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ABSTRACT

We conduct a large experimental comparison of various robustness metrics for
image classification. The main question of our study is to what extent current syn-
thetic robustness interventions (¢,-adversarial examples, noise corruptions, etc.)
promote robustness under natural distribution shifts occuring in real data. To this
end, we evaluate 147 ImageNet models under 199 different evaluation settings.
We find that no current robustness intervention improves robustness on natural dis-
tribution shifts beyond a baseline given by standard models without a robustness
intervention. The only exception is the use of larger training datasets, which pro-
vides a small increase in robustness on one natural distribution shift. Our results
indicate that robustness improvements on real data may require new methodology
and more evaluations on test sets representing natural distribution shifts.

1 INTRODUCTION

Reliable classification under distribution shift is still out of reach for current machine learning (Tor-
ralba et al.,|201 1} Recht et al.,|2019). As a result, the research community has proposed a wide range
of evaluation protocols that go beyond a single, static test set. Common examples include adversar-
ial examples (Szegedy et al., 2013} [Biggio et al.| |2013)), noise perturbations (Geirhos et al., 2018;
Hendrycks & Dietterichl 2019), and spatial transformations (Fawzi & Frossard, 2015; [Engstrom;
et al., 2019). Encouragingly, the past few years have seen substantial progress in robustness to these
distribution shifts, e.g., see (Madry et al., |2018; [Zhang et al.l 2019; |Geirhos et all [2019; [Zhang,
2019; Engstrom et al.| 2019; |Yang et al., 2019) and many others. However, an implicit assumption
underlying this research direction is that robustness to such synthetic distribution shifts will lead to
models that also perform more reliably on natural distribution shifts.

We challenge that assumption. We conduct a large experimental study involving 147 ImageNet mod-
els evaluated under 199 different evaluation settings for a total of 29,253 test set evaluations. Our
model testbed contains a wide range of standard models and most proposed robustness interventions
(adversarial training, various forms of data augmentation, etc.). In order to measure robustness under
natural distribution shift, we utilize two recently proposed variants of ImageNet (Deng et al., 2009
Russakovsky et al.|[2015) and ImageNetVid (Berg et al., 2015). Both test sets consist entirely of un-
perturbed images drawn from the same sources as the original datasets, but also exhibit substantial
accuracy drops for all current model architectures (Recht et al.l 2019} Shankar et al.| 2019).

Figure |1| shows the main result of our evaluation. The plots display model accuracies for the two
natural distribution shifts. As noted in prior work, there is a substantial drop in accuracy when going
from the original test set to the test set with distribution shift. A priori, one may hope that a more
robust model would see a smaller drop than baseline approaches without a robustness intervention.
But we find that in both cases, current robustness interventions offer little to no benefit over stan-
dard models. In particular, the accuracy on the original test set alone almost perfectly predicts the
accuracy on the test sets with distribution shift. Importantly, the same relationship between original
and “shifted” accuracy holds for both standard models and models with an explicit robustness in-
tervention. This implies that the robustness interventions do not close the gap between original and
“shifted” test accuracies any more than standard models with the same accuracy.
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Figure 1: Model accuracy on the two natural distribution shifts, ImageNetV2 (left) and Ima-
geNetVidRobust (right). Each data point corresponds to one model in our testbed and is shown with
99.5% Clopper-Pearson confidence intervals. The plots demonstrate that the standard test accuracy
(x-axis) is an almost perfect predictor for the test accuracy under distribution shift (y-axis). This
holds regardless of whether the model was trained with a robustness intervention. Current robust-
ness interventions reduce the accuracy drops under these distribution shifts only by a small amount
(on ImageNetVidRobust) or not at all (on ImageNetV2). The axes were adjusted using logit scaling
and the linear fit was computed in the scaled space. The red shaded region is a 95% confidence
region for the linear fit from 100,000 bootstrap samples.

There are only two significant deviations away from the otherwise universal relationship between
original and shifted accuracy. The first is that £,-adversarially robust models do offer increased
accuracy against the distribution shift on ImageNetVidRobust. However, this increase is in a regime
of overall low accuracy. As we will demonstrate in Section [5] interpolating between a standard
model and a random classifier yields a comparable robustness increase in this accuracy regime. So
the current £,,-robust models do not provide a truly new robustness trade-off.

The second class of outliers are models trained on substantially different data. In particular, the two
most pronounced outliers on ImageNetV2 correspond to models trained on 10x to 1,000 more
training examples. This shows that adding more training data does indeed increase robustness on
ImageNetV2 more than any other currently proposed explicit robustness intervention. However,
adding more data also yields only small gains: the accuracy drops of around 10% from ImageNet to
ImageNetV?2 shrink by 1 — 2%, even when adding 1,000 x more data.

Overall, our results show that current robustness gains on synthetic distribution shifts do not transfer
to improved robustness on the natural distribution shifts presently available as test sets. This suggests
that research on reliable machine learning may currently be focusing on interventions that do not
promote robustness on natural distribution shifts. Achieving robustness on real data may instead
require new methodology and more evaluations on natural distribution shifts.

To aid this development, we will release and maintain our robustness testbed as a platform for
proposing and evaluating new models and datasets. In total, our testbed includes prediction data for
29,253,000 pairs of models and image inputs. We hope that a comprehensive repository for robust-
ness evaluations will simplify the process of comparing proposed models and evaluation settings
and enable further analysis of robustness questions.

In the next section, we describe our experimental setup in detail. Section [3| introduces our main
measure of robustness. The following three sections then investigate our three main questions:
* Are synthetic robustness measures predictive of performance on natural distribution shifts?
* What robustness interventions are effective for natural distribution shifts?
* How does the amount of training data impact robustness?

