
Published in Transactions on Machine Learning Research (01/2024)

A Comparison with Dec-POMDP and Markov Games

A.1 Comparison with Dec-POMDP

Our SAMG problem cannot be solved by the existing work in the Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Oliehoek et al., 2016). In contrast, the policy in our problem needs to
be robust under a set of admissible perturbed states. The adversary aims to find the worst-case state
perturbation policy χ to minimize the MARL agents’ total expected return. In the following proposition,
we show that under certain additional conditions our proposed SAMG problem becomes a Dec-POMDP
problem.

Figure 6: Comparison between Dec-POMDP and SAMG. In Dec-POMDP, the observation probability
function is fixed, and it will not change according to the change of the agent policy. However, in SAMG the
adversary policy is not a fixed policy, it may change according to the agents’ policies and always select the
worst-case state perturbation for agents.

Proposition 3.2. When the adversary policy is a fixed policy, the SAMG problem becomes a Dec-
POMDP (Oliehoek et al., 2016).

Proof. When the adversary policy χ is a fixed policy, an SAMG (N ,S,A, r,Ps, p, γ,Pr(s0)) becomes a Dec-
POMDP (N ,S,A, r,O, O, p, γ,Pr(s0)). The agent set N = {1, ..., n}. The global joint state is s ∈ S. Each
agent i is associated with an action ai ∈ Ai. The global joint action is a = (a1, ..., an) ∈ A, A := A1×· · ·×An.
All agents share a stage-wise reward function r : S×A → R. The state transition function is p : S×A → ∆(S),
where ∆(S) is a probability simplex denoting the set of all possible probability measures on S. The state
transits from the true state to the next state. The discount factor is γ. The joint observation set O is the same
as the joint state set S. The observation probability function O(o|s) = χ(o|s) for any o ∈ Ps and O(o|s) = 0
for any o /∈ Ps, where o is the observation given the state s. The Pr(s0) is the probability distribution of the
initial state.

In Dec-POMDP, the observation probability function is fixed, and it will not change according to the change
of the agent policy. However, in SAMG the adversary policy is not a fixed policy, it may change according to
the agents’ policies and always select the worst-case state perturbation for agents. In contrast to Dec-POMDP,
the adversary’s policy χ is chosen to minimize the total expected return of the agents in our problem.
Additionally, in Dec-POMDP the agents do not have access to the true state s, whereas in our problem, the
adversaries are aware of the true state and can use it to select perturbed states.

15

Published in Transactions on Machine Learning Research (01/2024)

A.2 SAMG cannot be solved by Dec-POMDP: Two-Agent Two-State Game Example

We use a two-agent two-state game to show the difference between Dec-POMDP and SAMG. Consider a
game with two agents N = {1, 2} and two states S = {s1, s2} as shown in Fig. 7. Each agent has two actions
A1 = A2 = {a1, a2}. The transition probabilities are defined below.

p(s′ = s1|s = s1, a
1 ̸= a2) = 1,

p(s′ = s2|s = s1, a
1 = a2) = 1,

p(s′ = s2|s = s2, a
1 ̸= a2) = 1,

p(s′ = s1|s = s2, a
1 = a2) = 1. (6)

Specifically, a1 = a2 includes two cases: a1 = a2 = a1 or a1 = a2 = a2. Similarly, a1 ̸= a2 includes two cases:
a1 = a1, a

2 = a2 or a1 = a2, a
2 = a1.

𝑠! 𝑠"

𝑎! = 𝑎"
𝑟 = 1

𝑎! = 𝑎"
𝑟 = 0

𝑎! ≠ 𝑎"
𝑟 = 1

𝑎! ≠ 𝑎"
𝑟 = 0

Figure 7: A two-agent two-state game example. Agents get reward 1 at state s1 if they choose the same
action. Agents get reward 1 at state s2 if they choose different actions.

Two agents share the same reward function:

r(s, a1, a2) =


1, a1 = a2, and s = s1,

0, a1 ̸= a2, and s = s1,

0, a1 = a2, and s = s2,

1, a1 ̸= a2, and s = s2.

(7)

In a SAMG, each agent is associated with an adversary to perturb its knowledge or observation of the true
state. For the power of the adversary, we allow the adversary to perturb any state to the other state:

P1
s = P2

s = {s1, s2}. (8)

We use γ = 0.99 as the discount factor. Agents want to find a policy π to maximize their total expected
return while adversaries want to find a policy χ to minimize agents’ total expected return.

This problem cannot be formulated as a Dec-POMDP Consider one agent policy where both
agents select the same action in s1 and select different actions in s2: π1(a1|s1) = π1(a1|s2) = π2(a1|s1) =
π2(a2|s2) = 1. When there is no adversary, agents keep receiving rewards. The values for each state are
Ṽ (s1) = Ṽ (s2) = 1

1−γ = 100. Because agents share the same reward function, they also share the same
values for each state. However, this policy receives V (s1) = V (s2) = 0 when agents are facing the worst-case
adversaries χi(s1|s2) = χi(s2|s1) = 1 for i = 1, 2 and always taking the wrong actions with 0 reward.

If the adversary policy is fixed at χi(s1|s2) = χi(s2|s1) = 1 for i = 1, 2, this problem becomes a Dec-POMDP
with the observation space O = {o1 = s1, o2 = s2}. The observation function is oi(o1|s2) = oi(o2|s1) = 1 for
i = 1, 2. The agent policy is π1(a1|o1) = π1(a1|o2) = π2(a1|o1) = π2(a2|o2) = 1.

However, when we consider a different agent policy where both agents select the same action in s2 and
select different actions in s1: π1(a1|s2) = π1(a1|s1) = π2(a1|s2) = π2(a2|s1) = 1, agents keep receiving 0
rewards even when the adversary does nothing. For the new agent policy, the worst-case adversary policy is
χi(s1|s1) = χi(s2|s2) = 1 for i = 1, 2. The corresponding observation function for the new adversary policy is
oi(o1|s1) = oi(o2|s2) = 1 for i = 1, 2, which is completely different from the previous observation functions.
Because the observation function in Dec-POMDP won’t change according to agents’ policies, therefore, the
SAMG problem cannot be formulated by Dec-POMDP when adversary policy is not fixed.

16

Published in Transactions on Machine Learning Research (01/2024)

Under different observation functions, Dec-POMDP can lead to contradictory agent policies.
Besides the analysis of why this problem cannot be formulated as a Dec-POMDP, we also demonstrate that
Dec-POMDPs fail to solve this problem from a different perspective.

Let’s consider a Dec-POMDP with the observation space O = {o1 = s1, o2 = s2}. The observation function
is defined as oi(o1|s2) = oi(o2|s1) = 1 for i = 1, 2. In this scenario, the optimal agent policy is to select the
same action in response to o2 and choose different actions for o1. Agents keep receiving rewards based on
this policy.

Now let’s consider another Dec-POMDP with the observation space O = {o1 = s1, o2 = s2}. The observation
function is defined as oi(o1|s1) = oi(o2|s2) = 1 for i = 1, 2. In this case, the optimal agent policy is to select
the same action in response to o1 and choose different actions for o2. Agents keep receiving rewards based on
this policy. However, the new optimal agent policy contradicts the previous one.

By comparing these two Dec-POMDPs with different observation functions, we observe that Dec-POMDPs
can yield different agent policies based on different observation functions. This implies that Dec-POMDPs
do not address the problem of selecting an agent policy when the observation function is determined by an
adversary.

Furthermore, we will reanalyze this problem and demonstrate how a SAMG can solve this two-agent two-state
game in Appendix B and C. The SAMG formulation addresses this problem by selecting the agent policy
against the worst-case observation function.

A.3 Comparison with Markov Games

Under a specific condition, when the adversary policy χ is a bijective mapping from S to S, the SAMG
problem is equivalent to a Markov game, as demonstrated in the following proposition. This proposition
illustrates the relationship between a SAMG and a Markov game with a particular form of state perturbation.

When χ is a bijective mapping from S to S, the adversary policy follows χ(ρ|s) = 1 selecting the perturbed
state ρ for the true state s with probability 1. Let us use the notation χ(s) = ρ for this special case.

Proposition 3.3. When the adversary policy is a fixed bijective mapping from S to S, the SAMG problem
becomes a Markov game.

Proof. When the adversary policy χ is a fixed bijective mapping from S to S, an SAMG problem
(N ,S,A, r,Ps, p, γ,Pr(s0)) becomes a Markov game (Nnew,Snew,Anew, r

i
new, pnew, γ,Pr(snew,0)) that is con-

structed as follows:

Taking snew = ρ = χ(s) as the new state, the new global joint state set is Snew := S. The global joint action
set Anew = A = A1 × · · · × An and the agent set Nnew = N stay the same.

We can construct a new reward function ri
new : Snew ×Anew → R for each agent i as

ri
new(snew = χ(s), anew = a) = r(s, a), (9)

and a new state transition function pnew : Snew ×Anew → ∆(Snew) defined as

pnew(ρ′ = χ(s′)|ρ = χ(s), a) = p(s′|s, a). (10)

The new probability of the initial state is

Pr(snew,0 = χ(s0)) = Pr(s0). (11)

Each agent uses a policy πi
new : Snew → ∆(Ai) to choose an action based on the new state. Hence, the

SAMG problem becomes a Markov game.

