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ABSTRACT

In most practical settings and theoretical analyses, one assumes that a model
can be trained until convergence. However, the growing complexity of machine
learning datasets and models may violate such assumptions. Indeed, current ap-
proaches for hyper-parameter tuning and neural architecture search tend to be
limited by practical resource constraints. Therefore, we introduce a formal set-
ting for studying training under the non-asymptotic, resource-constrained regime,
i.e., budgeted training. We analyze the following problem: “given a dataset, algo-
rithm, and fixed resource budget, what is the best achievable performance?” We
focus on the number of optimization iterations as the representative resource. Un-
der such a setting, we show that it is critical to adjust the learning rate schedule
according to the given budget. Among budget-aware learning schedules, we find
simple linear decay to be both robust and high-performing. We support our claim
through extensive experiments with state-of-the-art models on ImageNet (image
classification), Kinetics (video classification), MS COCO (object detection and
instance segmentation), and Cityscapes (semantic segmentation). We also ana-
lyze our results and find that the key to a good schedule is budgeted convergence,
a phenomenon whereby the gradient vanishes at the end of each allowed budget.
We also revisit existing approaches for fast convergence and show that budget-
aware learning schedules readily outperform such approaches under (the practical
but under-explored) budgeted training setting.

1 INTRODUCTION

Deep neural networks have made an undeniable impact in advancing the state-of-the-art for many
machine learning tasks. Improvements have been particularly transformative in computer vi-
sion (Huang et al., 2017b; He et al., 2017). Much of these performance improvements were enabled
by an ever-increasing amount of labeled visual data (Russakovsky et al., 2015; Kuznetsova et al.,
2018) and innovations in training architectures (Krizhevsky et al., 2012; He et al., 2016).

However, as training datasets continue to grow in size, we argue that an additional limiting factor is
that of resource constraints for training. Conservative prognostications of dataset sizes – particularly
for practical endeavors such as self-driving cars (Bojarski et al., 2016), assistive medical robots
(Taylor et al., 2008), and medical analysis (Fatima & Pasha, 2017) – suggest one will train on
datasets orders of magnitude larger than those that are publicly available today. Such planning
efforts will become more and more crucial, because in the limit, it might not even be practical to
visit every training example before running out of resources (Bottou, 1998; Rai et al., 2009).

We note that resource-constrained training already is implicitly widespread, as the vast majority of
practitioners have access to limited compute. This is particularly true for those pursuing research
directions that require a massive number of training runs, such as hyper-parameter tuning (Li et al.,
2017) and neural architecture search (Zoph & Le, 2017; Cao et al., 2019; Liu et al., 2019).

Instead of asking “what is the best performance one can achieve given this data and algorithm?”,
which has been the primary focus in the field so far, we decorate this question with budgeted training
constraints as follows: “what is the best performance one can achieve given this data and algorithm
within the allowed budget?”. Here, the allowed budget refers to a limitation on the total time,
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Figure 1: We formalize the problem of budgeted training, in which one maximizes performance
subject to a fixed training budget. We find that a simple and effective solution is to adjust the learning
rate schedule accordingly and anneal it to 0 at the end of the training budget. This significantly
outperforms off-the-shelf schedules, particularly for small budgets. This plot shows several training
schemes (solid curves) for ResNet-18 on ImageNet. The vertical axis in the right plot is normalized
by the validation accuracy achieved by the full budget training. The dotted green curve indicates an
efficient way of trading off computation with performance.

compute, or cost spent on training. More specifically, we focus on limiting the number of iterations.
This allows us to abstract out the specific constraint without loss of generality since any one of the
aforementioned constraints could be converted to a finite iteration limit. We make the underlying
assumption that the network architecture is constant throughout training, though it may be interesting
to entertain changes in architecture during training (Rusu et al., 2016; Wang et al., 2017).

Much of the theoretical analysis of optimization algorithms focuses on asymptotic convergence and
optimality (Robbins & Monro, 1951; Nemirovski et al., 2009; Bottou et al., 2018), which implicitly
makes use of an infinite compute budget. That said, there exists a wide body of work (Zinkevich,
2003; Kingma & Ba, 2015; Reddi et al., 2018; Luo et al., 2019) that provide performance bounds
which depend on the iteration number, which apply even in the non-asymptotic regime. Our work
differs in its exploration of maximizing performance for a fixed number of iterations. Importantly,
the globally optimal solution may not even be achievable in our budgeted setting.

Given a limited budget, one obvious strategy might be data subsampling (Bachem et al., 2017; Sener
& Savarese, 2018). However, we discover that a much more effective, simpler, and under-explored
strategy is adopting budget-aware learning rate schedules — if we know that we are limited to a
single epoch, one should tune the learning schedule accordingly. Such budget-aware schedules have
been proposed in previous work (Feyzmahdavian et al., 2016; Lian et al., 2017), but often for a
fixed learning rate that depends on dataset statistics. In this paper, we specifically point out linearly
decaying the learning rate to 0 at the end of the budget, may be more robust than more complicated
strategies suggested in prior work. Though we are motivated by budget-aware training, we find that
a linear schedule is quite competitive for general learning settings as well. We verify our findings
with state-of-the-art models on ImageNet (image classification), Kinetics (video classification), MS
COCO (object detection and instance segmentation), and Cityscapes (semantic segmentation).

We conduct several diagnostic experiments that analyze learning rate decays under the budgeted
setting. We first observe a statistical correlation between the learning rate and the full gradient
magnitude (over the entire dataset). Decreasing the learning rate empirically results in a decrease
in the full gradient magnitude. Eventually, as the former goes to zero, the latter vanishes as well,
suggesting that the optimization has reached a critical point, if not a local minimum1. We call
this phenomenon budgeted convergence and we find it generalizes across budgets. On one hand,
it implies that one should decay the learning rate to zero at the end of the training, even given a
small budget. On the other hand, it implies one should not aggressively decay the learning rate
early in the optimization (such as the case with an exponential schedule) since this may slow down
later progress. Finally, we show that linear budget-aware schedules outperform recently-proposed
fast-converging methods that make use of adaptive learning rates and restarts.