2 EXPERIMENTAL SETUP

We first formally define our experimental setup. In the standard classification setting, a model f is
first trained on i.i.d. samples from a fixed data distribution. We then test f on another set S; of i.i.d.
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samples from the same distribution to compute the test accuracy accs, (f) = D (eyes: L flx) =y
We refer to any deviation from this setup as a distribution shift.

More specifically, our robustness evaluation involves distribution shifts defined as follows. Instead
of using the original test set S, we may also evaluate the accuracy on a new test set So that is
collected via a similar but not identical procedure to the original test set S (i.e., So represents a
different distribution). Moreover, we allow each data point (either from S or Ss) to be pertubed
before passing it to the classifier f . We consider a general setup where the perturbation 7(z, y, f )
may depend on the model f to be evaluated. For instance, we can generate /. -adversarial examples
by setting 7(z, y, f) = arg ming, <. I f(#') = y]. Alternatively, we can simply perturb each
data point with Gaussian noise, i.e., 7(z, y, f) =z + N(0, 0?) independently of i and f.

Combining the choice of test set S and perturbation 7, the test accuracy under distribution shift S,
7 is then defined as

accsyﬂ(f) = Z ]I[f(ﬂ'(ﬂ:,y,f)):y].

(z,y)€S

Depending on S and 7, this “shifted” test accuracy may be higher or lower than the original
accuracy accg,. The focus of this paper is on distribution shifts where there is reasonable hope to
classify the images correctly (e.g., because humans can do so), but standard models achieve only a
substantially lower accuracy than on the original test set. Reducing these accuracy gaps between
original and shifted accuracy is an important goal of robust machine learning.

2.1 TYPES OF DISTRIBUTION SHIFTS

At a high level, we distinguish between two main types of distribution shift. The crucial distinction
between the two is whether the distribution shift involves a synthetic intervention at the pixel level.
We use the term natural distribution shift for cases that rely only on unmodified images. In contrast,
we refer to distribution shifts as synthetic if they involve modifications of existing test images.
To be concrete, we now provide an overview of the various distribution shifts in our robustness
evaluation.

2.1.1 NATURAL DISTRIBUTION SHIFTS

Our testbed includes two distribution shifts that involve only unmodified natural images.

ImageNetV2. The first example is the new ImageNetV2 test set recently collected by |[Recht et al.
(2019). The goal of this test set was to closely reproduce the original ImageNet dataset creation
process, e.g., by matching the data source (Flickr) and the data cleaning process (Mechanical Turk).
Nevertheless, the authors found that state-of-the-art models still suffer a performance drop of at
least 11% on the new test set. This makes the dataset an interesting example for studying robustness
to natural distribution shifts. Testing on ImageNetV2 fits into our evaluation framework by letting
S be the new ImageNetV?2 test set (denoted by S2) and leaving 7 to be the identity function.

ImageNetVidRobust. In contrast to precisely defined, synthetic notions of robustness such as £,-
adversarial examples, it is currently an open problem to characterize the distribution shift arising
in ImageNetV2. To narrow this gap between the real and synthetic robustness challenges, Shankar
et al.| (2019) have introduced a variant of the ImageNetVid dataset (Berg et al., [2015)). The authors
assembled consecutive video frames that are all highly similar to a human yet cause classifiers to
make errors on some of the images. Inspired by £,-adversarial examples, the authors propose the
following pmy, (plus-minus k) metric to evaluate the accuracy of a classifier as

pmy o(f) = Y min I[f(@) =y,
z' €By(z)
(z,y)es
where By (z) contains the 2k frames around the anchor frame z (k frames in each temporal di-
rection). This corresponds to a perturbation function 7(z,y, f) = argmin, g, () I[f(2") = y].
Under this metric, the authors find that even the best models see an accuracy drop of at least 13%.
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2.1.2 SYNTHETIC DISTRIBUTION SHIFTS

The research community has developed a wide range of synthetic robustness notions for image
classification over the past five years. In our study, we consider the following classes of synthetic
distribution shifts.

Adversarial examples. One prominent example of synthetic distribution shifts are adversarial
examples, which demonstrate that current image classifiers can be fooled by small image perturba-
tions that are (almost) imperceptible to a human (Szegedy et al., 2013} Biggio & Roli, [2018). In our
robustness evaluation, we focus on untargeted adversarial perturbations bounded in ¢,- or £2-norm.

Image corruptions. Since ¢,-adversarial examples are unlikely to occur outside a truly worst-
case setting, the research community has proposed various synthetic image corruptions as less
adversarial distribution shifts. The goal of these corruptions is to test robustness to distribution shifts
that are more realistic and hopefully predictive of performance on real data (we will investigate this
assumption in Section[d). In our testbed, we include all corruptions from (Hendrycks & Dietterich|
2019) and additionally some corruptions from (Geirhos et al., [2018). These include common
examples of image noise (Gaussian, shot noise, etc.), various blurs (Gaussian, motion), simulated
weather conditions (fog, snow), and “digital” corruptions such as various JPEG compression levels.
We refer the reader to Appendix for a full list of the 38 corruptions.

Style transfer. We also include a style transfer version of the ImageNet test set (Huang &
Belongiel 2017)). This distribution shift was proposed to evaluate whether classification models are
relying more on shape or texture features (Geirhos et al., 2019).

2.2  CLASSIFICATION MODELS

Our model testbed includes 147 ImageNet models covering a variety of different architectures
and training methodologies. Our goal was to include most relevant pretrained ImageNet models
available online. In multiple cases we also contacted paper authors with various degrees of success.
At a high level, the models can be divided into the following three categories (see Appendix [A.5.]
for a list of all models).

Standard models. We refer to models trained on the ILSVRC 2012 training set without a specific
robustness focus as standard models. This category includes 74 models, ranging from the seminal
AlexNet with top-1 accuracy 56.5% through widely used architectures such as VGG, ResNet, and
Inception to the state-of-the-art EfficientNet with top-1 accuracy 84.4% (Krizhevsky et al., 2012}
Simonyan & Zisserman, [2014; |He et al., 2016} Szegedy et al., [2015} [Tan & Lel 2019).