If the adversary’s policy χ is a fixed bijective mapping from S to S, the new global joint state set Snew is a
perturbation of S and each state is assigned a new "label" by the adversary. Under this condition, the SAMG
is equivalent to a Markov game.

17

Published in Transactions on Machine Learning Research (01/2024)

B Optimal Adversary Policy and Optimal Agent Policy

In this section, we analyze the existence of the optimal adversary policy and the optimal agent policy. We
will utilize the two-agent two-state game introduced in Appendix A. For completeness, let us revisit this
game with two agents N = {1, 2} and two states S = {s1, s2} as shown in Fig. 8. Each agent has two actions
A1 = A2 = {a1, a2}. The transition probabilities are defined below.

p(s′ = s1|s = s1, a
1 ̸= a2) = 1,

p(s′ = s2|s = s1, a
1 = a2) = 1,

p(s′ = s2|s = s2, a
1 ̸= a2) = 1,

p(s′ = s1|s = s2, a
1 = a2) = 1. (12)

Specifically, a1 = a2 includes two cases: a1 = a2 = a1 or a1 = a2 = a2. Similarly, a1 ̸= a2 includes two cases:
a1 = a1, a

2 = a2 or a1 = a2, a
2 = a1.

𝑠! 𝑠"

𝑎! = 𝑎"
𝑟 = 1

𝑎! = 𝑎"
𝑟 = 0

𝑎! ≠ 𝑎"
𝑟 = 1

𝑎! ≠ 𝑎"
𝑟 = 0

Figure 8: A two-agent two-state game example. Agents get reward 1 at state s1 if they choose the same
action. Agents get reward 1 at state s2 if they choose different actions. This example was used in Appendix A
to show the difference between Dec-POMDP and SAMG. We will revisit this game in Appendix B to discuss
optimal adversary policy and optimal agent policy.

Two agents share the same reward function:

r(s, a1, a2) =


1, a1 = a2, and s = s1,

0, a1 ̸= a2, and s = s1,

0, a1 = a2, and s = s2,

1, a1 ̸= a2, and s = s2.

(13)

In a SAMG, each agent is associated with an adversary to perturb its knowledge or observation of the true
state. For the power of the adversary, we allow the adversary to perturb any state to the other state:

P1
s = P2

s = {s1, s2}. (14)

We use γ = 0.99 as the discount factor. Agents want to find a policy π to maximize their total expected
return while adversaries want to find a policy χ to minimize agents’ total expected return.

B.1 Optimal Agent Policy Without Adversaries

When there is no adversary, the optimal policy for agents is to choose the same action in s1 and choose
different actions in s2. One example is π1(a1|s1) = π1(a1|s2) = π2(a1|s1) = π2(a2|s2) = 1. The agents
keep receiving rewards. The values for each state are Ṽ (s1) = Ṽ (s2) = 1

1−γ = 100. Because agents share
the same reward function, they also share the same values for each state. However, this policy receives
V (s1) = V (s2) = 0 when agents are facing adversaries χi(s1|s2) = χi(s2|s1) = 1 for i = 1, 2 and always taking
the wrong actions with 0 reward.

B.2 A Stochastic Policy With Adversaries

We consider a stochastic policy π1(a1|s1) = π1(a1|s2) = π2(a1|s1) = π2(a2|s2) = 0.5. Under this policy, the
probabilities of taking the same or different actions are the same for each state Pr(a1 = a2 | s1) = Pr(a1 ̸=

18

Published in Transactions on Machine Learning Research (01/2024)

a2 | s1) = Pr(a1 = a2 | s2) = Pr(a1 ̸= a2 | s2) = 0.5. Agents randomly stay or transit in each state and
receive a positive reward with a 50% probability. The adversary has no power under this policy because π is
the same for both states. The values for each state are V (s1) = V (s2) = Ṽ (s1) = Ṽ (s2) = 0.5

1−γ = 50.

B.3 Deterministic Policies With Adversaries

Since each agent has two actions for each state, there are in total 24 = 16 possible deterministic policies for
the two-agent two-state game example. All possible deterministic policies can be classified into three cases:
(1) If agents select the same action in one state si and select different actions in the other state sj , then
we always have V (s1) = V (s2) = 0. This is because adversaries can always use χk(s1|sj) = χk(s2|si) = 1
for k = 1, 2 such that agents always receive a 0 reward. (2) If agents always select different actions
in both states, then V (s1) = 0, V (s2) = 100. This is because agents never transit to the other state
and keep receiving the same reward. (3) If agents always select the same action in both states, then
V (s1) = 1

1−γ2 ≈ 50.25, V (s2) = γ
1−γ2 ≈ 49.75. This is because agents circulate through both states and

adversaries have no power to change it.

B.4 Optimal Adversary Policy

In this section, we examine optimal policies for both the adversary and the agent in a State-Adversarial
Markov Game (SAMG). The following proposition demonstrates the existence of an optimal adversary in an
SAMG.

Proposition 4.1 (Existence of Optimal Adversary Policy). Given an SAMG, for any given agent
policy, there exists an optimal adversary policy.

Proof. We prove this by constructing an MDP M = (S, Â, r̂, p̂, γ) such that an optimal policy of M is an
optimal adversary policy χ∗ for the SAMG given the fixed π. In the MDP M , we take all adversaries as a
joint adversary agent. The joint adversary learns a policy χ to find a joint perturbed state given the current
true state. The action space Â = S × S × · · · × S. Note that the joint admissible perturbed state set in
Definition 3.1 Ps ⊆ Â.

The reward function r̂ is defined as:

r̂(s, â) = −
∑
a∈A

π(a|â)r(s, a) for â ∈ Ps. (15)

The transition probability p̂ is defined as

p̂(s′|s, â) =
∑
a∈A

π(a|â)p(s′|s, a) for â ∈ Ps. (16)

The reward function is defined based on the intuition that when the agent receives r given s, a, the
reward of the adversary is the negative of the agent reward, that is to say, r̂ = −r. Considering that
r(s, a) = E[R|s, a] = −E[R̂|s, a],

r̂(s, â) = E[R̂|s, â]

=
∑

R̂

R̂
∑
a∈A

Pr[R̂|s, a]π(a|â)

=
∑
a∈A

∑
R̂

R̂Pr[R̂|s, a]

π(a|â)

=
∑
a∈A

E[R̂|s, a]π(a|â)

= −
∑
a∈A

E[R|s, a]π(a|â)

19

Published in Transactions on Machine Learning Research (01/2024)

= −
∑
a∈A

r(s, a)π(a|â). (17)

Based on the properties of MDP (Sutton et al., 1998; Puterman, 2014), we know that the MDP M has an
optimal policy χ∗ that satisfies V̂π,χ∗(s) ≥ V̂π,χ(s) for all s and all χ, where V̂π,χ is the state value function
of the MDP M .

The Bellman equation for the MDP M is

V̂π,χ(s) =
∑

â∈Ps

χ(â|s)
(
r̂ + γ

∑
s′∈S

p̂(s′|s, â)V̂π,χ(s′)
)

=
∑

â∈Ps

χ(â|s)
∑
a∈A

π(a|â)
(
−r + γ

∑
s′∈S

p(s′|s, a)V̂π,χ(s′)
)
. (18)

By multiplying −1 on both sides, we have

(−V̂π,χ(s)) =
∑

â∈Ps

χ(â|s)
∑
a∈A

π(a|â)[
r + γ

∑
s′∈S

p(s′|s, a)(−V̂π,χ(s′))
]
. (19)

On the other side, for the SAMG, we have the Bellman equation for any fixed policies π and χ as

Vπ,χ(s) =
∑

ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r + γ

∑
s′∈S

p(s′|s, a)Vπ,χ(s′)
)
. (20)

When π and χ are fixed, they can be taken together as a single policy, and the existing results from
Dec-POMDP can be directly applied. Comparing Eq. (20) and (19), we know that Vπ,χ(s) = (−V̂π,χ(s)).

An optimal adversary policy χ∗ for the MDP M satisfies V̂π,χ∗(s) ≥ V̂π,χ(s) for any s and any χ. Therefore,
χ∗ also satisfies Vπ,χ∗(s) ≤ Vπ,χ(s) for any s and any χ, and an optimal policy of the MDP M is an optimal
adversary policy for the SAMG given the fixed π.

B.5 Optimal Agent Policy With Adversaries

We have established the existence of an optimal adversary in SAMGs. Next, we consider a state-robust
totally optimal agent policy under this optimal adversary. The following proposition demonstrates that a
deterministic agent policy is not always superior to a stochastic policy in SAMGs.
Proposition B.1. There exists an SAMG and some stochastic policy π such that we cannot find a better
deterministic policy π′ satisfying V̄π′(s) ≥ V̄π(s) for all s ∈ S.

Proof. We prove this theorem by giving a counter-example where no deterministic policy is better than a
stochastic policy. As shown in the two-agent two-state game example in Fig. 8, all 16 deterministic policies
are no better than the stochastic policy π1(a1|s1) = π1(a1|s2) = π2(a1|s1) = π2(a2|s2) = 0.5.

