

Table 3 summarizes the results on the mobile plat- MobileNetV2 0.35 | 28ms 60.3
form under different latency constraints. OFA can MnasNet 0.35 27ms |62.4 (+2.1)
re-design specialized neural networks for all scenar- Once for All (ours)| 3Ims 1 66.6 (+6.3)
. K .. . . Once for All #25 31ms [69.2 (+8.9)

ios without additional cost, while previous methods .

rescale an existing model using a width multiplier due MobileNetv2 0.5 | 40ms 634
, g X ,g p MnasNet 0.5 41ms |67.8 (+2.4)
to the hlgh search and training cost (Sandler et al., ProxylessNAS 0.5 | 41ms |68.2 (+2.8)
2018; Cai et al., 2019; Tan et al., 2018). As shown Once for All (ours)| 4Ims |69.8 (+4.4)
in Table 3, we can achieve much higher improve- Once for All#25 | 41ms |71.3 (+5.9)

ments over the baselines. With similar latency as Mo- MobileNetV2 0.75 | 77ms 69.8
bileNetV2 0.35, we improve the ImageNet top1 accu- MnasNet 0.75 7oms 1715 (+1.7)
from the MobileNetV2 baseline 60.3% to 66.6% Onee for All (ours)| T7ms 73.7(+3.9)
racy irom : ~ Once for Al #25 | 77ms |74.2 (+4.4)

(+6.3%) without retraining, and to 69.2% (+8.9%)
after fine-tuning for 25 epochs. OFA is more effective
than NAS + width multiplier adjustment.

*https://github.com/intel/mkl-dnn

Table 3: ImageNet accuracy under various
latency constraints on Samsung Note8.
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Figure 6: Specialized deployment results on CPU, GPU, mCPU, mGPU, and FPGA accelerator.
Specialized models by OFA consistantly achieve significantly higher ImageNet accuracy with similar
latency than non-specialized neural networks. More remarkably, specializing for a new hardware
platform does not add training cost using OFA.

Results on Diverse Hardware Platforms. We extensively studied with effectiveness of OFA on 9
different hardware platforms (Figure 6). OFA consistently improve the trade-off between accuracy
and latency by a significant margin, especially on GPUs which have more parallelism. With similar
latency as MobileNetV2 0.35, “OFA #25” improves the ImageNet top1 accuracy from MobileNetV2’s
60.3% to 71.7% (+11.4% improvement) on the 1080Ti GPU. It reveals the insight that using the
same model for different deployment scenarios with only the width multiplier modified has limited
impact on efficiency improvement: the accuracy drops quickly as the latency constraint gets tighter.
On Xilinx ZU3EG, a low-resource FPGA, some width settings of MnasNets even fail to run due to
“out of BRAM”. We profiled the FPGA and drew its roofline model (see Appendix B): OFA models
improved the arithmetic intensity by up to 48%/43% and GOPS/s by 70%/92% compared with the
MobileNetV2/MnasNet family. OFA designs specialized model that better fits the hardware.

5 CONCLUSION

We proposed Once for All (OFA), a new methodology that decouples model training from architecture
search for efficient deep learning deployment under a large number of deployment scenarios. Unlike
previous approaches that design and train a neural network for each deployment scenario, we
designed a once-for-all network that supports different architectural configurations, including elastic
depth, width, kernel size, and resolution. It greatly reduces the training cost (GPU hours, energy
consumption, and C'Oy emission) compared to conventional methods. To prevent sub-networks
of different sizes from interference, we proposed a progressive shrinking algorithm that enable
a large number of sub-network to achieve the same level of accuracy compared to training them
independently. Experiments on a diverse range of hardware platforms and efficiency constraints
demonstrated the effectiveness of our approach.
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A DETAILS OF THE ACCURACY PREDICTOR

We use a three-layer feedforward neural network that has 400 hidden units in each layer as the
accuracy predictor. Given a model, we encode each layer in the neural network into a one-hot vector
based on its kernel size and expand ratio, and we assign zero vectors to layers that are skipped.
Besides, we have an additional one-hot vector that represents the input image size. We concatenate
these vectors into a large vector that represents the whole neural network architecture and input image
size, which is then fed to the three-layer feedforward neural network to get the predicted accuracy.

B ROOFLINE MODEL ON FPGA

We analyze our specialized models on FPGA using DNNDK °. The profiling results are summarized
in Figure 7, while the roofline models (Williams et al., 2009) on ZU9EG and ZU3EG are illustrated
in Figure 8. Unlike high-end FPGAs that have DRAM modules which are directly connected to the
programmable logic (PL), ZU9EG and ZU3EG share the same DRAM module with the processing
system (includes the ARM CPU). Thus memory bandwidth is an expensive resource. Correspondingly,
our specialized models reduce costly memory accesses by increasing arithmetic intensity (i.e., the
number of arithmetic operations for each byte of memory access), which results in higher GOPS/s.
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Figure 7: On FPGA, OFA models improve the arithmetic intensity and GOPS/s compared with the
MobileNetV2/MnasNet family.
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Figure 8: Roofline Models on Xilinx ZU9EG and ZU3EG FPGAs (log scale). Our OFA model
increased the arithmetic intensity by 33%/43% and GOPS/s by 72%/92% on these two FPGAs
compared with MnasNet.

Shttps://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform html#dnndk
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C VISUALIZATION OF OUR SPECIALIZED MODELS
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(f) 17.4ms latency on Intel Xeon CPU.

Figure 9: Illustration of our specialized models on FPGA and Intel CPU. “MB4 3x3” means “mobile
block with expansion ratio 4, kernel size 3x3”. We find that (i) small-kernel operations are preferred
on FPGA. The smallest model on FPGA even only have 3x3 kernels. We hypothesize that small-
kernel operations have better implementation on FPGA. Additionally, large-kernel operations may
cause “out of BRAM” error on FPGA; (ii) while on Intel Xeon CPU with MKL-DNN, more than 50%
operations are large-kernels. We also observed that the input resolution chosen by our framework is
proportional to the latency.
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