Robust models. This category includes models with an explicit robustness intervention. We
subdivide this class further into two types of robustness interventions:

* Models with increased adversarial robustness. We include both models trained with projected
gradient descent (Xie et al.,|2019; [Shafahi et al.,|2019) and models with evaluation via random-
ized smoothing (Cohen et al.,[2019; [Salman et al.,[2019)), which yields a total of 14 models.

» Further robustness interventions such as data augmentation schemes (Geirhos et al., 2019; |Yun
et al.| 2019) and anti-aliasing (Zhang}, 2019). This subset contains 51 models.

Models trained on more data. Finally, our testbed also contains three types of models that
utilized substantially more training data than the aforementioned models. The ResNetl52-
ImageNetl 1k model was trained on 12.4 million images for 11,221 classes from the full ImageNet
dataset (Wu, [2016)). Like all other models, we only evaluate it over the 1,000 classes from ILSVRC
2012. Facebook recently released models trained on 1 billion images from Instagram; we refer to
these models as Instagram models (Mahajan et al., [2018). We also include evaluations from the
JFT-300M model trained on 300 million images at Google (Sun et al.,|[2017).

3 MEASURING THE EFFECT OF ROBUSTNESS INTERVENTIONS

When comparing interventions to increase robustness, a crucial question is how to measure their
effect in a meaningful way. One approach would be to simply use the absolute accuracy numbers
accg,r under the distribution shift specified by S and 7 (see Sectionabove). If the goal is to select
the best performing model (e.g., for a concrete deployment), this is indeed a relevant criterion.
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On the other hand, relying on absolute accuracy numbers becomes less relevant when comparing
various robustness interventions with different unperturbed accuracies accg,. As can be seen from
Figure[I] the accuracy under distribution shift varies substantially with the standard accuracy: mod-
els with higher standard accuracy already achieve higher accuracy under distribution shift. So to
isolate the effect of a training intervention on the robustness to distribution shift, we would like to
measure how much a robustness intervention increases the shifted accuracy beyond what is possible
with standard models at the same standard accumcyﬂ

To quantify this notion of robustness, we define a “baseline” function g - (z) to return the shifted
accuracy that a standard model with test accuracy x on the standard test set S; is expected to achieve

under the distribution shift S, . So if f is a model without robustness intervention, 5 should satisfy

Bs,x(aces, (f)) = accs - (f).

A priori, it is unclear if such a function g exists. The accuracy of a trained model f on the dis-
tribution shift (S, ) could depend on a variety of properties besides the standard accuracy of f
(model architecture, data augmentation scheme used during training, etc.). However, both natural
distribution shifts we study in our paper have the intriguing property that the standard test accuracy
is a nearly perfect predictor of the test accuracy under distribution shift for all standard models in

our testbed. In particular, fitting a simple logistic model to the (accg, (f), accg (f)) pairs yields a
good linear fit in the logit domain (see Figure[I). This shows that we can obtain an accurate estimate

B from data, which we will rely on in the remainder of the paper.

With the baseline robustness function § in place, we can now define the effective robustness
p(f,S,m) of a trained model f to distribution shift (.S, ) as

p(f,S,m) = accs(f) — Bs.r(aces, (f)),

If a model f is truly more robust under distribution shift S, 7 (in particular, more so than standard
models without a robustness intervention), f should have effective robustness p( f ,S, ) substan-
tially larger than 0. Graphically, p can be interpreted as the vertical deviation away from the linear
fit in Figure[I] In the following, we will study to what extent various synthetic robustness measures
are predictive of the effective robustness on natural distribution shifts, and which models achieve the
largest effective robustness on natural distribution shifts.

4 DOES SYNTHETIC ROBUSTNESS PREDICT NATURAL ROBUSTNESS?

Given the difficulty of measuring a model’s robustness to natural distribution shifts, an important
question is whether there are simple synthetic proxies. We therefore study to what extent robustness
to synthetic distribution shifts predicts robustness on natural distribution shift.

A simple approach would be to directly compare different models’ robustness to synthetic distri-
bution shift and their robustness to natural distribution shift. However, we run into an important
confounding factor. As mentioned earlier, models that have higher accuracy have a smaller accuracy
drop on the natural distribution shifts we consider. Moreover, we find that models with higher accu-
racy also see smaller accuracy drops under various synthetic distribution shifts. Therefore it would
not be methodologically sound to directly compare synthetic robustness to natural robustness and
draw any conclusions about transferability between the two. Simply the fact that a model is more
accurate will simultaneously predict both that (i) the accuracy drop under natural distribution shift
will be smaller, and that (ii) the model will be more robust to synthetic distribution shift.

To control for the confounder standard accuracy, we rely on the effective robustness notion intro-
duced in Section 3] i.e., the robustness increase that cannot be attributed to an increase in standard
accuracy. In Figure 2] we analyze the relationship between two synthetic robustness notions and
effective robustness on ImageNetV2. The resulting plot shows that the two quantities are almost
entirely uncorrelated: a model being more robust to synthetic perturbations does not imply that the
model will have a smaller accuracy drop on ImageNetV2. In Appendix [A.T] we repeat the above
experiment for the ImageNetVidRobust distribution shift and reach similar conclusions.

"We note that this corresponds to the problem of estimating a treatment effect as studied in causal inference.
We do not explicitly rely on knowledge about causal inference to make our exposition more accessible but refer
the reader to textbooks on causal inference for background (Pearl et al.,|2016; |Hernan & Robins, [2019).
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Figure 2: Robustness to synthetic distribution shift (x-axis) vs. effective robustness to the Ima-
geNetV2 distribution shift (y-axis). The left plot shows synthetic robustness as measured by an
average over image corruptions from (Hendrycks & Dietterichl 2019} |Geirhos et al., [2018; [2019).
The right plot shows synthetic robustness as measured by PGD attacks for ¢5- and /.,-robustness
and two perturbation sizes each. In both cases, synthetic robustness is not predictive of effective
robustness under the natural distribution shift. Appendices [A.T] and [A.2] contains similar plots for
individual synthetic robustness measures and the ImageNetVidRobust distribution shift.