Our main contributions are as follows:

• We introduce a formal setting for budgeted training based on training iterations and provide
an alternative perspective for existing learning rate schedules.

1Whether such a solution is exactly a local minimum or not is debatable (see Sec 2).
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• We discover that budget-aware schedules are handy solutions to budgeted training. Specif-
ically, our proposed linear schedule is more simple, robust, and effective than prior ap-
proaches, for both budgeted and general training.
• We provide an empirical justification of the effectiveness of learning rate decay based on

the correlation between the learning rate and the full gradient norm.

2 RELATED WORK

Learning rates. Stochastic gradient descent dates back to Robbins & Monro (1951). The core is its
update step: wt = wt−1 − αtgt, where t (from 1 to T ) is the iteration, w are the parameters to be
learned, g is the gradient estimator for the objective function2 F , and αt is the learning rate, also
known as step size. Given base learning rate α0, we can define the ratio βt = αt/α0. Then the set of
{βt}Tt=1 is called the learning rate schedule, which specifies how the learning rate should vary over
the course of training. Our definition differs slighter from prior art as it separates the base learning
rate and learning rate schedule. Learning rates are well studied for (strongly) convex cost surfaces
and we include a brief review in Appendix H.

Learning rate schedule for deep learning. In deep learning, there is no consensus on the exact
role of the learning rate. Most theoretical analysis makes the assumption of a small and constant
learning rate (Du et al., 2018a;b; Hardt et al., 2016). For variable rates, one hypothesis is that large
rates help move the optimization over large energy barriers while small rates help converge to a
local minimum (Loshchilov & Hutter, 2016; Huang et al., 2017a; Kleinberg et al., 2018). Such
hypothesis is questioned by recent analysis on mode connectivity, which has revealed that there
does exist a descent path between solutions that were previously thought to be isolated local minima
(Garipov et al., 2018; Dräxler et al., 2018; Gotmare et al., 2019). Despite a lack of theoretical
explanation, the community has adopted a variety of heuristic schedules for practical purposes, two
of which are particularly common:

• step decay: drop the learning rate by a multiplicative factor γ after every d epochs. The
default for γ is 0.1, but d various significantly across tasks.

• exponential: βt = γt. There is no default parameter for γ and it requires manual tuning.

State-of-the-art codebases for standard vision benchmarks tend to employ step decay (Xie & Tu,
2015; Huang et al., 2017b; He et al., 2017; Carreira & Zisserman, 2017; Wang et al., 2018; Yin
et al., 2019; Ma et al., 2019), whereas exponential decay has been successfully used to train Inception
networks (Szegedy et al., 2015; 2016; 2017). In spite of their prevalence, these heuristics have not
been well studied. Recent work proposes several new schedules (Loshchilov & Hutter, 2016; Smith,
2017; Hsueh et al., 2019), but much of this past work limits their evaluation to CIFAR and ImageNet.
For example, SGDR (Loshchilov & Hutter, 2016) advocates for learning-rate restarts based on the
results on CIFAR, however, we find the unexplained form of cosine decay in SGDR is more effective
than the restart technique. Notably, Mishkin et al. (2017) demonstrate the effectiveness of linear rate
decay with CaffeNet on downsized ImageNet. In our work, we rigorously evaluate on 5 standard
vision benchmarks with state-of-the-art networks and under various budgets. Gotmare et al. (2019)
also analyze learning rate restarts and in addition, the warm-up technique, but do not analyze the
specific form of learning rate decay.

Adaptive learning rates. Adaptive learning rate methods (Tieleman & Hinton, 2012; Kingma &
Ba, 2015; Reddi et al., 2018; Luo et al., 2019) adjust the learning rate according to the local statistics
of the cost surface. Despite having better theoretical bounds under certain conditions, they do not
generalize as well as momentum SGD for benchmark tasks that are much larger than CIFAR (Wilson
et al., 2017). We offer new insights by evaluating them under the budgeted setting. We show fast
descent can be trivially achieved through budget-aware schedules and aggressive early descent is not
desirable for achieving good performance in the end.

2Note that g can be based on a single example, a mini-batch, the full training set, or the true data distribution.
In most practical settings, momentum SGD is used, but we omit the momentum here for simplicity.
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3 LEARNING RATES AND BUDGETS

3.1 BUDGET-AWARE SCHEDULES

Learning rate schedules are often defined assuming unlimited resources. As we argue, resource
constraints are an undeniable practical aspect of learning. One simple approach for modifying an
existing learning rate schedule to a budgeted setting is early-stopping. Fig 1 shows that one can
dramatically improve results of early stopping by more than 60% by tuning the learning rate for the
appropriate budget. To do so, we simply reparameterize the learning rate sequence with a quantity
not only dependent on the absolute iteration t, but also the training budget T :

Definition (Budge-Aware Schedule). Let T be the training budget, t be the current step, then a
training progress p is t/T . A budget-aware learning rate schedule is

βp : p 7→ f(p), (1)

where f(p) is the ratio of learning rate at step t to the base learning rate α0.

At first glance, it might be counter-intuitive for a schedule to not depend on T . For example, for a
task that is usually trained with 200 epochs, training 2 epochs will end up at a solution very distant
from the global optimal no matter the schedule. In such cases, conventional wisdom from convex
optimization suggests that one should employ a large learning rate (constant schedule) that efficiently
descends towards the global optimal. However, in the non-convex case, we observe empirically that
a better strategy is to systematically decay the learning rate in proportion to the total iteration budget.

Budge-Aware Conversion (BAC). Given a particular rate schedule βt = f(t), one simple method
for making it budget-aware is to rescale it, i.e., βp = f(pT0), where T0 is the budget used for the
original schedule. For instance, a step decay for 90 epochs with two drops at 30 epoch and 60 epoch
will convert to a schedule that drops at 1/3 and 2/3 training progress. Analogously, an exponential
schedule 0.99t for 200 epochs will be converted into (0.99200)p.