Finally, we show a state-robust totally optimal agent policy π∗ does not always exist such that V̄π∗(s) ≥ V̄π(s)
for any π and all s ∈ S in SAMGs in the following theorem.

Theorem 4.3 (Non-existence of State-robust Totally Optimal Agent Policy). A state-robust totally
optimal agent policy does not always exist for SAMGs.

20

Published in Transactions on Machine Learning Research (01/2024)

Proof. We prove this theorem by showing that the two-agent two-state game in Fig. 8 does not have an
optimal policy. We first show that the policy π1 : π1(a1|s1) = π1(a1|s2) = π2(a2|s1) = π2(a2|s2) = 1 is not an
optimal policy. Because agents always select different actions in both states, agents always stay in the same
state and adversaries have no power to change it. The values for each state are V̄π1(s1) = 0, V̄π1(s2) = 100.
Now we consider the stochastic policy π2 : π1(a1|s1) = π1(a1|s2) = π2(a1|s1) = π2(a2|s2) = 0.5. The values
for each state are V̄π2(s1) = V̄π2(s2) = 50. Because V̄π2(s1) > V̄π1(s1), the policy π1 is not an optimal policy
for agents.

If there exists an optimal policy π∗, then it must be better than π1 and have V̄π∗(s1) > 0, V̄π∗(s2) = 100. In
order to have V̄π∗(s2) = 100, agents must select different actions in s2 and keep receiving the positive rewards
from each step. In order to have V̄π∗(s1) > 0, agents must have a chance to select the same action in s1, i.e.,
Pr(a1 = a2 | s1) > 0. However, if Pr(a1 = a2 | s1) > 0, then adversaries can have χi(s1|s2) > 0 for i = 1, 2 to
perturb the state s2 to s1 and reduce V̄π∗(s2). Therefore, no policy can do better than π1 and since π1 is not
an optimal policy, there is no optimal policy for agents.

In the comparison of π1 and π2 in the above proof, it is apparent that it is not always possible to maximize
the state value of all states and that trade-offs may need to be made among different states. Using the
traditional definition of an optimal policy, it is not possible to determine which policy, π1 or π2, is better.
However, if we use the worst-case expected state value concept from Definition 4.8 and assume that the
initial state is always s2, then we can conclude that π1 is an optimal agent policy, as it gives the maximum
worst-case expected state value of 100 in this case.

C Stage-wise Equilibrium, Robust Total Nash Equilibrium, and Robust Agent Policy

In Theorem 4.3, it has been proven that a state-robust totally optimal agent policy does not always exist for
SAMGs. This section explores alternative solution concepts for the agent policy in SAMGs. We begin by
demonstrating the existence of a unique robust state value function for each agent in C.1. Building on this
property, we establish the existence of a stage-wise equilibrium for each state in C.2. However, we show in C.3
that the robust total Nash equilibrium may not always exist. As an alternative, we propose the concept of a
robust agent policy and demonstrate its existence in C.4.

We first give a review of the Nash equilibrium used in the literature. The Nash equilibrium is a widely
used solution concept in game theory, first proposed by Nash in Nash (1951) for general-sum finite one-shot
games. It states that each player selects the best response strategy to the others’ strategies and no player
would want to deviate from the equilibrium, as doing so would result in a worse utility. This concept was
later extended to infinite games by Debreu (Debreu, 1952), Glicksberg (Glicksberg, 1952), and Fan (Fan,
1952). Markov games, which involve a sequential decision process in a two-player zero-sum setting, were first
defined by Shapley in Shapley (1953). Fink extended the Nash equilibrium concept to Markov games in Fink
(1964) and proved that an equilibrium point exists in n-player general-sum discounted Markov games. The
uncertainty in transition dynamics of a Markov game was considered in Nilim & El Ghaoui (2005); Iyengar
(2005) using a robust optimization approach, with independent proofs for the existence of the equilibrium
point. Additionally, uncertainty in utility (or "reward" in reinforcement learning) was also taken into account
in Kardeş et al. (2011) for n-player finite state/action discounted Markov games, with a proof for the existence
of the equilibrium point.

Despite the extensive study of the Nash equilibrium in game theory, the uncertainty in the state has not yet
been explored in the context of Markov games. To the best of our knowledge, we are the first to formulate the
problem of n-player finite state/action discounted Markov games with state uncertainty and to demonstrate
the existence of a stage-wise equilibrium, as well as the non-existence of a robust total Nash equilibrium.

We use the following Assumption C.1 throughout this section.

Assumption C.1. The global state set S and the global action set A are finite sets.

21

Published in Transactions on Machine Learning Research (01/2024)

C.1 Unique Robust State Value Function

Denote the agent policies and adversary policies of all other agents and adversaries except agent i and
adversary i as π−i and χ−i respectively. We show that there exists a unique robust state value function for
agent i given any π−i and χ−i.

Definition 4.4 (Robust state value function). A state value function V i
∗,π−i,∗,χ−i : S → R for agent i

given π−i and χ−i is called a robust state value function if for all s ∈ S,

V i
∗,π−i,∗,χ−i(s) = max

πi
min

χi

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V i
∗,π−i,∗,χ−i(s′)

)
. (21)

Note that we use π(a|ρ) = Πn
i=1π

i(ai|ρi) to denote the joint agent policy. We use χ(ρ|s) = Πn
i=1χ

i(ρi|s) to
denote the joint adversary policy.

Before proving the existence of the unique robust state value function, we first introduce some notations
for this proof. For a given state value function V i

∗,π−i,∗,χ−i : S → R defined on a finite state set S, we can
construct a state value vector vi = vec(V i

∗,π−i,∗,χ−i) = [V i
∗,π−i,∗,χ−i(s)]s∈S ∈ V := R|S| by traversing all states,

where vec(·) is a vectorization function. The infinity norm on V is ∥vi∥∞ = maxs∈S |V i(s)|. Define the total
expected return in state s for πi and χi as

f i
s(vi, πi, π−i, χi, χ−i) =

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)[vec−1(vi)](s′)
)
, (22)

where π−i and χ−i denotes the agent policies and the adversary policies of all other agents except agent i.

Define the robust state value in state s given π−i and χ−i as a function ψi
s : V → R,

ψi
s(vi, π−i, χ−i) = max

πi
min

χi
f i

s(vi, πi, π−i, χi, χ−i). (23)

Note that ψi
s gives a real number that denotes the total expected return in state s given π−i and χ−i. We can

construct a mapping Ψi
π,χ : V → V from any state value vector vi to a robust state value vector [Ψi

π,χ(vi)]s∈S
by traversing all s, that is to say, [Ψi

π,χ(vi)]s∈S = ψi
s(vi, π−i, χ−i).

Lemma C.2. For any i ∈ N , the function Ψi
π,χ : V → V is a contraction mapping given any π−i and χ−i of

other agents and adversaries except agent i and adversary i.

Proof. Let us consider two vectors vi, zi ∈ V. For any i ∈ N , given any π−i and χ−i, for all s ∈ S, we have

ψi
s(vi, π−i, χ−i) = max

πi
min

χi
f i

s(vi, πi, π−i, χi, χ−i)

= f i
s(vi, πi∗, π−i, χi∗, χ−i), (24)

where πi∗ is the corresponding maximizer, and χi∗ is the corresponding optimizer for πi∗. Similarly, with the
optimizers ωi∗ and φi∗

1 for the following maximin optimization problem, we have

ψi
s(zi, π−i, χ−i) = max

ωi
min

φi
f i

s(zi, ωi, π−i, φi, χ−i)

= f i
s(zi, ωi∗, π−i, φi∗

1 , χ
−i)

≥ f i
s(zi, πi∗, π−i, φi∗

2 , χ
−i), (25)

22

Published in Transactions on Machine Learning Research (01/2024)

where
φi∗

2 = arg min
φi

f i
s(zi, πi∗, π−i, φi, χ−i). (26)

Then, for any i ∈ N , given any π−i and χ−i, for all s ∈ S, it holds that

ψi
s(vi, π−i, χ−i)− ψi

s(zi, π−i, χ−i)
= f i

s(vi, πi∗, π−i, χi∗, χ−i)− f i
s(zi, ωi∗, π−i, φi∗

1 , χ
−i)

≤ f i
s(vi, πi∗, π−i, χi∗, χ−i)− f i

s(zi, πi∗, π−i, φi∗
2 , χ

−i)
≤ f i

s(vi, πi∗, π−i, φi∗
2 , χ

−i)− f i
s(zi, πi∗, π−i, φi∗

2 , χ
−i)

=
∑

ρ∈Ps

φi∗
2 (ρi|s)

∏
j ̸=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k ̸=i

πk(ak|ρk)
(
r + γ

∑
s′∈S

p(s′|s, a)[vec−1(vi)](s′)
)

−
∑

ρ∈Ps

φi∗
2 (ρi|s)

∏
j ̸=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k ̸=i

πk(ak|ρk)
(
r + γ

∑
s′∈S

p(s′|s, a)[vec−1(zi)](s′)
)