5 WHAT HELPS WITH NATURAL DISTRIBUTION SHIFT?

As can be seen in Figure most models did not achieve substantial effective robustness
on ImageNetV2 and ImageNetVidRobust. Nevertheless, a few model types stood out with
significant effective robustness on one of the two datasets (no model in our testbed that showed
non-trivial gains for both natural distrbution shifts). We now discuss the main outliers in more detail.

ResNet152-ImageNetl1k and Instagram models. The left plot in Figure [3| zooms to the two
model families that displayed high effective robustness on ImageNetV2. All of these models are
trained on additional data beyond the standard ILSVRC 2012 training set. The models exhibited
an effective robustness of 2.0 and 1.4 (median robustness for the four Instagram models), which
was substantially larger than any other model with similar accuracy. However, despite their
promising performance on ImageNetV2, these models show little to no effective robustness for Ima-
geNetVidRobust. Moreover, the effective robustness gain is larger for the ResNet152-ImageNet11k
model trained on less data than the Instagram models. To further investigate the effect of data on
model robustness, we conduct a series of controlled experiments in Section @

£,-robust models. In the right plot of Figurewe see a cluster of £,,-adversarially robust classifiers
that all exhibit substantial effective robustness for ImageNetVidRobust. However, the models are
also in a low accuracy regime, in particular lower than the standard classifiers they were derived
from (this trade-off is discussed in (Tsipras et al.,|2019; |Raghunathan et al., 2019) among others).

This trade-off poses a potential confounding factor: although the £,-robust models show high effec-
tive robustness, it is not clear if the resulting accuracy trade-off is meaningful. To put the trade-off
into context, we compare the models to a simple baseline. In particular, consider the family of
classifiers given by interpolating between random guessing and the standard classifier the £,,-robust
models are derived from. Since random guessing is not affected by the distribution shift, this interpo-
lation can trade off standard accuracy for effective robustness. In the right plot of Figure[3] we illus-
trate this family of interpolated classifiers (the dotted line) and show that a standard ResNet152 with
no robustness interventions can be interpolated with a random classifier to achieve the same trade-off
as an £,-robust model. So for the purpose of the natural distribution shift on ImageNetVidRobust,
the £,,-robust models offer no benefit beyond interpolating with a random classifier.

6 HOW DOES THE AMOUNT OF TRAINING DATA IMPACT ROBUSTNESS?

In the previous section we have seen that the ResNetl52-ImageNetllk and Instagram models
achieve non-zero effective robustness on ImageNetV2. This is a plausible effect since larger
training sets provide a more thorough sampling of real world images. However, the JFT-300M
model does not display this effect despite being trained on 300x more data than standard models.
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Figure 3: The left plot zooms into the range of the ResNet152-ImageNet1 1k and Instagram models
on ImageNetV2 and shows that the models achieve significant effective robustness, i.e., they lie
significantly above the linear fit. The right plot zooms into the range of the £,-robust models on
ImageNetVidRobust with high effective robustness. The dotted line shows the family of models
achievable by interpolating between a standard ResNet-152 and a random classifier. It achieves the
same robustness trade-off as the £,,-robust models.
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Figure 4: To investigate the impact of training data on robustness, we vary the ILSRVC 2012 data
along two axes: the number of images per class (left), and the number of classes (right). Although
models trained on more data (e.g., the Instagram and ResNetl152-ImageNetl 1k models) provide
improvements in effective robustness, we find that subsampling of the ILSVRC training has no
impact on effective robustness.

A possible explanation could be that differences in label diversity or quality play a role in
promoting robustness. For example, the Instagram models are trained on a dataset collected to
overlap with the ILSVRC categories, and the ResNet152-ImageNetl 1k model is trained on a
superset of the ILSVRC data. Meanwhile, the JFT model is trained on a long-tail, weakly-labeled
dataset with 18,291 categories, which, to the best of our knowledge, were not collected to align with
ILSVRC categories. To investigate the role of data in more detail, we now conduct two experiments.

Varying the number of images per class. We start by subsampling the number of images per
class in the ILSVRC training set by factors of {2, 4, 8, 16, 32} and show the impact on accuracy
and robustness on ImageNetV2 in Figure[d] As expected, increasing the number of images per class
consistently leads to higher accuracy. However, the impact on robustness is exactly as predicted by
our fit on standard ImageNet models. This indicates that varying the the size of training sets in an
1.i.d. manner affects accuracy but not effective robustness, at least for ImageNetV2.

Varying the number of classes. Next, we consider the diversity of the data by varying the
set of classes. In particular, we create three successive subsets of the ILSVRC training set with
500, 250, and 125 classes (see Appendix @] for the list of classes). We then evaluate all
models in our testbed on the 125 classes present in all subsets. We present results in Figure [4]
which shows that varying the number of classes again affects accuracies but not effective robustness.

Our experiments suggest that neither growing the number of images per class nor the number of
classes in an i.i.d. fashion are effective robustness interventions. Nevertheless, Section [5]shows that
larger dataset can provide meaningful robustness improvements. This disparity may be due to limi-
tations of emulating changes in the training set by subsampling ILSVRC. For one, our experiments
consider i.i.d. subsets of the training images or classes and do not consider growing datasets in a
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manner that may cover different image distributions, as in the case of Instagram data. Another pos-
sibility is that increases in dataset size may only improve robustness after the dataset size is large
enough such that the accuracy on the original distribution is close to saturated. Our experiments
only observe dataset sizes smaller than ILSVRC, which may fall below this inflection point.