It is worth noting that such an adaptation strategy already exists in well-known codebases (He et al.,
2017) for training with limited schedules. Our experiments confirm the effectiveness of BAC as a
general strategy for converting many standard schedules to be budget-aware (Tab 1). For our re-
maining experiments, we regard BAC as a known technique and apply it to our baselines by default.

Budget 1% 5% 10% 25% 50% 100%

exp .99 .5848 .8030 .8352 .8888 .9072 .9320
BAC .6086 .8560 .8996 .9228 .9272 N/A

step-d1 .5710 .8058 .8422 .8702 .8746 .9434
BAC .5880 .8662 .9066 .9312 .9392 N/A

Table 1: Effectiveness of budget-aware conversion (BAC) on CIFAR-10 for image classification
with ResNet-18 (He et al., 2016). The numbers are classification accuracy on the validation set.
The 100% budget refers to training for 200 epochs. “step-d1” denotes step decay dropping once at
training progress 50%. Please refer to Sec 4.1 for the complete setup.

Recent schedules: Interestingly, several recent learning rate schedules are implicitly defined as a
function of progress p = t

T , and so are budget-aware by our definition:

• poly (Jia et al., 2014): βp = (1−p)γ . No parameter other than γ = 0.9 is used in published
work.
• cosine (Loshchilov & Hutter, 2016): βp = η + 1

2 (1− η)(1 + cos(πp)). η specify a lower
bound for the learning rate, which defaults to zero.

• htd (Hsueh et al., 2019): βp = η + 1
2 (1 − η)(1 − tanh(L + (U − L)p)). Here η has the

same representation as in cosine. It is reported that L = −6 and U = 3 performs the best.

The poly schedule is a feature in Caffe (Jia et al., 2014) and adopted by the semantic segmentation
community (Chen et al., 2018; Zhao et al., 2017). The cosine schedule is a byproduct in work that
promotes learning rate restarts (Loshchilov & Hutter, 2016). The htd schedule is recently proposed
(Hsueh et al., 2019), which however, contains only limited empirical evaluation. None of these ana-
lyze their budget-aware property or provides intuition for such forms of decay. These schedules were
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Budget 10%
Budget 25%
Budget 50%
Budget 100%

Budget 1% 5% 10% 25% 50% 100%

const .5830 .7968 .8410 .8662 .8726 .8790

exp .95 .4796 .7554 .8574 .9140 .9294 .9458
exp .97 .5546 .8222 .8556 .9112 .9456 .9552
exp .99 .6086 .8560 .8996 .9228 .9272 .9320

step-d1 .5806 .8648 .9066 .9318 .9408 .9434
step-d2 .5544 .8328 .9042 .9338 .9464 .9534
step-d3 .4882 .7942 .8872 .9260 .9436 .9532

htd .6430 .8878 .9224 .9434 .9510 .9552

cosine .6308 .8856 .9222 .9444 .9530 .9554
poly .6584 .8912 .9244 .9416 .9494 .9534
linear .6654 .8920 .9218 .9412 .9546 .9562

Figure 2: We normalize various learning rate schedules by training progress (top-left). Our solution
to budgeted training is simple and universal — we decrease the learning rate linearly across the entire
given budget (bottom-left). We compare these learning rate schedules on CIFAR-10 (right). The
1st, 2nd and the 3rd place under each budget are color coded. The number here is the classification
accuracy and each one is the median of 3 independent runs. “step-dx” denotes decay x times at even
intervals with γ = 0.1. For “exp” and “step” schedules, BAC (Sec 3.1) is applied in place of early
stopping. We can see linear schedule surpasses other schedules under almost all budgets.

treated as “yet another schedule”. However, our definition of budget-aware makes these schedules
stand out as a general family.

3.2 LINEAR SCHEDULE

Inspired by existing budget-aware schedules, we borrow an even simpler schedule from the simu-
lated annealing literature (Kirkpatrick et al., 1983; McAllester et al., 1997; Nourani & Andresen,
1998)3:

linear : βp = 1− p. (2)

In Fig 2 (left), we compare linear schedule with various existing schedules under the budget-aware
setting. Note that this linear schedule is completely parameter-free. This property is particularly
desirable in budgeted training, where little budget exists for tuning such a parameter. The excellent
generalization of linear schedule across budgets (shown in the next section) might imply that the
cost surface of deep learning is to some degree self-similar. Note that a linear schedule, together
with other recent budget-aware schedules, produces a constant learning rate in the asymptotic limit
i.e., limT→∞(1 − t/T ) = 1. Consequently, such practically high-performing schedules tend to be
ignored in theoretical convergence analysis (Robbins & Monro, 1951; Bottou et al., 2018).

4 EXPERIMENTS

In this section, we first compare linear schedule against other existing schedules on the small CIFAR-
10 dataset and then on a broad suite of vision benchmarks. The CIFAR-10 experiment is designed
to extensively evaluate each learning schedule while the vision benchmarks are used to verify the
observation on CIFAR-10. We provide important implementation settings in the main text while

3A link between SGD and simulated annealing has been recognized decades ago, where learning rate plays
the role of temperature control (Bottou, 1991). Therefore, cooling schedules in simulated annealing can be
transferred into learning rate schedules for SGD.
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Budget 1% 5% 10% 25% 50% 100% 1% 5% 10% 25% 50% 100%
Image classification on ImageNet with ResNet Object detection on COCO with Mask-RCNN

step .2033 .5205 .5959 .6558 .6798 .6939 .0493 .2005 .2539 .3144 .3528 .3763
linear .3080 .5721 .6231 .6632 .6812 .6932 .0514 .2092 .2627 .3215 .3574 .3794

Video classification on Kinetics with I3D Instance segmentation on COCO with Mask-RCNN
step .2952 .4966 .5681 .6449 .6858 .7124 .0487 .1926 .2392 .2906 .3198 .3399
linear .3296 .5304 .5964 .6638 .6998 .7215 .0511 .1988 .2460 .2943 .3242 .3395

Table 2: Robustness of linear schedule across budgets, tasks and architectures. Linear schedule
significantly outperforms step decay given limited budgets. Note that the off-the-shelf decay for
each dataset has different parameters optimized for the specific dataset. For all step decay schedules,
BAC (Sec 3.1) is applied to boost their budgeted performance. To reduce stochastic noise, we report
the median of 3 independent runs for all the numbers. See Sec 4.2 for the metrics of each task (the
higher the better for all tasks).

leaving the rest of the details to Appendix I. In addition, we provide in Appendix A the evaluation
with a large number of random architectures in the setting of neural architecture search.