=
∑

ρ∈Ps

φi∗
2 (ρi|s)

∏
j ̸=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k ̸=i

πk(ak|ρk)γ
∑
s′∈S

p(s′|s, a)×

{
[vec−1(vi)](s′)− [vec−1(zi)](s′)

}
≤
∑

ρ∈Ps

φi∗
2 (ρi|s)

∏
j ̸=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k ̸=i

πk(ak|ρk)γ
∑
s′∈S

p(s′|s, a)∥vi − zi∥∞

= γ∥vi − zi∥∞. (27)

The second inequality in Eq. (27) follows

χi∗ = arg min
χi

f i
s(vi, πi∗, π−i, χi, χ−i). (28)

Because for any i ∈ N , given any π−i and χ−i, for all s ∈ S

ψi
s(vi, π−i, χ−i)− ψi

s(zi, π−i, χ−i) ≤ γ∥vi − zi∥∞, (29)

Based on symmetry, we have

ψi
s(zi, π−i, χ−i)− ψi

s(vi, π−i, χ−i) ≤ γ∥zi − vi∥∞

= γ∥vi − zi∥∞. (30)

Thus, it holds that for any i ∈ N , given any π−i and χ−i

∥Ψi
π,χ(vi)−Ψi

π,χ(zi)∥∞ ≤ γ∥vi − zi∥∞, (31)

that is to say, the function Ψi
π,χ is a contraction mapping.

23

Published in Transactions on Machine Learning Research (01/2024)

Theorem 4.5 (Existence of Unique Robust State Value Function). For an SAMG with finite state
and finite action spaces, for any i ∈ N , given any π−i and χ−i of other agents and adversaries except agent i
and adversary i, there exists a unique robust state value function V i

∗,π−i,∗,χ−i : S → R for agent i such that
for all s ∈ S,

V i
∗,π−i,∗,χ−i(s) = max

πi
min

χi

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V i
∗,π−i,∗,χ−i(s′)

)
. (32)

Proof. For any i ∈ N , there exists a state value function V i
∗,π−i,∗,χ−i satisfying (32) if and only if vi =

vec(V i
∗,π−i,∗,χ−i) is a fixed point of Ψi

π,χ : V → V , where [Ψi
π,χ(vi)]s∈S = ψi

s(vi, π−i, χ−i) and ψi
s(vi, π−i, χ−i)

is defined in (23). We use Banach’s fixed point theorem to prove this as follows.

Because any finite-dimensional normed vector space is complete (Kreyszig, 1991), the (V, ∥ · ∥∞) is a complete
Banach space. Also, for any i ∈ N , given any π−i and χ−i, the function Ψi

π,χ is a contraction mapping
according to Lemma C.2. Therefore, by Banach’s fixed point theorem, there is a unique fixed point vi such
that Ψi

π,χ(vi) = vi. In other words, for any i ∈ N , given any π−i and χ−i, there exists a unique V i
∗,π−i,∗,χ−i

such that

V i
∗,π−i,∗,χ−i(s) = max

πi
min

χi
f i

s(vi, πi, π−i, χi, χ−i). (33)

Denote the state value function for agent i given any π−i and χ−i of other agents and adversaries except
agent i and adversary i as

V i
πi,π−i,χi,χ−i(s) = f i

s(vi, πi, π−i, χi, χ−i), (34)

where vi = vec(V i
∗,π−i,∗,χ−i). Then we have the following corollary for Theorem C.1.

Corollary C.3. For an SAMG with finite state and finite action spaces, let V i
∗,π−i,∗,χ−i be the unique robust

state value function for agent i given any π−i and χ−i such that for all s ∈ S,

V i
∗,π−i,∗,χ−i(s) = max

πi
min

χi
f i

s(vi, πi, π−i, χi, χ−i)

= f i
s(vi, πi∗, π−i, χi∗, χ−i), (35)

where vi = vec(V i
∗,π−i,∗,χ−i), πi∗ is the corresponding maximizer at state s, and χi∗ is the corresponding

optimizer for πi∗ at state s, then for state s it holds that V i
πi∗,π−i,χi∗,χ−i(s) ≥ V i

πi,π−i,χi∗,χ−i(s) for any πi,
and V i

πi∗,π−i,χi∗,χ−i(s) ≤ V i
πi∗,π−i,χi,χ−i(s) for any χi.

C.2 Existence of the Stage-wise Equilibrium

Before we show the existence of the robust total Nash equilibrium, we first show a concept of the stage-wise
equilibrium.
Definition C.4 (Stage-wise Equilibrium). For an SAMG, the policy (π∗, χ∗) is a stage-wise equilibrium
for state s if for all i ∈ N and all πi and χi, it holds that

V i
πi,π−i∗,χi∗,χ−i∗(s) ≤ V i

πi∗,π−i∗,χi∗,χ−i∗(s)
≤ V i

πi∗,π−i∗,χi,χ−i∗(s), (36)

where π−i and χ−i denotes the agent policies and adversary policies of all the other agents except agent i,
respectively.

24

Published in Transactions on Machine Learning Research (01/2024)

The Nash equilibrium was originally proposed by Nash for finite one-shot games, in which the state transition
of the environment is not considered. When the concept of Nash equilibrium is extended to Markov games,
the existence of the equilibrium is shown through the existence of a state-wise equilibrium for each state. A
policy that is a stage-wise equilibrium for all states is considered a Nash equilibrium for the Markov game.

This idea brings the following proposition to show the relationship between the robust total Nash equilibrium
and the stage-wise equilibrium for SAMGs.
Proposition C.5. The policy (π∗, χ∗) is a robust total Nash equilibrium for an SAMG if the policy (π∗, χ∗)
is a stage-wise equilibrium for all s ∈ S.

Proof. It is a natural result according to the Definition 4.6 and the Definition C.4.

We show the existence of the stage-wise equilibrium defined in Definition C.4 in the following theorem.
Theorem C.6 (Existence of Stage-wise equilibrium). For SAMGs with finite state and finite action
spaces, the stage-wise equilibrium defined in Definition C.4 exists for any s ∈ S.

Proof. Let us construct a 2n player game for any s ∈ S. We have n agents and n adversaries in the player
set. We introduce uniform notations for the agents and adversaries to describe a 2n player game at state s.
The player set I = {1, ..., n, n+ 1, ..., 2n}. The first half of the player set {1, ..., n} represents agents, while
the second half {n+ 1, ..., 2n} represents adversaries. The set of available actions for player i is

Ai
s =


Ai ×Ai · · · × Ai︸ ︷︷ ︸
total number: |Pi

s|

, i = 1, ..., n;

Pi−n
s , i = n+ 1, ..., 2n.

(37)

Each adversary’s action set includes all possible perturbed states in the admissible perturbed state set at
state s. Each agent’s action set includes all possible joint actions given every possible perturbed state.
Take the two-agent two-state game in Fig. 8 as an example, the player set I = {1, 2, 3, 4}. Player 3 is the
adversary for agent player 1. Player 4 is the adversary for agent player 2. If the current true state is s1, then
A1

s1
= A2

s1
= {(a1, a1), (a1, a2), (a2, a2), (a2, a1)} are the action sets for two agent players. In A1

s1
for agent

1, the joint action (a1, a2) means selecting a1 if the perturbed state for agent 1 is s1 and selecting a2 if the
perturbed state for agent 1 is s2. For two adversary players, A3

s1
= A4

s1
= {s1, s2}, as adversaries can perturb

the true state s1 to s2.

We consider the mixed strategy σi
s ∈ ∆(Ai

s) for player i. Note that the mixed strategy for each adversary
gives us the probability distribution of all possible perturbed states for state s, i.e. χi−n(ρi−n|s) = σi

s(ρi−n)
for i = n+ 1, ..., 2n. Then we show how we can get each agent’s policy πi(ai|ρi) based on its mixed strategy
σi

s by calculating the marginal probabilities. Denote the total number of possible perturbed state for agent
i at state s as P such that P = |Pi

s|. Here we drop the subscript s in Ps for a concise representation.
The perturbed state set for agent i is represented as {ρi

1, ρ
i
2, . . . , ρ

i
P }. Denote the joint action of agent i as

bi = (bi
1, b

i
2, . . . , b

i
P) where bi

k is the action selected for the perturbed state ρi
k ∈ Pi

s. Then the mixed strategy
σi

s(bi
1, b

i
2, ..., b

i
P) gives us the joint probability of selecting bi

k for ρi
k for all k = 1, 2, ..., P . We can get the

marginal probability of selecting action ai given the perturbed state ρi
k ∈ Pi

s as

πi(ai|ρi
k) =

∑
{bi∈Ai

s|bi
k

=ai}

σi
s(bi

1, b
i
2, ..., b

i
P). (38)

The marginal probability of selecting action ai given the perturbed state ρi
k is calculated by summing up

the joint probability over all joint actions in which agent i selects ai given the perturbed state ρi
k. Take the

two-agent two-state game in Fig. 8 as an example, if the current perturbed state for agent 1 is ρ1 = s1, then
agent 1’s policy is

π1(a1|ρ1 = s1) = σ1(a1, a1) + σ1(a1, a2)
π1(a2|ρ1 = s1) = σ1(a2, a1) + σ1(a2, a2). (39)

25

Published in Transactions on Machine Learning Research (01/2024)

Note that the mixed strategy σi
s ∈ ∆(Ai

s) only gives part of the agent and adversary policies. For example,
the mixed strategy for the adversaries only gives a distribution of the perturbed states for st = s. We
construct the complete agent and adversary policies as follows: For i = 1, ..., n, the agent i’s policy is

πi(ai|ρi) =


∑

{bi∈Ai
s|bi

k
=ai} σ

i
s(bi

1, b
i
2, ..., b

i
P),

for ρi = ρi
k ∈ Pi

s;
U(Ai),
for ρi /∈ Pi

s,

(40)

where U(Ai) represents a uniform distribution on Ai. For i = 1, ..., n, the adversary i’s policy is

χi(ρi|st) =
{
σi+n

s (ρi), for st = s;
U(Pi

s), for st ̸= s,
(41)

where U(Pi
s) represents a uniform distribution on Pi

s.