7 RELATED WORK

There are several related papers that study the relationship between various synthetic robustness
measure, e.g., (Geirhos et al., 2018} [Engstrom et al., [2019; [Hendrycks & Dietterich, [2019; |Kang
et al.,[2019; [Tramer & Boneh, [2019} |[Maini et al., 2019). To the best of our knowledge, our paper is
the first to compare synthetic and natural distribution shifts. Since our findings show that synthetic
robustness currently does not promote natural robustness, our paper offers a complementary view to
the aforementioned comparisons focused on synthetic robustness.

Our work relies on two recent papers introducing datasets with natural distribution shifts (Recht
et al., 2019; |Shankar et al., [2019). Recht et al.| (2019) already note that there is a clear linear rela-
tionship between original and new test set accuracy but do not evaluate any models with a robustness
intervention or models trained on more data. Shankar et al.|(2019) compare only a small set of robust
models. Due to the limited size of their test set and model testbed, their results do not conclusively
show that £,-robust models offer effective robustness on their dataset. In contrast, our testbed of
robustness interventions is substantially larger and aims to encompass all publicly available models.
We also include models trained on more data and conduct experiments to investigate the effect of
training data on robustness. While our experiments shows that £,-robust models do offer effective
robustness on ImageNetVidRobust, we also put this improvement in context by demonstrating that
it is comparable to interpolating with a random classifier. Moreover, none of the two papers study
to what extent synthetic robustness is predictive of robustness under natural distribution shifts.

8 CONCLUSION

One aspiration of robustness interventions is to improve performance on real distribution shifts.
Since this is a challenging problem, synthetic notions of robustness offer a natural starting point.
While it is expected that corresponding interventions will be less effective on real distribution shifts,
the hope is that these interventions still convey at least some robustness on real data. Unfortunately,
our experiments show that this is not the case for two recent examples of real distribution shifts. On
both datasets, models with a robustness intervention perform no better than baselines without such
interventions. The fact that progress on synthetic distribution shifts is essentially uncorrelated with
progress on real distribution shifts raises the question whether further improvements for synthetic
robustness will yield benefits on real data.

To deploy machine learning in safety-critical environments, it will be necessary to address this ques-
tion and improve robustness under real distribution shifts. Our experiments suggests multiple direc-
tions for future work to achieve this goal.

One important direction is to assemble more examples of natural distribution shifts in order to test
robustness on real data in more detail. While it is possible that other types of natural distribution
shifts are more correlated with synthetic robustness, this hypothesis needs to be tested with carefully
curated datasets.

Our experiments on ImageNetV?2 suggest that adding training data can improve robustness. A sim-
ilar phenomenon has also been demonstrated for adversarial robustness (Schmidt et al., [2018}; |Car-
mon et al., 2019; |Uesato et al., |2019; Najafi et al.| 2019} [Zhai et al., 2019). However, it is currently
unclear what type of data to add: the JFT-300M model trained on 300 x more data offers no robust-
ness improvement. The ResNet152-ImageNetl 1k model was trained on roughly 10 x more data and
offers a robustness gain comparable or larger than the Instagram models trained on 1,000 more
data. Understanding what additional training data is most effective could significantly improve ro-
bustness to real distribution shifts.

Finally, it is important to note that the synthetic robustness interventions do offer robustness on
the distribution shifts they are designed for. This raises the hope that accurately characterizing real
distribution shifts will allow us to leverage existing techniques for training more robust models under
well-specified distribution shifts. The distribution shifts in our comparison and our extensive model
testbed offer a starting point for such an investigation into improved training methodology.
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Figure 5: An overview of
our testbed. Each row is a
model, and each column is
an evaluation setting. For
the corruptions, we aver-
age over the five severities

defined in (Hendrycks &
2019). We also

plot in-memory and on-
disk versions of each cor-
ruption as jpeg compres-
sion was found to be a con-
founding factor in (Ford
2019). We leave
out the class-subsampled
models and evaluations de-
scribed in Section [6 for
brevity.
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A.1 SYNTHETIC CORRUPTIONS VS. EFFECTIVE ROBUSTNESS (IMAGENET-VID-ROBUST)
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Figure 6: Robustness to synthetic distribution shift (x-axis) vs. effective robustness to the Ima-
geNetVid distribution shift (y-axis). The left plot shows synthetic robustness as measured by an
average over image corruptions from (Hendrycks & Dietterich, 2019} |Geirhos et al.l |2018; [2019).
The right plot shows synthetic robustness as measured by PGD attacks for ¢5- and /.,-robustness
and two perturbation sizes each. In both cases, there is almost no correlation, with the except of the
Ip adversarially robust models explored earlier.
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A.2 SYNTHETIC ROBUSTNESS VS. EFFECTIVE NATURAL ROBUSTNESS
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A.3 ORIGINAL ACCURACIES VS. DISTRIBUTION SHIFT ACCURACIES
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A.4 CORRUPTION ROBUSTNESS

Figure 22: A detailed view of corruption robustness, with cells sampled from the main grid in Figure
[} Here we present resnet50s trained on some of the corruptions from the imagenet-c benchmark,
as well as the best model trained on more data, instagram-resnext101_32x48d, and the best model
trained on just the standard training set, efficientnet-b7.

We have already seen that corruption robustness does not promote effective robustness, or robustness
to real distribution shift. Here, we analyze whether robustness to some corruptions transfers to
others, and what may contribute to corruption robustness. Figure [22| shows the result of training
various resnetSOﬂ on a few corruptions from imagenet-c.