4.1 CIFAR

CIFAR-10 (Krizhevsky & Hinton, 2009) is a dataset that contains 70,000 tiny images (32 × 32).
Given its small size, it is widely used for validating novel architectures. We follow the standard
setup for dataset split (Huang et al., 2017b), which is randomly holding out 5,000 from the 50,000
training images to form the validation set. For each budget, we report the best validation accuracy
among epochs up till the end of the budget. We use ResNet-18 (He et al., 2016) as the backbone
architecture and utilize SGD with base learning rate 0.1, momentum 0.9, weight decay 0.0005 and
a batch size 128.

We study learning schedules in several groups: (a) constant (equivalent to not using any schedule).
(b) & (c) exponential and step decay, both of which are commonly adopted schedules. (d) htd (Hsueh
et al., 2019), a quite recent addition and not yet adopted in practice . We take the parameters with
the best-reported performance (−6, 3). Note that this schedule decays much slower initially than
the linear schedule (Fig 2). (e) the smooth-decaying schedules (small curvature), which consists of
cosine (Loshchilov & Hutter, 2016), poly (Jia et al., 2014) and the linear schedule.

As shown in Fig 2 (right), the group of schedules that are budget-aware by our definition, outperform
other schedules under all budgets. The linear schedule in particular, performs best most of the time
including the typical full budget case. Noticeably, when exponential schedule is well-tuned for this
task (γ = 0.97), it fails to generalize across budgets. In comparison, the budget-aware group does
not require tuning but generalizes much better.

Within the budget-aware schedules, cosine, poly and linear achieve very similar results. This is
expected due to the fact that their numerical similarity at each step (Fig 2). These results might
indicate that the key for a robust budgeted-schedule is to decay smoothly to zero. Based on these
observations and results, we suggest linear schedule should be the “go-to” budget-aware schedule.

4.2 VISION BENCHMARKS

In the previous section, we showed that linear schedule achieves excellent performance on CIFAR-
10, in a relatively toy setting. In this section, we study the comparison and its generalization to
practical large scale datasets with various state-of-the-art architectures. In particular, we set up
experiments to validate the performance of linear schedule across tasks and budgets.

Ideally, one would like to see the performance of all schedules in Fig 2 on vision benchmarks. Due
to resource constraints, we include only the off-the-shelf step decay and the linear schedule. Note
our CIFAR-10 experiment suggests that using cosine and poly will achieve similar performance as
linear, which are already budget-aware schedules given our definition, so we focus on linear schedule
in this section. More evaluation between cosine, poly and linear can be found in Appendix A & E.

We consider the following suite of benchmarks spanning many flagship vision challenges:
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Image classification on ImageNet. ImageNet (Russakovsky et al., 2015) is a widely adopted stan-
dard for image classification task. We use ResNet-18 (He et al., 2016) and report the top-1 accuracy
on the validation set with the best epoch. We follow the step decay schedule used in (Huang et al.,
2017b; PyTorch, 2019), which drops twice at uniform interval (γ = 0.1 at p ∈ { 13 ,

2
3}). We set the

full budget to 100 epochs (10 epochs longer than typical) for easier computation of the budget.

Video classification on Kinetics with I3D. Kinetics (Kay et al., 2017) is a large-scale dataset of
YouTube videos focusing on human actions. We use the 400-category version of the dataset and a
variant of I3D (Carreira & Zisserman, 2017) with training and data processing code publicly avail-
able (Wang et al., 2018). Top-1 accuracy of the final model is used for evaluating the performance.
We follow the 4-GPU 300k iteration schedule (Wang et al., 2018), which features a step decay that
drops 2 times with γ = 0.1 at p ∈ { 12 ,

5
6}.

Object detection and instance segmentation on MS COCO. MS COCO (Lin et al., 2014) is a
widely recognized benchmark for object detection and instance segmentation. We use the standard
COCO AP (averaged over IoU thresholds) metric for evaluating bounding box output and instance
mask output. The AP of the final model on the validation set is reported in our experiment. We
use the challenge winner Mask R-CNN (He et al., 2017) with a ResNet-50 backbone and follows its
setup. For training, we adopt the 1x schedule (90k iterations), and the off-the-shelf (He et al., 2017)
step decay that drops 2 times with γ = 0.1 at p ∈ { 23 ,

8
9}.

In addition, we include results on Cityscapes (Cordts et al., 2016) for semantic segmentation in
Appendix E. Note that all off-the-shelf methods for these vision benchmarks employ SGD with
momentum 0.9 and we adopt the same setting in our experiments.

If we factor in the dimension of budgets, Tab 2 shows a clear advantage of linear schedule over step
decay. For example, on ImageNet, linear achieves 51.5% improvement at 1% of the budget. Next,
we consider the full budget setting, where we simply swap out the off-the-shelf schedule with linear
schedule. We observe better (video classification) or comparable (other tasks) performance after the
swap. This is surprising given the fact that linear schedule is parameter-free and thus not optimized
for the particular task or network.