The utility function for player i is

ui
s(σi

s, σ
−i
s) =



f i
s(vi∗, πi, π−i, χi, χ−i),

for i = 1, ..., n;
−f i−n

s (v(i−n)∗, πi−n, π−(i−n),

χi−n, χ−(i−n)),
for i = n+ 1, ..., 2n.

(42)

where σ−i
s denotes the strategies of all other players except player i, vi∗ = vec(V i

∗,π−i,∗,χ−i), and V i
∗,π−i,∗,χ−i

is the unique robust state value function of agent i when the policies of other agents and adversaries are
given by π−i and χ−i. The vi∗ satisfies

[vec−1(vi∗)](s) = max
πi

min
χi

f i
s(vi∗, πi, π−i, χi, χ−i), (43)

where f i
s is defined for player i in (22) as

f i
s(vi, πi, π−i, χi, χ−i) =

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)[vec−1(vi)](s′)
)
.

Note that σ−i
s includes both π−i and χ−i for any i ∈ I, and the existence of V i

∗,π−i,∗,χ−i is guaranteed by
Theorem C.1. Thus, the utility function is well-defined.

Since the state set S is finite, Pi
s ⊆ S is a finite set for all i ∈ N . Also, Ai is a finite set for all i ∈ N . Therefore,

∆(Ai
s) is compact and convex for all i ∈ I. Moreover, for all i ∈ I, ui

s(σi
s, ·) is linear in σi

s and therefore
continuous and concave in σi

s. According to the theorem (Debreu Debreu (1952), Glicksberg Glicksberg (1952),
Fan Fan (1952)), the conditions for the existence of a Nash Equilibrium are satisfied, hence, there exists a
Nash equilibrium σ∗

s for this 2n player game for any s ∈ S such that for any i ∈ I, ui
s(σi∗

s , σ
−i∗
s) ≥ ui

s(σi
s, σ

−i∗
s)

for any σi
s.

Denote the agent and adversary policies as (π∗, χ∗) that are constructed following Eq. (40) and Eq. (41) by
plugging in the Nash equilibrium (σi∗

s , σ
−i∗
s). Substituting the (π∗, χ∗) into ui

s(σi∗
s , σ

−i∗
s) ≥ ui

s(σi
s, σ

−i∗
s) and

plugging in the definition of the utility functions, for any i = 1, 2, ..., n, it holds that

f i
s(vi∗, πi∗, π−i∗, χi∗, χ−i∗) ≥ f i

s(vi∗, πi, π−i∗, χi∗, χ−i∗), (44)

for any πi. Also, for any i = 1, 2, ..., n, it holds that

f i
s(vi∗, πi∗, π−i∗, χi∗, χ−i∗) ≤ f i

s(vi∗, πi∗, π−i∗, χi, χ−i∗), (45)

26

Published in Transactions on Machine Learning Research (01/2024)

for any χi. Therefore,

max
πi

min
χi

f i
s(vi∗, πi, π−i∗, χi, χ−i∗)

=f i
s(vi∗, πi∗, π−i∗, χi∗, χ−i∗). (46)

According to Corollary C.3, for any πi, it holds that

V i
πi∗,π−i∗,χi∗,χ−i∗(s) ≥ V i

πi,π−i∗,χi∗,χ−i∗(s), (47)

Also, for any χi, it holds that

V i
πi∗,π−i∗,χi∗,χ−i∗(s) ≤ V i

πi∗,π−i∗,χi,χ−i∗(s). (48)

Thus, the stage-wise equilibrium defined in Definition C.4 exists for any s ∈ S.

C.3 Non-existence of Robust Total Nash Equilibrium

Theorem C.6 demonstrates the existence of a stage-wise equilibrium for any state s ∈ S. In classic Markov
games (Fink, 1964) and Markov games with reward/transition uncertainties (Kardeş et al., 2011; Nilim &
El Ghaoui, 2005; Iyengar, 2005), this result naturally extends to the existence of a Nash equilibrium policy,
as all agents’ and adversaries’ policies are based on the current true state. If a stage-wise equilibrium exists
for any state s ∈ S, then a Nash equilibrium can be constructed by taking the policies for each state s from
their corresponding stage-wise equilibrium for state s (Fink, 1964; Kardeş et al., 2011; Nilim & El Ghaoui,
2005; Iyengar, 2005). However, this natural extension cannot be used for our SAMG problem because the
agent’s policy is based on the perturbed state instead of the true state. The problem is that the agent’s
stage-wise equilibrium in one state may not be consistent with its stage-wise equilibrium in a different state.
We illustrate this idea in the following theorem to show that the robust total Nash equilibrium does not
always exist for SAMGs.

Theorem 4.7 (Non-existence of Robust Total Nash Equilibrium). For SAMGs with finite state and
finite action spaces, the robust total Nash equilibrium defined in Definition 4.6 does not always exist.

Proof. We prove this theorem by showing that the following two-agent two-state game in Fig. 9 does not
have a robust total Nash equilibrium. The two-agent two-state game in Fig. 9 is basically the same as the

𝑠! 𝑠"
𝑎! = 𝑎"
𝑟 = 1

𝑎! = 𝑎"
𝑟 = 0

𝑎! ≠ 𝑎"
𝑟 = 1

𝑎! ≠ 𝑎"
𝑟 = 0

Figure 9: A new two-agent two-state game example. Agents get reward 1 at state s1 if they choose the same
action. Agents get reward 1 at state s2 if they choose different actions.

two-agent two-state game in Fig. 8. The only difference is we changed the state transition for the state s1.
The new state transition functions for the state s1 are

p(s′ = s2|s = s1, a
1 ̸= a2) = 1,

p(s′ = s1|s = s1, a
1 = a2) = 1. (49)

We first consider the stage-wise equilibriums for each state.

For state s1, the stage-wise equilibrium requires Pr(a1
t = a2

t) = 1 for all t. One example of the agent policy is
π1(a1|s1) = π1(a1|s2) = π2(a1|s1) = π2(a1|s2) = 1. Note that the agent should have a policy for both s1 and
s2 even when considering the state-wise equilibrium for the state s1 (This means the current true state is s1).

27

Published in Transactions on Machine Learning Research (01/2024)

This is because the adversary can perturb each agent’s state observation to be s2. There is no requirement
for the adversary policy in the state-wise equilibrium because when Pr(a1

t = a2
t) = 1, the true state never

transits. The state value for s1 is V (s1) = 100.

Similarly, for state s2, the stage-wise equilibrium requires Pr(a1
t ̸= a2

t) = 1 for all t. One example of the agent
policy is π1(a1|s1) = π1(a1|s2) = π2(a2|s1) = π2(a2|s2) = 1. There is no requirement for the adversary policy
in the state-wise equilibrium of s2. The state value for s2 is V (s2) = 100.

Since the stage-wise equilibriums have conflict requirements for the agent policy in s1 and s2, there is no
agent policy satisfying the requirements of the stage-wise equilibriums in both s1 and s2 at the same time.
Therefore, there is no robust total Nash equilibrium for agents in this two-agent two-state game.

In the proof of Theorem 4.7, we intended to present a straightforward example for ease of understanding.
However, more counter-examples can be more illustrative in demonstrating the prevalence of non-existence
scenarios. As long as the two stage-wise equilibriums have different requirements (not necessarily contrary to
each other), there is no Nash equilibrium.

To elaborate, consider a 2-state 2-action game. If, for state s1, the stage-wise equilibrium necessitates choosing
action a1 with probability 0.2 and a2 with probability 0.8, and for state s2, the stage-wise equilibrium requires
choosing a1 with probability 0.6 and a2 with probability 0.4, then it’s clear that no Nash equilibrium can
simultaneously satisfy these requirements. This example illustrates the absence of a robust Nash equilibrium
in such a 2-state 2-action game scenario.

Our conclusion is similar to that of Theorem 4.3, in that it is not always possible to find a policy that is a
stage-wise equilibrium for all states. When facing adversarial state perturbations, trade-offs must be made
among different states. As a result, the traditional solution concepts of an optimal agent policy and the
robust total Nash equilibrium cannot be applied to SAMGs.