In line with prior work, this plot here tells us that training against one type of synthetic corruption
or one set of synthetic corruption does not transfer well to other corruptions. There are cases where
transfer does happen, but overall the models are only robust to the corruption they are trained on.
This fact is even more prominent when looking at the difference between the instagram model and
efficientnet - while both are amongst the top in terms of robust to synthetic corruptions, instagram is
more robust to the on disk versions while efficientnet is more robust to the in memory versions. At
first glance, this phenomenon seems strange, but in fact it could be that since the instagram model
is trained on images pulled from instagram, which are jpeg compressed, it is more resistant to on
disk perturbations - while the efficientnet is trained using autoaugment, which is an augmentation
strategy done in memory, explaining its greater robustness to in memory perturbations.

A.5 DETAILS ON OUR MODELS

2Each resnet50 was trained with a batch size of 256 for 120 epochs, starting with a learning rate of 0.1 and
decaying by a factor of 10 every 30 epochs. For the resnet50s trained on corruptions, we randomly sample a
corruption and severity for each image. Refer to [A.6.3|for details on corruptions and severities. We use our
custom fast gpu implementations of these corruptions for training.
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Table 1: Top-1 model accuracies on the original ImageNet validation set, the Imagenetv2 test set
(matched-frequency), an average over all the corruptions, and an average over all the pgd attacks.
Note that since we take an average of many attacks, the PGD column can no longer be considered a
worst-case attacker for the model (look to @ for specific attacks). The confidence intervals are
99.5% Clopper-Pearson intervals; they are not provided for the average columns since iid assump-
tions for the intervals may be violated. References for the models can be found in Appendix [A.5.1]
We exclude the subsampled class models for brevity. The table continues for 3 more pages.

ImageNet Aggregated Top-1 Accuracies

Validation Imagenetv2 Avg. Corr.  Avg. PGD
Model Accuracy Accuracy Accuracy  Accuracy
FixResNeXt101_32x48d_v2 86.0 [85.6,86.4] 77.7[76.5,78.9] 65.1 19.9
FixResNeXt101_32x48d 85.9[85.5,86.4] 77.6[76.4,78.7] 654 20.3
instagram-resnext101_32x48d 85.4 [85.0,85.9] 77.0[75.8,78.1] 65.5 24.1
instagram-resnext101_32x32d 85.1[84.6,85.5] 76.8[75.6,77.9] 64.8 24.4
efficientnet-b7 84.4[83.9,849] 74.4[73.2,75.6] 63.1 30.9
instagram-resnext101_32x16d 84.2 [83.7,84.6] 75.5(74.3,76.7] 63.2 29.2
efficientnet-b6 84.0 [83.6,84.5] 74.1[72.8,75.3] 63.7 334
efficientnet-b5 83.7[83.2,84.11 73.3[72.0,74.5] 62.5 31.1
FixPNASNet 83.5([83.0,83.9] 73.2[71.9,74.4] 61.3 22.5
pnasnetSlarge 82.782.3,83.2] 72.3[71.0,73.6] 61.8 29.5
instagram-resnext101_32x8d 82.7[82.2,83.2] 73.6[72.4,74.9] 60.8 30.1
efficientnet-b4 82.6[82.2,83.1] 71.5[70.2,72.7] 60.0 33.5
nasnetalarge 82.5[82.0, 83.0] 72.3[71.0,73.5] 61.7 36.8
senet154 81.3[80.8,81.8] 70.2[68.9,71.5] 54.1 30.6
polynet 80.9 [80.4, 81.3] 70.1[68.8,71.3] 54.0 23.0
efficientnet-b3 80.8 [80.3,81.3] 69.7[68.4,71.0] 55.9 30.2
inceptionresnetv2 80.3 [79.8, 80.8] 69.3[68.0, 70.6] 56.9 34.8
se_resnext101_32x4d 80.2 [79.7,80.7]  69.4[68.1,70.7] 52.3 28.8
inceptionv4 80.1 [79.6, 80.6] 69.2[67.9,70.5] 55.5 27.9
resnet101_cutmix 79.8 [79.3,80.3] 68.0[66.7, 69.3] 50.1 25.6
dpn107 79.7[79.2,80.2] 67.8[66.5, 69.2] 52.4 30.8
FixResNet50CutMix_v2 79.4(78.9,80.0] 67.0[65.7, 68.3] 435 18.4
dpn131 79.4[78.9,79.9] 67.7[66.4,69.0] 52.1 30.4
FixResNet50CutMix 79.4[78.9,79.9] 66.8 65.5,68.2] 43.4 18.2
dpn92 79.4[78.9,79.9] 67.2[65.9, 68.6] 49.3 25.7
resnext101_32x8d 79.3[78.8,79.8] 67.4[66.1, 68.8] 49.7 254
efficientnet-b2 79.3[78.8,79.8] 67.4[66.1, 68.7] 53.6 29.3
dpn98 79.2[78.7,79.7]  67.866.4,69.1] 51.8 30.2
google_resnet101_jft-300M 79.2 [78.7,79.7] 67.4[66.1, 68.7] 53.5 26.8
se_resnext50_32x4d 79.1[78.6,79.6] 67.8[66.4,69.1] 50.6 24.7
resnext101_64x4d 79.0 [78.4,79.5] 67.1[65.8, 68.5] 52.1 23.6
wide_resnet101_2 78.878.3,79.4]  66.4[65.0,67.7] 48.2 25.2
xception 78.8 [78.3,79.3] 67.2[65.9, 68.6] 51.7 26.3
se_resnet]152 78.7(78.1,79.2]  67.4[66.1, 68.8] 50.9 28.4
resnet50_cutmix 78.6 [78.1,79.1] 65.8 [64.5, 67.1] 44.7 26.4
FixResNet50_v2 78.6 [78.1,79.1]  66.5[65.2,67.8] 433 15.3
FixResNet50 78.5[78.0,79.11 66.2[64.9, 67.6] 43.2 15.1
wide_resnet50_2 78.5[77.9,79.0] 66.2[64.8,67.5] 46.2 26.1
se_resnet101 78.4(77.9,78.9] 67.1[65.8,68.4] 50.1 28.2
resnet152 78.3(77.8,78.8] 66.8[65.5,68.2] 47.8 22.5
resnet50_feature_cutmix 78.2(77.7,78.7] 66.0[64.7, 67.4] 44.3 25.1
resnext101_32x4d 782 (77.7,78.7] 66.3[64.9,67.6] 51.0 22.4
resnet101_1pf3 78.1[77.6,78.6] 66.1[64.7, 67.4] 46.5 22.5
resnet101_1pf5 77.9(77.4,78.4]  66.2[64.8,67.5] 46.5 23.1
efficientnet-b1 77.877.3,78.3] 66.3[65.0,67.7] 51.2 29.0
resnet101_1pf2 77.877.3,78.3] 66.3[64.9,67.6] 46.1 22.0