In summary, the smoothly decaying linear schedule is a simple and effective strategy for budgeted
training. It significantly outperforms traditional step decay given limited budgets, while achieving
comparable performance with the normal full budget setting.

0 50 100 150 200
Epoch

0

2

4

6

8

10

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(a) Constant

0 50 100 150 200
Epoch

0

2

4

6

8

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(b) Step Decay

0 50 100 150 200
Epoch

0

2

4

6

8

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(c) Exponential

0 50 100 150 200
Epoch

0

2

4

6

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(d) Poly

0 5 10 15 20
Epoch

0

2

4

6

8

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(e) Linear 10%

0 25 50 75 100
Epoch

0

2

4

6

8

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(f) Linear 50%

0 50 100 150 200
Epoch

0

2

4

6

8

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(g) Linear 100%

0 25 50 75 100
Training Progress (%)

0

2

4

6

8

Fu
ll 

Gr
ad

ie
nt

 N
or

m

(h) Linear (Across Budgets)

0.07

0.11

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

0.00

0.05

0.10

0.15

Le
ar

ni
ng

 R
at

e

Figure 3: Budgeted convergence: full gradient norm ||g∗t || vanishes over time (color curves) as
learning rate αt (black curves) decays. The first row shows that the dynamics of full gradient norm
correlate with the corresponding learning rate schedule while the second row shows that such phe-
nomena generalize across budgets for budget-aware schedules. Such generalization is most obvious
in plot (h), which overlays the full gradient norm across different budgets. If a schedule does not
decay to 0, the gradient norm does not vanish. For example, if we train a budget-unaware exponen-
tial schedule for 50 epochs (c), the full gradient norm at that time is around 1.5, suggesting this is a
schedule with insufficient final decay of learning rate.
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Schedule Best Progress Schedule Best Progress
const 81.2% ± 16.1% step-d2 90.5% ± 9.0%
linear 98.6% ± 1.6% poly 99.1% ± 1.3%

Table 3: Where does one expect to find the model with the highest validation accuracy within the
training progress? Here we show the best checkpoint location measured in training progress p and
averaged for each schedule across budgets greater or equal than 10% and 3 different runs.

5 DISCUSSION

In this section, we summarize our empirical analysis with a desiderata of properties for effective
budget-aware learning schedules. We highlight those are inconsistent with conventional wisdom
and follow the experimental setup in Sec 4.1 unless otherwise stated.

Desideratum: budgeted convergence. Convergence of SGD under non-convex objectives is mea-
sured by limt→∞ E[||∇F ||2] = 0 (Bottou et al., 2018). Intuitively, one should terminate the op-
timization when no further local improvement can be made. What is the natural counterpart for
“convergence” within a budget? For a dataset of N examples {(xi, yi)}Ni=1, let us write the full
gradient as g∗t = 1

N

∑N
i=1∇F (xi, yi). We empirically find that the dynamics of ||g∗t || over time

highly correlates with the learning rate αt (Fig 3). As the learning rate vanishes for budget-aware
schedules, so does the gradient magnitude. We call this “vanishing gradient” phenomenon budgeted
convergence. This correlation suggests that decaying schedules to near-zero rates (and using BAC)
may be more effective than early stopping. As a side note, budgeted convergence resonates with
classic literature that argues that SGD behaves similar to simulated annealing (Bottou, 1991). Given
that αt and ||g∗t || decrease, the overall update ||−αtgt|| also decreases4. In other words, large moves
are more likely given large learning rates in the beginning, while small moves are more likely given
small learning rates in the end. However, the exact mechanism by which the learning rate influences
the gradient magnitude remains unclear.

Desideratum: don’t waste the budget. Common machine learning practise often produces multi-
ple checkpointed models during a training run, where a validation set is used to select the best one.
Such additional optimization is wasteful in our budgeted setting. Tab 3 summarizes the progress
point at which the best model tends to be found. Step decay produces an optimal model somewhat
towards the end of the training, while linear and poly are almost always optimal at the precise end
of the training. This is especially helpful for state-of-the-art models where evaluation can be expen-
sive. For example, validation for Kinetics video classification takes several hours. Budget-aware
schedules require validation on only the last few epochs, saving additional compute.

4Note that the momentum in SGD is used, but we assume vanilla SGD to simplify the discussion, without
losing generality.
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the full gradient norm ||g∗t || does not vanish (color
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Aggressive early descent. Guided by asymptotic convergence analysis, faster descent of the objec-
tive might be an apparent desideratum of an optimizer. Many prior optimization methods explicitly
call for faster decrease of the objective (Kingma & Ba, 2015; Clevert et al., 2016; Reddi et al.,
2018). In contrast, we find that one should not employ aggressive early descent because large learn-
ing rates can prevent budgeted convergence. Consider AMSGrad (Reddi et al., 2018), an adaptive
learning rate that addresses a convergence issue with the widely-used Adam optimizer (Kingma &
Ba, 2015). Fig 4 (a) shows that while AMSGrad does quickly descend over the training objective, it
still underperforms budget-aware linear schedules over any given training budget. To examine why,
we derive the equivalent rate β̃t for AMSGrad (Appendix B) and show that it is dramatically larger
than our defaults, suggesting the optimizer is too aggressive. We include more adaptive methods for
evaluation in Appendix D.

Warm restarts. SGDR (Loshchilov & Hutter, 2016) explores periodic schedules, in which each
period is a cosine scaling. The schedule is intended to escape local minima, but its effectiveness has
been questioned (Gotmare et al., 2019). Fig 5 shows that SDGR has faster descent but is inferior
to budget-aware schedules for any budget (similar to the adaptive optimizers above). Additional
comparisons can be found in Appendix F. Whether there exists a method that achieves promising
anytime performance and budgeted performance at the same time remains an open question.