C.4 Existence of Robust Agent Policy

We need to consider a new objective that is not state-dependent. Therefore, we propose a new objective, the
worst-case expected state value, in Definition 4.8 as

Es0∼Pr(s0)
[
V̄π(s0)

]
,

where Pr(s0) is the probability distribution of the initial state.

The new objective of "worst-case expected state value" is designed specifically for the state perturbation
problem present in SAMGs. It is proposed as a response to our analysis of the non-existence of widely-used
concepts. We demonstrate that these concepts can be easily corrupted by adversaries, requiring agents to
make trade-offs between different states. This is the reason for introducing the new objective. The agent
policy that aims to maximize this worst-case expected state value is referred to as a robust agent policy.

In this section, we show the existence of a robust agent policy to maximize the worst-case expected state
value. We first introduce lemmas for this proof.

Denote pπ,χ,s0(st) as the probability of reaching state st given the agent policy π, adversary policy χ, and
initial state s0. Let pπ,χ,s0(s0) = 1. The connection between pπ,χ,s0(st+1) and pπ,χ,s0(st) is:

pπ,χ,s0(st+1) =∑
st∈S

∑
at∈A

∑
ρt∈P

p(st+1|st, at)π(at|ρt)χ(ρt|st)pπ,χ,s0(st). (50)

For a concise representation, we omit the subscript st of Pst in this section. Consider the function

gs0
t (π, χ) =

∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)×

π(at|ρt)χ(ρt|st)γtrt+1(st, at). (51)

28

Published in Transactions on Machine Learning Research (01/2024)

Lemma C.7. The function gs0
t is continuous on ∆(A)×∆(P) for any t = 0, 1, 2, ..., n where n ∈ N+.

Proof. To prove the continuity, we construct some equivalent vectors as follows. We define a vector π⃗ ∈ R|A||P|

and π⃗(a, ρ) = π(a|ρ) for a ∈ A, ρ ∈ P, and a vector χ⃗ ∈ R|P||S| where χ⃗(ρ, s) = χ(ρ|s) for ρ ∈ P, s ∈ S. And
a vector constant r⃗ ∈ R|S||A| where r⃗(s, a) = r(s, a).

π⃗⊤ = [π(a1|ρ1), · · · , π(a|A||ρ1), π(a2|ρ1), · · · , π(a|A||ρ|P|)]
χ⃗⊤ = [χ(ρ1|s1), · · · , χ(ρ|P||s1), χ(ρ2|s1), · · · , χ(ρ|P||s|S|)]
p⃗t = [pπ,χ,s0(st = s1), · · · , pπ,χ,s0(st = s|S|)] (52)

Note that when ρ /∈ Ps, then the entry χ(ρ|s) = 0. p⃗t ∈ R|S| can be expressed as a linear combination of
p⃗t−1, π⃗ and χ⃗ according to (50). Let’s first consider the case t = 0,

gs0
0 (π, χ) =

∑
a0∈A

∑
ρ0∈P

π(a0|ρ0)χ(ρ0|s0)r(s0, a0) (53)

Function gs0
0 can be expressed as a linear combination of r⃗, π⃗ and χ⃗. We consider the general case

gs0
t (π, χ) =

∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)×

π(at|ρt)χ(ρt|st)γtrt+1(st, at). (54)

Function gs0
t can be expressed as a linear combination of r⃗, p⃗t, π⃗ and χ⃗. Therefore, gs0

t is continuous on
∆(A)×∆(P) for any t = 0, 1, 2, ..., n where n ∈ N+.

Lemma C.8. For any s0 ∈ S, the series {
∑n

t=0 g
s0
t (π, χ)}, n = 1, 2, ..., converges uniformly on ∆(A)×∆(P).

Proof. Consider Ms0
t (π, χ) = γtRmax, where Rmax is the largest absolute value of the rewards. We can check

that |gs0
t (π, χ)| ≤Ms0

t (π, χ) for t ≥ 0 as follows.

|gs0
t (π, χ)|

=

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)π(at|ρt)χ(ρt|st)γtrt+1(st, at)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)π(at|ρt)χ(ρt|st)γtRmax

∣∣∣∣∣∣
=γtRmax ×

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)π(at|ρt)χ(ρt|st)

∣∣∣∣∣∣
=γtRmax ×

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

Pr(st, at, ρt | s0, π, χ)

∣∣∣∣∣∣
=γtRmax × 1 = Ms0

t (π, χ). (55)

Meanwhile,
∞∑

t=0
Ms0

t (π, χ) =
∞∑

t=0
γtRmax = Rmax

1− γ , (56)

29

Published in Transactions on Machine Learning Research (01/2024)

so
∑
gs0

t converges uniformly on ∆(A)×∆(P) according to the Weierstrass M-test in Theorem 7.10 of Rudin
et al. (1976).

Lemma C.8 shows the series {
∑n

t=0 g
s0
t (π, χ)}, n = 1, 2, ..., converges uniformly on ∆(A) × ∆(P) for any

s0 ∈ S. In the following lemma, we show
∑∞

t=0 g
s0
t (π, χ) is continuous on ∆(A) × ∆(P) for any s0 ∈ S.

Denote hs0(π, χ) =
∑∞

t=0 g
s0
t (π, χ).

Lemma C.9. The function hs0 is continuous on ∆(A)×∆(P) for any s0 ∈ S.

Proof. Consider hs0
n (π, χ) =

∑n
t=0 g

s0
t (π, χ) for n ∈ N+. Since hs0

n is a linear combination of {gs0
t }t=0,1,2,··· ,n

and gs0
t is continuous on ∆(A)×∆(P) for any t = 0, 1, 2, · · · , n according to Lemma C.7, the sequence {hs0

n }
is a sequence of continuous functions on ∆(A)×∆(P). Meanwhile, hs0

n → hs0 uniformly on ∆(A)×∆(P) for
any s0 ∈ S according to Lemma C.8, therefore hs0 is continuous on ∆(A)×∆(P) for any s0 ∈ S according
to the uniform limit theorem in Theorem 7.12 of Rudin et al. (1976).

The following theorem shows finding a robust agent policy is equivalent to solving a maximin problem.

Theorem 4.10. Finding an agent policy π to maximize the worst-case expected state value under an optimal
adversary for π is equivalent to the maximin problem: maxπ minχ

∑
s0

Pr(s0)Vπ,χ(s0).

Proof. According to the Proposition 4.1, for any fixed agent policy π, there exists an optimal adversary policy
χ∗ such that V̄π(s0) = minχ Vπ,χ(s0) for any s0 ∈ S. Thus,

max
π

Es0∼Pr(s0)
[
V̄π(s0)

]
= max

π
Es0∼Pr(s0)

[
min

χ
Vπ,χ(s0)

]
(Eq. (2))

= max
π

∑
s0

Pr(s0) min
χ
Vπ,χ(s0) (Definition of Expectation)

= max
π

min
χ

∑
s0

Pr(s0)Vπ,χ(s0), (Proposition 4.1) (57)

Finally, we show the existence of the robust agent policy to maximize the worst-case expected state value in
the following theorem.

Theorem 4.11 (Existence of Robust Agent Policy). For SAMGs with finite state and finite action spaces,
there exists a robust agent policy to maximize the worst-case expected state value defined in Definition 4.8.

Proof. According to Theorem 4.10, finding an agent policy π to maximize the worst-case expected state value
under an optimal adversary for π is equivalent to the following maximin problem:

max
π

F (π)

:= max
π

Es0∼Pr(s0)
[
V̄π(s0)

]
= max

π
min

χ

∑
s0

Pr(s0)Vπ,χ(s0)

= max
π

min
χ
J(π, χ), (58)

where the objective function in (58) can be expanded as follows:

J(π, χ)
= Es0∼Pr(s0) [Vπ,χ(s0)]

30

Published in Transactions on Machine Learning Research (01/2024)

=
∑
s0

Pr(s0)Vπ,χ(s0)

=
∑
s0

Pr(s0)Eat∼π,ρt∼χ

[∞∑
t=0

γtrt+1(st, at) | s0

]

=
∑
s0

Pr(s0)
∞∑

t=0
Eat∼π,ρt∼χ

[
γtrt+1(st, at) | s0

]
(linearity of the expectation)

=
∑
s0

Pr(s0)
∞∑

t=0

∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)×

π(at|ρt)χ(ρt|st)γtrt+1(st, at)

=
∑
s0

Pr(s0)
∞∑

t=0
gs0

t (π, χ)

=
∑
s0

Pr(s0)hs0 . (59)

Because J(π, χ) is a linear combination of {hs0}s0∈S , S is finite, and hs0 is continuous on ∆(A) × ∆(P)
for any s0 ∈ S according to Lemma C.9, the objective function J(π, χ) =

∑
s0

Pr(s0)hs0 is continuous on
∆(A)×∆(P). Consider the function F (π) = minχ J(π, χ). Since the adversary policy space ∆(P) is compact,
the function F is continuous in π. Meanwhile, the agent policy space ∆(A) is closed. Therefore, there exists
an agent policy π to maximize F according to the extreme value theorem.