31



Under review as a conference paper at ICLR 2020

ImageNet Aggregated Top-1 Accuracies

Validation Imagenetv2 Avg. Corr.  Avg. PGD
Model Accuracy Accuracy Accuracy Accuracy
se_resnet50 77.6[77.1,78.2] 65.8[64.5,67.2] 48.1 27.4
resnext50_32x4d 77.6[77.1,78.1] 65.8[64.5,67.2] 45.6 22.5
resnetS0_mixup 77.5[76.9,78.0] 65.0[63.7, 66.4] 48.2 22.2
fbresnet152 77.4176.9,779] 65.5[64.1, 66.8] 50.0 23.5
resnet101 77.4(76.8,77.9] 65.5[64.1,66.8] 46.1 21.8
FixResNet50_no_adaptation 77.31(76.8,77.9] 65.4(64.1, 66.8] 452 20.5
inceptionv3 77.3[76.8,77.8] 65.7[64.3,67.0] 49.8 25.7
densenet161 77.1[76.6,77.7] 65.3[63.9,66.6] 494 22.2
resnet50_cutout 77.1[76.5,77.6] 64.4[63.1, 65.8] 43.8 19.9
dpn68b 77.0(76.5,77.6] 64.8[63.4,66.1] 457 18.7
resnet50_1pf5 77.0[76.5,77.6] 64.5[63.1,65.8] 43.5 21.7
densenet201 769 [76.4,77.4] 64.8[63.4,60.1] 47.6 23.9
resnet50_1pf3 76.8 [76.3,77.3] 64.7[63.3, 66.0] 433 21.8
resnet50_1pf2 76.8[76.3,77.3] 64.5[63.2,65.8] 42.2 20.8
resnet50_trained_on_SIN_a 76.7[76.2,77.2] 64.6[63.3,66.0] 44.0 22.6
nd_IN_then_finetuned_on_IN
cafferesnet101 76.2(75.7,76.7] 64.1[62.8,65.5] 44.8 25.5
resnetl52-imagenet1 1k 76.2 [75.6,76.7] 66.1[64.8, 67.5] 473 30.7
resnet50_aws_baseline 76.1[75.6,76.7] 63.6[62.3, 65.0] 42.1 21.3
resnet50 76.1[75.6,76.7] 63.2[61.8, 64.6] 41.6 214
resnet50_imagenet_100perce 76.0 [75.4,76.5]  63.2[61.9,64.60] 41.6 21.3
nt_batch64_original_images
dpn68 75.9[75.3,76.4] 63.1[61.7,64.5] 45.5 17.7
efficientnet-bQ 75.8175.3,76.3] 63.2[61.9,64.6] 459 29.5
resnet50-randomized._ 75.7[75.1,76.2] 63.8[62.4,65.1] 41.8 20.9
smoothing_noise_0.00
densenet169 75.6 [75.1,76.1] 63.5[62.2,64.9] 46.7 21.8
resnet50_with_brightness_aws 75.3[74.7,75.8] 62.7[61.3, 64.1] 439 22.2
resnet50_with_spatter_aws 752 (74.7,75.8]  62.6[61.3,64.0] 42.8 22.8
densenet121_1pf3 75.1[74.6,75.7] 62.5][61.1, 63.8] 40.5 20.0
densenet121_Ipf5 75.0[74.5,75.6] 62.8[61.5,64.2] 41.8 21.1
densenet121_lpf2 75.0[74.5,75.6] 63.1[61.7,64.5] 41.2 20.8
resnet50_with_saturate_aws 749 [74.3,75.4]  62.3[60.9, 63.6] 42.4 20.6
resnet50_trained_on_SIN_and_IN 74.6 [74.0,75.1] 62.8 [61.4, 64.1] 479 22.9
resnet34_Ipf2 74.5(73.9,75.0]  62.2[60.8, 63.6] 41.5 21.0
densenet121 74.4[73.9,75.0] 62.1[60.8, 63.5] 43.5 20.0
resnet34_1pf3 74.3(73.8,74.9] 62.2[60.8, 63.5] 42.2 20.7
vggl9_bn 74.2 [73.7,74.8] 62.0[60.6, 63.3 37.9 16.5
resnet34_Ipt5 742 (73.6,74.7]  62.2[60.8, 63.6] 41.2 20.9
nasnetamobile 74.1[73.5,74.6] 61.3[59.9,62.7] 44.8 22.8
vggl6_bn_Ipf5 74.0[73.5,74.6]  61.2[59.8,62.5] 36.2 19.0
vggl6_bn_Ipf2 74.0 [73.5,74.6] 61.7[60.3, 63.0] 36.1 17.5
vggl6_bn_Ipf3 73.9[73.4,74.5] 61.9[60.6, 63.3] 36.3 18.3
resnet50_with_frost_aws 73.8[73.2,74.3] 61.6[60.2,62.9] 42.4 21.5
resnet5S0_with_jpeg_compression_aws 73.6[73.1,74.2]  60.9[59.5, 62.3] 41.8 39.5
bninception 73.5[73.0,74.1] 62.0[60.6, 63.4] 40.6 21.3
mnasnet1_0 73.5(72.9,74.0]  60.4[59.1,61.8] 36.4 18.8
vggl6_bn 73.4[72.8,73.9] 60.7 [59.3, 62.1] 35.7 16.1
resnet34 73.3[72.8,73.9] 60.9[59.5, 62.2] 40.5 21.2