6 CONCLUSION

This paper introduces a formal setting for budgeted training. Under this setup, we observe that a sim-
ple linear schedule, or any other smooth-decaying schedules can achieve much better performance.
Moreover, the linear schedule even offers comparable performance on existing visual recognition
tasks for the typical full budget case. In addition, we analyze the intriguing properties of learning
rate schedules under budgeted training. We find that the learning rate schedule controls the gradi-
ent magnitude regardless of training stage. This further suggests that SGD behaves like simulated
annealing and the purpose of a learning rate schedule is to control the stage of optimization.
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Léon Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nı̂mes 91,
Nimes, France, 1991. EC2. URL http://leon.bottou.org/papers/bottou-91c.
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A BUDGETED TRAINING FOR NEURAL ARCHITECTURE SEARCH

A.1 RANK PREDICTION

In the main text, we list neural architecture search as an application of budgeted training. Due
to resource constraint, these methods usually train models with a small budget (10-25 epochs) to
evaluate their relative performance (Cao et al., 2019; Cai et al., 2018; Real et al., 2019). Under
this setting, the goal is to rank the performance of different architectures instead of obtaining the
best possible accuracy as in the regular case of budgeted training. Then one could ask the question
that whether budgeted training techniques help in better predicting the relative rank. Unfortunately,
budgeted training has not been studied or discussed in the neural architecture search literature, it
is unknown how well models only trained with 10 epochs can tell the relative performance of the
same ones that are trained with 200 epochs. Here we conduct a controlled experiment and show
that proper adjustment of learning schedule, specifically the linear schedule, indeed improves the
accuracy of rank prediction.

We adapt the code in (Cao et al., 2019) to generate 100 random architectures, which are obtained
by random modifications (adding skip connection, removing layer, changing filter numbers) on top
of ResNet-18 (He et al., 2017). First, we train these architectures on CIFAR-10 given full budget
(200 epochs), following the setting described in Sec 4.1. This produces a relative rank between
all pairs of random architectures based on the validation accuracy and this rank is considered as
the target to predict given limited budget. Next, every random architecture is trained with various
learning schedules under various small budgets. For each schedule and each budget, this generates
a complete rank. We treat this rank as the prediction and compare it with the target full-budget rank.
The metric we adopt is Kendall’s rank correlation coefficient (τ ), a standard statistics metric for
measuring rank similarity. It is based on counting the inversion pairs in the two ranks and (τ +1)/2
is approximately the probability of estimating the rank correctly for a pair.

We consider the following schedules: (1) constant, it might be possible that no learning rate schedule
is required if only the relative performance is considered. (2) step decay (γ = 0.1, decay at p ∈
{ 13 ,

2
3}), a schedule commonly used both in regular training and neural architecture search (Zoph &

Le, 2017; Pham et al., 2018). (3) cosine, a schedule often used in neural architecture search (Cai
et al., 2018; Real et al., 2019). (4) linear, our proposed schedule. The results of their rank prediction
capability can be seen in Tab 4.

The results suggest that with more budget, we can better estimate the full-budget rank between
architectures. And even if only relative performance is considered, learning rate decay should be
applied. Specifically, smooth-decaying schedule, such as linear or cosine, are preferred over step
decay.

We list some additional details about the experiment. To reduce stochastic noise, each configuration
under both the small and full budget is repeated 3 times and the median accuracy is taken. The full-
budget model is trained with linear schedule, similar results are expected with other schedules as
evidenced by the CIFAR-10 results in the main text (Tab 2). Among the 100 random architectures,
21 cannot be trained, the rest of 79 models have validation accuracy spanning from 0.37 to 0.94, with
the distribution mass centered at 0.91. Such skewed and widespread distribution is the typical case in
neural architecture search. We remove the 21 models that cannot be trained for our experiments. We
take the epoch with the best validation accuracy for each configuration, so the drawback of constant
or step decay not having the best model at the very end does not affect this experiment (see Sec 5).

Epoch (Budget) 1 (0.5%) 2 (1%) 10 (5%) 20 (10%)

const 0.3451 0.4595 0.6720 0.6926
step-d2 0.2746 0.3847 0.6651 0.7279
cosine 0.3211 0.4847 0.7023 0.7563
linear 0.3409 0.4348 0.7398 0.7351

Table 4: Small-budget and full-budget model rank correlation measured in Kendall’s tau. Smooth-
decaying schedules like linear and cosine can more accurately predict the true rank of different
architectures given limited budget.
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Epoch (Budget) 1 (0.5%) 2 (1%) 10 (5%) 20 (10%)

const 0.3892 0.4699 0.6689 0.7061
step-d2 0.4014 0.4780 0.6980 0.7754
cosine 0.4616 0.5498 0.7530 0.8029
linear 0.4759 0.5745 0.7652 0.8192

Table 5: Small-budget validation accuracy averaged across random architectures. Linear schedule
is the most robust under small budgets.

Epoch (Budget) 1 (0.5%) 2 (1%) 10 (5%) 20 (10%)

const 0.4419 0.5343 0.7550 0.8015
step-d2 0.4590 0.5455 0.7894 0.8848
cosine 0.5326 0.6265 0.8615 0.9087
linear 0.5431 0.6626 0.8644 0.9305

Table 6: Tab 5 normalized by the full-budget accuracy and then averaged across architectures. Linear
schedule achieves solutions closer to their full-budget performance than the rest of schedules under
small budgets.

A.2 BUDGETED PERFORMANCE ACROSS ARCHITECTURES

To reinforce our claim that linear schedule generalizes across different settings, we compare bud-
geted performance of various schedules on random architectures generated in the previous section.
We present two versions of the results. The first is to directly average the validation accuracy of
different architecture with each schedule and under each budget (Tab 5). The second is to normalize
by dividing the budgeted accuracy by the full-budget accuracy of the same architecture and then
average across different architectures. The second version assumes all architectures enjoy equal
weighting. Under both cases, linear schedule is the most robust schedule across architectures under
various budgets.

B EQUIVALENT LEARNING RATE FOR AMSGRAD

In Sec 5, we use equivalent learning rate to compare AMSGrad (Reddi et al., 2018) with momentum
SGD. Here we present the derivation for the equivalent learning rate β̃t.