Theorem 4.11 shows the existence of a robust agent policy. Different from the definitions of the state-robust
totally optimal agent policy and robust total Nash equilibrium, the worst-case expected state value objective
does not require the optimality condition to hold for all states. Agents won’t get stuck in trade-offs between
different states, therefore, we can find a robust agent policy to maximize the worst-case expected state value
for the SAMG problem.

Now look back at the two-agent two-state game in Fig. 8. If we use the worst-case expected state value
concept from Definition 4.8 and assume that the initial state is always s2, then we can conclude that π1 :
π1(a1|s1) = π1(a1|s2) = π2(a2|s1) = π2(a2|s2) = 1 is a robust agent policy, as it gives the maximum
worst-case expected state value of 100 for this game.

D Robust Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm

In general, it is challenging to develop algorithms that compute optimal or equilibrium policies for MARL
under uncertainties (Zhang et al., 2020b; 2021). Our algorithm adopts centralized training and decentralized
execution paradigm following the popular framework in Lowe et al. (2017). During training, there is a
centralized critic Q(s, a) that records the total expected return given the global state s and global action a.
The connection between Q(s, a) and V (s) is that for any i ∈ N , s ∈ S, a ∈ A,

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)V (s′). (60)

Each agent’s state input for the actor is perturbed by an adversary χi(·|s) : S → ∆(Pi
s). During execution,

each agent i selects action ai based on the perturbed state ρi ∈ S using a trained policy πi : S → ∆(Ai).
We want to find a policy πi for each agent to maximize the worst-case expected state value in Definition 4.8
under adversarial state perturbations.

As shown in Alg. 1, our algorithm has a centralized critic network Q for training. Each agent has one actor
network πi and one adversary network χi. The critic Q takes in the true global state and global action

31

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1: Robust Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm
1 Randomly initialize the critic network Q, the actor network πi, and the adversary network χi for each

agent;
2 Initialize target networks Q′, πi′, χi′;
3 for each episode do
4 The initial state s0 ← sample from Pr(s0);
5 Initialize a random process X for action exploration;
6 for each time step do
7 for i=1 to n do
8 ρi ← sample from χi(·|s);
9 ai ← sample from πi(·|ρi) + X ;

10 end
11 Execute actions a = (a1, ..., an);
12 Obtain the reward r and the next state s′;
13 D ← D ∪ (s, a, r, s′);
14 s← s′;
15 Q← MGD_Optimizer(Q,D, Q′, π′, χ′);
16 /* Mini-batch gradient descent optimizer for critic. */
17 π, χ← GDA_Optimizer(Q, π, χ);
18 /* Gradient descent ascent optimizer for policies. */
19 Update all target networks: θi′ ← τθi + (1− τ)θi′.
20 end
21 end

during the training process. It returns a Q-value denoting the total expected return given s and a. The state
transition experience is represented by (s, a, r, s′) where s′ is the next state. It is stored in a replay buffer
D for the critic network’s training. We apply "replay buffer" and "target network" techniques (Mnih et al.,
2015). The critic network is trained with a mini-batch gradient descent optimizer in line 15. In line 16, we
use Gradient Descent Ascent (GDA) optimizer (Lin et al., 2020b) to update parameters for each agent’s actor
network and adversary network for the maximin problem maxπ minχ

∑
s0

Pr(s0)Vπ,χ(s0) in Theorem 4.10. A
detailed introduction for the GDA optimizer is included in Appendix E.4.

We have added an adversarial network that inputs the true state and outputs a perturbed state in RMA3C.
This is in contrast to MADDPG and MAPPO, which do not include such a network. Compared to M3DDPG,
which has a target policy network for each agent with outputs for the action space, our adversarial network’s
output pertains to the state space, indicating a different computational load.

E Implementation Detail

All hyperparameters used in experiments are listed in table 3.

E.1 Environments

We have tested our algorithm in environments provided by Lowe et al. (2017) as shown in Fig. 10.

E.1.1 Cooperative navigation (CN)

This is a cooperative task. There are 3 agents and 3 landmarks. Agents want to occupy/cover all the
landmarks. They need to cooperate through physical actions about their preferred landmark to cover. Also,
they will be penalized when collisions happen.

32

Published in Transactions on Machine Learning Research (01/2024)

Table 3: Hyperparameters for our RMA3C algorithm and the baselines.

Parameter RMA3C M3DDPG MADDPG MAPPO
optimizer for the critic network Adam Adam Adam Adam
learning rate for agent policy π 0.01 0.01 0.01 0.0007
learning rate for adversary policy χ 0.001 / / /
discount factor 0.95 0.95 0.95 0.99
replay buffer size 106 106 106 /
activation function Relu Relu Relu Relu
number of hidden layers 2 2 2 1
number of hidden units per layer 64 64 64 64
number of samples per minibatch 1024 1024 1024 1
target network update coefficient τ 0.01 0.01 0.01 /
GDA optimizer steps 20 / / /
radius d 1.0 / / /
uncertainty level λ 0.5 0.5 0.5 0.5
upper boundary u 1.0 1.0 1.0 1.0
lower boundary l -1.0 -1.0 -1.0 -1.0
episodes in training 10k 10k 10k 10k
time steps in one episode 25 25 25 25

Figure 10: Some environments to test our algorithm, including a) Cooperative navigation (CN) b) Exchange
target (ET) c) Keep-away (KA) d) Physical deception (PD).
E.1.2 Exchange target (ET)

This is a cooperative task. There are 2 agents and 3 landmarks. Each agent needs to get to its target
landmark, which is known only by another agent. They have to learn communication and get to landmarks.
Besides, both of them are generous agents that pay more attention to helping others, i.e. rewarded more if
the other agent gets closer to the target landmark.

33

Published in Transactions on Machine Learning Research (01/2024)

E.1.3 Keep-away (KA)

This is a competitive task. There is 1 agent, 1 adversary, and 1 landmark. The agent knows the position of
the target landmark and wants to reach it. The adversary does not know the target landmark and wants to
prevent the agent from reaching the target by pushing them away or occupying the target temporarily.

E.1.4 Physical deception (PD)

This is a mixed cooperative and competitive task. There are 2 collaborative agents, 2 landmarks including
a target, and 1 adversary. Both the collaborative agents and the adversary want to reach the target, but
only collaborative agents know the correct target. The collaborative agents should learn a policy to cover all
landmarks so that the adversary does not know which one is the true target.

E.2 Baselines

We compare the performance of our algorithm with MADDPG (Lowe et al., 2017), M3DDPG (Li et al., 2019),
and MAPPO (Yu et al., 2022) and follow their open-source implementation. We have a brief introduction of
these methods in the following sections. There is no robustness considered in MADDPG and MAPPO. The
M3DDPG considers the robustness of training partner’s policies, but it does not consider state uncertainty.
The MAPPO is the multi-agent version of the Proximal Policy Optimization (PPO), a popular policy gradient
algorithm. Because MAPPO only works in fully cooperative tasks, we only report its results in cooperative
navigation and exchange target. Note that MAPPO is also used in Guo et al. (2020) but they do not provide
an open-source implementation. Therefore, we select the latest implementation in Yu et al. (2022) with the
open-source code.

E.3 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

It is difficult to apply single-agent RL algorithms directly to the multi-agent case because the environment’s
state transition is also influenced by the policy of other agents and it is non-stationary from a single agent’s
view. To alleviate this problem and stabilize training, the MADDPG algorithm is proposed using a centralized
Q function that has global state and global action information (Lowe et al., 2017). It assumes all agents are
self-interested and every agent’s objective is to maximize its own total expected return. The objective for
agent i is J(θi) = E[Ri] and its gradient is

∇θiJ(θi) = (61)
Ex,a∼D

[
∇θiµi(oi)∇aiQi(x, a1, ..., an)|ai=µi(oi)

]
,

where Qi(x, a1, ..., an) is a centralized action-value function, x = (o1, . . . , on), and oi represents agent
i’s observation. The experience replay buffer D contains transition experience x, a1, ..., an,x′, r1, ..., rn to
decorrelate data. The centralized Qi can be trained using the Bellman loss:

L(θi) = Ex,a,r,x′∼D[y −Qi(x, a1, ..., an)]2,
y = ri + γQi′(x′, a1′, ..., an′)|aj′=µj′(oj), (62)

where Qi′ is the target network whose parameters are copied from Q with a delay to stabilize the moving
target. Note that this algorithm adopts a centralized training and decentralized execution paradigm. When
testing, each agent can only access its local observation to select actions.

In M3DDPG (Li et al., 2019), the uncertainty from the training partner’s policies is considered: all other
partners are considered as adversaries that select actions to minimize the total expected return of the
training agent. In other words, when updating both actor and critic, they select training partner’s actions by
aj ̸=i = arg minaj ̸=i Qi(x, a1, ..., an).