Let η1, η2 and ε be hyper-parameters, then the momentum SGD update rule is:

mt = η1mt−1 + (1− η1)gt, (3)

wt = wt−1 − α(1)
0 βtmt, (4)

while the AMSGrad update rule is:

mt = η1mt−1 + (1− η1)gt, (5)

vt = η2vt−1 + (1− η2)g2t , (6)

m̂t =
mt

1− ηt1
, (7)

v̂t =
vt

1− ηt2
, (8)

v̂max
t = max(v̂max

t , v̂t) (9)

wt = wt−1 − α(2)
0

m̂t√
v̂max
t + ε

. (10)

Comparing equation 4 with 10, we obtain the equivalent learning rate:

β̃t =
α
(2)
0

α
(1)
0

1

(1− ηt1)(
√
v̂max
t + ε)

, (11)
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Budget 1% 5% 10% 25% 50% 100%

Subset .3834 .6446 .7848 .8586 .9234 N/A
Full .5544 .8328 .9042 .9338 .9464 .9534

Table 7: Comparison with offline data subsampling. “Subset” meets the budget constraint by ran-
domly subsample the dataset prior to training, while “full” uses all the data, but restricting the
number of iterations. Note that budget-aware schedule is used for “full”.

Note that the above equation holds per each weight. For Fig 4a, we take the median across all
dimensions as a scalar summary since it is a skewed distribution. The mean appears to be even larger
and shares the same trend as the median. In our experiments, we use the default hyper-parameters
(which also turn out to have the best validation accuracy): α(1)

0 = 0.1, α(2)
0 = 0.001, η1 = 0.9,

η2 = 0.99 and ε = 10−8.

C DATA SUBSAMPLING

Data subsampling is a straight-forward strategy for budgeted training and can be realized in several
different ways. In our work, we limit the number of iterations to meet the budget constraint and
this effectively limits the number of data points seen during the training process. An alternative is
to construct a subsampled dataset offline, but keep the same number of training iterations. Such
construction can be done by random sampling, which might be the most effective strategy for i.i.d 5

dataset. We show in Tab 7 that even our baseline budge-aware step decay, together with a limitation
on the iterations, can significantly outperform this offline strategy. For the subset setting, we use the
off-the-shelf step decay (step-d2) while for the full set setting, we use the same step decay but with
BAC applied (Sec 3.1). For detailed setup, we follow Sec 4.1, of the main text and take the median
of 3 runs.

Of course, more complicated subset construction methods exist, such as core-set construction
(Bachem et al., 2017). However, such methods usually requires a feature summary of each data
point and the computation of pairwise distance, making such methods unsuitable for extremely
large dataset. In addition, note that our subsampling experiment is conducted on CIFAR-10, a
well-constructed and balanced dataset, making smarter subsampling methods less advantageous.
Consequently, the result in Tab 7 can as well provides a reasonable estimate for other complicated
subsampling methods.

D ADDITIONAL COMPARISON WITH ADAPTIVE LEARNING RATES
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Method Val Accu

RMSprop .9258
AdaBound .9306
AMSGrad .9113

AMSGrad + Linear .9340

SGD + Linear 10% .9218
SGD + Linear 25% .9412
SGD + Linear 50% .9546
SGD + Linear 100% .9562

Figure 6: Comparison between budget-aware linear schedule and adaptive learning rate methods on
CIFAR-10. We see while adaptive learning rate methods appear to descent faster than full budget
linear schedule, at each given budget, they are surpassed by the corresponding linear schedule.

In the main text we compare linear schedule with AMSGrad (Reddi et al., 2018) (the improved ver-
sion over Adam (Kingma & Ba, 2015)), we further include the classical method RMSprop (Tieleman

5independent and identically distributed
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Budget 1% 5% 10% 25% 50% 100%

step .4944 .6332 .6796 .7242 .7465 .7646
poly .5474 .6751 .7117 .7411 .7575 .7601
linear .5414 .6657 .7079 .7400 .7560 .7629

Table 8: Comparison with step decay and the off-the-shelf poly schedule on Cityscapes (Cordts
et al., 2016) using PSPNet (Zhao et al., 2017). Both poly and linear significantly outperforms step
decay given limited budget. Poly and linear are similar smooth-decaying schedules (Fig 2) and thus
have similar performance. The exact rank differs from task to task. Same as other main experiments,
the median of 3 runs is reported.

& Hinton, 2012) and the more recent AdaBound (Luo et al., 2019). We tune these adaptive methods
for CIFAR-10 and summarize the results in Fig 6. We observe the similar conclusion that budget-
aware linear schedule outperforms adaptive methods for all given budgets.

Like SGD, those adaptive learning rate methods also takes input a parameter of base learning rate,
which can also be annealed using an existing schedule. Although it is unclear why one needs to
anneal an adaptive methods, we find that it in facts boosts the performance (“AMSGrad + Linear”
in Fig 6).

E EXPERIMENTS ON CITYSCAPES (SEMANTIC SEGMENTATION)

Cityscapes (Cordts et al., 2016) is a dataset commonly used for evaluating semantic segmentation
algorithms. It contains high quality pixel-level annotations of 5k images in urban scenarios. The
default evaluation metric is the mIoU (averaged across class) of the output segmentation map. We
use state-of-the-art model PSPNet (Zhao et al., 2017) with a ResNet-50 backbone and the full budget
is 400 epochs as in standard set up. The mIoU of the best epoch is reported. Interestingly, unlike
other tasks in this series, this model by default uses the poly (Jia et al., 2014) schedule. For complete
evaluation, we also add a step decay that is the same in our ImageNet experiment.

In addition, we find linear schedule shares similar performance with the off-the-shelf poly schedule
on Cityscapes (Tab 8). Given the similarity of poly and linear (Fig 2), and the opposite results
on CIFAR-10 and Cityscapes, it is inconclusive that one is strictly better than the other within the
smooth-decaying family. However, these smooth-decaying methods both outperform step decay
given limited budgets.

F ADDITIONAL COMPARISON WITH SGDR

This section provides additional evaluation to show that learning rate restart produces worse results
than our proposed budgeted training techniques under budgeted setting. In (Loshchilov & Hutter,
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Figure 7: One issue with off-the-shelf SGDR (T0 = 10, Tmult = 2) is that it is not budget-aware and
might end at a poor solution. We convert it to a budget aware schedule by setting it to restart n times
at even intervals across the budget and n = 2 is shown here (SGDR-r2).
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Epoch 30 50 150

SGDR .9320 .9458 .9510
linear .9350 .9506 .9532

Table 9: Comparison with off-the-shelf SGDR at the end of each period after the first restart.

Budget 1% 5% 10% 25% 50% 100%

SGDR-r1 .5002 .7908 .8794 .9250 .9380 .9488
SGDR-r2 .4710 .7888 .8738 .9216 .9412 .9502
linear .6654 .8920 .9218 .9412 .9546 .9562

Table 10: Comparison with SGDR under budget-aware setting. “SGDR-r1” refers to restarting
learning rate once at midpoint of the training progress, and “SGDR-r2” refers to restarting twice at
even interval.

2016), both a new form of decay (cosine) and the technique of learning rate restart are proposed.
To avoid confusion, we use “cosine schedule”, or just “cosine”, to refer to the form of decay and
SGDR to a schedule of periodical cosine decays. The comparison with cosine schedule is already
included in the main text. Here we focus on evaluating the periodical schedule. SGDR requires
two parameters to specify the periods: T0, the length of the first period; Tmult, where i-th period has
length Ti = T0T

i−1
mult . In Fig 7, we plot the off-the-shelf SGDR schedule with T0 = 10 (epoch),

Tmult = 2. The validation accuracy plot (on the right) shows that it might end at a very poor
solution (0.8460) since it is not budget-aware. Therefore, we consider two settings to compare
linear schedule with SGDR. The first is to compare only at the end of each period of SGDR, where
budgeted convergence is observed. The second is to convert SGDR into a budget-aware schedule
by setting the schedule to restart n times at even intervals across the budget. The results under the
first and second setting is shown in Tab 9 and Tab 10 respectively. Under both budget-aware and
budget-unaware setting, linear schedule outperforms SGDR. For detailed setup, we follow Sec 4.1,
of the main text and take the median of 3 runs.

G ADDITIONAL ILLUSTRATIONS

In Sec 5, we refer to validation accuracy curve for training on CIFAR-10, which we provide here in
Fig 8.
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Figure 8: Training loss and validation accuracy for training ResNet-18 on CIFAR-10 using step
decay and linear schedule. No generalization gap is observed when we only modify learning rate
schedule. This figure provides details for the discussion of “don’t waste budget”.
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H LEARNING RATES IN CONVEX OPTIMIZATION

For convex cost surfaces, constant learning rates are guaranteed to converge when less or equal
than 1/L, where L is the Lipschitz constant for the gradient of the cost function ∇F (Bottou et al.,
2018). Another well-known result ensures convergence for sequences that decay neither too fast nor
too slow (Robbins & Monro, 1951):

∑∞
t=1 αt =∞,

∑∞
t=1 α

2
t <∞. One common such instance in

convex optimization is αt = α0/t. For non-convex problems, similar results hold for convergence
to a local minimum (Bottou et al., 2018). Unfortunately, there does not exist a theory for learning
rate schedules in the context of general non-convex optimization.

I ADDITIONAL IMPLEMENTATION DETAILS

Image classification on ImageNet. We adapt both the network architecture (ResNet-18) and the
data loader from the open source PyTorch ImageNet example6. The base learning rate used is 0.1
and weight decay 5 × 10−4. We train using 4 GPUs with asynchronous batch normalization and
batch size 128.

Video classification on Kinetics with I3D. The 400-category version of the dataset is used
in the evaluation. We use an open source codebase7 that has training and data processing
code publicly available. Note that the codebase implements a variant of standard I3D (Car-
reira & Zisserman, 2017) that has ResNet as the backbone. We follow the configuration of
run i3d baseline 300k 4gpu.sh, which specifies a base learning rate 0.005 and a weight
decay 10−4. Only learning rate schedule is modified in our experiments. We train using 4 GPUs
with asynchronous batch normalization and batch size 32.

Object detection and instance segmentation on MS COCO. We use the open source implemen-
tation of Mask R-CNN8, which is a PyTorch re-implementation of the official codebase Detectron
in the Caffe 2 framework. We only modify the part of the code for learning rate schedule. The code-
base sets base learning rate to 0.02 and weight decay 10−4. We train with 8 GPUs (batch size 16)
and keep the built-in learning rate warm up mechanism, which is an implementation technique that
increases learning rate for 0.5k iterations and is intended for stabilizing the initial phase of multi-
GPU training (Goyal et al., 2017). The 0.5k iterations are kept fixed for all budgets and learning rate
decay is applied to the rest of the training progress.

Semantic segmentation on Cityscapes. We adapt a PyTorch codebase obtained from correspon-
dence with the authors of PSPNet. The base learning rate is set to 0.01 with weight decay 10−4. The
training time augmentation includes random resize, crop, rotation, horizontal flip and Gaussian blur.
We use patch-based testing time augmentation, which cuts the input image to patches of 713× 713
and processes each patch independently and then tiles the patches to form a single output. For over-
lapped regions, the average logits of two patches are taken. We train using 4 GPUs with synchronous
batch normalization and batch size 12.

6https://github.com/pytorch/examples/tree/master/imagenet. PyTorch version
0.4.1.

7https://github.com/facebookresearch/video-nonlocal-net. Caffe 2 version 0.8.1.
8https://github.com/roytseng-tw/Detectron.pytorch. PyTorch version 0.4.1.
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