34

Published in Transactions on Machine Learning Research (01/2024)

E.4 Gradient Descent Ascent (GDA)

Gradient Descent Ascent (GDA) (Lin et al., 2020b) is currently one widely-used algorithm for solving the
following minimax optimization problem:

min
x

max
y

f(x, y). (63)

GDA simultaneously performs gradient descent update on the variable x and gradient ascent update on the
variable y according to (64) with step sizes ηx and ηy.

xt+1 = xt − ηx∇xf(xt, yt),
yt+1 = yt + ηy∇yf(xt, yt). (64)

It has a variety of variants to accommodate different types of geometries of the minimax problem, such as
convex-concave geometry, nonconvex-concave geometry, nonconvex-nonconcave geometry, etc.

Figure 11: Our RMA3C algorithm compared with several baseline algorithms during the training process. The
results showed that our RMA3C algorithm outperforms the baselines, achieving higher mean episode rewards
and displaying greater robustness to state perturbations. The baselines were trained under either random
state perturbations or a well-trained adversary policy χ∗ (adversaries that are trained for the maximum
training episodes in RMA3C). Overall, our RMA3C algorithm achieved up to 58.46% higher mean episode
rewards than the baselines.

E.5 Training Comparison Under different Perturbations

We first compare our algorithm with baselines during the training process to show that our RMA3C algorithm
can outperform baselines to get higher mean episode rewards under different state perturbations. Note
that our RMA3C algorithm has a built-in adversary to perturb states, so we do not train it under random
state perturbations. Comparing RMA3C to other baselines with different state perturbations, the RMA3C
gets higher mean episode rewards. It shows our RMA3C algorithm is more robust under different state
perturbations. Comparing each baseline with random state perturbations to the same baseline with the
well-trained adversary policy χ∗, we can see the adversary trained by the RMA3C is more powerful than
the random state perturbations. Because the adversary policy χ∗ intentionally selects state perturbations to
minimize agents’ total expected return. The mean episode reward of the last 1000 episodes during training
is shown in Table 4. Our RMA3C algorithm achieves up to 58.46% higher mean episode rewards than the
baselines under different state perturbations.

E.6 Cooperative Navigation With 6 Agents

We compare our RMA3C algorithm with baselines in the cooperative navigation scenario with more agents
added. The original cooperative navigation environment has 3 agents and the training results are shown in
Fig. 4. We show the training results with 6 agents in Fig. 12. After increasing the total number of agents

35

Published in Transactions on Machine Learning Research (01/2024)

Table 4: Mean episode reward of the last 1000 episodes during the training. Our RMA3C algorithm achieves
up to 58.46% higher mean episode rewards than the baselines. The corresponding figure is 11, and it is also
included in the main content.

CN ET KA
RMA3C (ours) -401.7 -47.02 -8.93

MADDPG w/ N -506.48 -63.76 -13.76
M3DDPG w/ N -506.54 -61.71 -13.45
MAPPO w/ N -569.07 -94.28 -

MADDPG w/ χ∗ -548.80 -77.01 -16.30
M3DDPG w/ χ∗ -547.99 -75.87 -16.26
MAPPO w/ χ∗ -585.83 -113.19 -

Figure 12: Our RMA3C algorithm compared with baselines during the training process in the cooperative
navigation scenario with 6 agents added. Our algorithm gets higher mean episode rewards in the environment
with an increased agent number.
in the environment, our RMA3C algorithm still gets higher mean episode rewards than baselines under
adversarial state perturbations.

We also test the learned policies in the 6-agent Cooperative Navigation (CN) environment to show our
RMA3C policy is more robust under adversarial state perturbations. During testing, the mean episode
rewards are averaged across 2000 episodes and 10 test runs for each algorithm. We put all the well-trained
agents using different algorithms into the 6-agent CN environment with well-trained adversary policies χ∗

to perturb states. The result is shown in Table 5. Our RMA3C policy achieves up to 9.57% higher mean
episode reward than the baselines with well-trained adversarial state perturbations. The result shows that our
RMA3C algorithm achieves higher robustness for a multi-agent system under adversarial state perturbations.

F Discussions and Future Work

In this section, we add several discussions of our work as a first attempt to study different solution concepts
of the SAMG problem. We also point out several future directions for the SAMG problem.

F.1 GDA Convergence

In our RMA3C algorithm, we use Gradient Descent Ascent (GDA) optimizer (Lin et al., 2020b) to update
parameters for each agent’s actor network and the adversary network. Each agent updates the actor network to
maximize the worst-case expected state value in Definition 4.8, while the corresponding adversary updates the
adversary network to minimize the worst-case expected state value. How to solve a non-convex non-concave
minimax problem is a very challenging and not yet well-solved problem. To the best of our knowledge, the
GDA optimizer is currently one of the most widely used and accepted optimizers for this type of problem,

36

Published in Transactions on Machine Learning Research (01/2024)

Table 5: Mean episode rewards of 2000 episodes during testing under well-trained adversarial state perturba-
tions in the cooperative navigation environment with 6 agents. Our RMA3C policy achieves up to 9.57%
higher mean episode reward than the baselines with well-trained χ∗.

Environment CN with 6 agents
MADDPG w/χ∗ -3405.274 ± 66.18
M3DDPG w/χ∗ -3452.22 ± 80.16
MAPPO w/χ∗ -3121.90 ± 18.49
RMA3C w/χ∗ -3079.37 ± 16.16

though it is not guaranteed to always converge (Jin et al., 2020; Razaviyayn et al., 2020; Lin et al., 2020b).
Our RMA3C algorithm with GDA optimizer shows performance improvement in terms of policy robustness
in our experiments. Note that we only use the GDA optimizer as a tool in our algorithm by leveraging
the existing literature on solving non-convex non-concave minimax problems. Future advances of numerical
algorithms and solvers for this kind of minimax problem will also benefit our algorithm by replacing the GDA
optimizer with new advances.

F.2 Non-Markovian Policy

In this work, we give the first attempt to focus on the Markovian policy under adversarial state perturbations.
Dealing with the non-Markovian policy will significantly complicate the problem. We are aware of the
suboptimality of Markovian policies, however, considering the computational cost of the non-Markovian
policy of MARL, we decide to focus on Markovian policies in this work for computational tractability.
Moreover, as shown in Proposition 3.2, our SAMG problem is different from a Dec-POMDP. Considering
a non-Markovian policy based on the observation-action history may not give an advantage to the agents.
For example, for the two-agent two-state game in Fig. 8, if the adversary randomly perturbs the state with
χi(s1|s2) = 0.5 for i = 1, 2, then the agents still only have a 50% chance to guess the true state even with
observation-action history. Considering another example for the two-agent two-state game in Fig. 8, if the
adversary perturbs all states to state s1 with χi(s1|s2) = 1 and χi(s1|s1) = 1 for i = 1, 2, then the agents
cannot get extra information for the true state even with observation-action history. We leave the formal
analysis of non-Markovian, non-stationary policy as future work.

F.3 Non-collaborative Game

In the problem formulation, we consider a collaborative game, where all agents share one stage-wise reward
function. The new objective for the SAMG, the worst-case expected state value under state perturbations, is
well-defined as proved in Theorem 4.11. For non-collaborative games, if each agent has its own reward function,
and adversary i wants to minimize the total expected return of agent i, then for a fixed agent policy π, the n
adversaries are playing a Markov game. In this case, only the Nash equilibrium exists among n adversaries,
but optimal adversary policy may not exist. Therefore, for non-collaborative games, the worst-case expected
state value is not well-defined. Even though the worst-case expected state value is not well-defined for
non-collaborative games, the experiment results of the competitive games and mixed-cooperative-competitive
game environments in Table 1 also show that our RMA3C algorithm can get larger mean episode rewards in
non-collaborative games under adversarial state perturbations. Hence, our RMA3C algorithm can increase
the robustness of policies of non-collaborative games in empirical experiments. We leave the formal analysis
of the non-collaborative games as future work.

37

	Introduction
	Related Work
	State-Adversarial Markov Game (SAMG)
	Solution Concepts
	Optimal Adversary Policy
	State-robust Totally Optimal Agent Policy
	Robust Total Nash Equilibrium
	Robust Agent Policy

	Experiments
	Baselines
	Comparison Results

	Conclusion
	Comparison with Dec-POMDP and Markov Games
	Comparison with Dec-POMDP
	SAMG cannot be solved by Dec-POMDP: Two-Agent Two-State Game Example
	Comparison with Markov Games

	Optimal Adversary Policy and Optimal Agent Policy
	Optimal Agent Policy Without Adversaries
	A Stochastic Policy With Adversaries
	Deterministic Policies With Adversaries
	Optimal Adversary Policy
	Optimal Agent Policy With Adversaries

	Stage-wise Equilibrium, Robust Total Nash Equilibrium, and Robust Agent Policy
	Unique Robust State Value Function
	Existence of the Stage-wise Equilibrium
	Non-existence of Robust Total Nash Equilibrium
	Existence of Robust Agent Policy

	Robust Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm
	Implementation Detail
	Environments
	Cooperative navigation (CN)
	Exchange target (ET)
	Keep-away (KA)
	Physical deception (PD)

	Baselines
	Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
	Gradient Descent Ascent (GDA)
	Training Comparison Under different Perturbations
	Cooperative Navigation With 6 Agents

	Discussions and Future Work
	GDA Convergence
	Non-Markovian Policy
	Non-collaborative Game