resnetS0_with_gaussian_noise_aws 73.0[72.4,73.5] 60.6[59.2,61.9] 45.6 45.5
resnet50_with_gaussian_noise_contra 72.7172.2.73.3]  60.1[58.7,61.5] 51.8 24.0
st_motion_blur_jpeg_compression_aws
mobilenet_v2_Ipf2 72.6 [72.1,73.2] 59.4[58.0, 60.8] 34.5 17.4
mobilenet_v2_Ipf3 72.6[72.0,73.1] 59.7[58.3,61.1] 34.8 17.6
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mobilenet_v2_1pf5 72.5(71.9,73.1] 59.8[58.4,61.1] 34.9 17.8
vggl9 72.4(71.8,72.9] 59.7[58.3,61.1] 32.4 20.6
vggl6_IpfS 72.3[71.8,72.9] 59.8[58.4,61.2] 31.9 19.7
vggl6_lpf3 722 (71.6,72.77]  59.3[57.9,60.7] 32.2 19.1
vggl6_Ipf2 722 [71.6,72.7] 59.3[57.9, 60.6] 32.0 19.2
resnet50_with_contrast_aws 72.0([71.4,72.6] 589 [57.5,60.3] 40.8 17.0
mobilenet_v2 719(71.3,72.4] 59.0[57.6, 60.4] 34.0 17.8
resnetS0_with_fog_aws 71.8[71.2,72.3] 58.2[56.8,59.6] 379 16.8
resnet18_1pf3 71.7[71.1,72.2] 58.5[57.1,59.9] 36.8 20.1
vgglo 71.6[71.0,72.2] 58.5([57.1,59.9] 31.3 20.1
vggl3_bn 71.6[71.0,72.2] 58.8[57.4,60.2] 31.8 15.2
resnet18_1pf2 71.4(70.8,72.0] 58.5[57.1,59.9] 36.9 19.6
resnet18_1pf5 71.4[70.8,72.0] 58.1[56.7,59.5] 36.9 19.9
resnet5S0_imagenet_subsample_1 70.5[69.9,71.1] 58.0[56.6, 59.3] 354 21.8
_of_2_batch64 _original_images
vggll_bn 70.4 [69.8,70.9] 57.4[56.0, 58.8] 31.7 18.0
resnet50-randomized._ 70.3[69.7,70.9] 57.7[56.3,59.1] 40.7 63.2
smoothing_noise_0.25
vggl3 69.9 [69.3, 70.5] 56.8[55.4,58.2] 28.5 19.3
googlenet/inceptionv1 69.8 [69.2,70.4]  57.9[56.5,59.3] 38.8 21.8
resnetl18 69.8 [69.2, 70.3] 57.3[55.9, 58.7] 35.0 19.5
shufflenet_v2_x1_0 69.4 [68.8,69.9] 56.0[54.5,57.3] 30.9 16.4
vggll 69.0 [68.4,69.6] 55.7[54.3,57.1] 28.6 224
resnet50_with_pixelate_aws 68.5[67.9,69.1] 56.7[55.3,58.1] 39.6 19.6
facebook_adv _trained_ 68.3[67.7,68.9] 55.2[53.8, 56.6] 40.9 414
resnext101_denoiseAll
resnet50-smoothing_adversarial 67.9 [67.3,68.5] 54.5[53.1,55.9] 40.6 61.8
_DNN_2steps_eps-512_noise_0.25
mnasnet0_5 67.6 [67.0, 68.2] 54.2[52.8,55.6] 27.9 17.4
resnet5S0_with_motion_blur_aws 67.5[66.9,68.0] 559 [54.5,57.3] 38.7 15.9
facebook_adv_traine 65.3[64.7,65.9] 52.6[51.2,54.0] 38.0 39.5
d_resnet152_denoise
resnet50-randomized._ 64.2 [63.6,64.8] 51.2[49.8,52.6] 39.8 61.4
smoothing_noise_0.50
resnet50_with_greyscale_aws 63.3[62.7,63.9] 50.7 [49.3, 52.1] 28.3 18.7
resnetS0_imagenet_subsample_1 63.2 [62.6,63.8] 50.5[49.1,51.9] 27.4 214
_of 4 _batch64 original images
facebook_adv_traine 62.3[61.7,63.0] 49.8[48.4,51.2] 35.8 37.6
d_resnet152_baseline
resnet50-smoothing_adversarial 62.2[61.6,62.8] 49.1[47.7,50.5] 39.1 59.2
_DNN _2steps_eps-512_noise_0.50
resnet50_with_zoom_blur_aws 61.3 [60.6,61.9] 49.4 [48.0, 50.8] 333 12.4
shufflenet_v2_x0_5 60.6 [59.9,61.2] 47.2[45.8,48.6] 23.6 16.1
resnet50_adv-train-free 60.5[59.9,61.1] 47.4[46.0,48.8] 294 57.4
resnet50-smoothing_adversaria 60.5[59.9.61.1] 47.0[45.6,48.4] 37.2 58.8
1_.PGD_1step_eps_512_noise_0.25
resnet50_trained_on_SIN 60.2 [59.6, 60.8] 48.6 [47.2, 50.0] 39.4 19.0
squeezenet]_1 58.2[57.6,58.8] 45.4[44.0,46.8] 20.2 16.1
squeezenetl_0 58.1[57.5,58.7] 44.9[43.5,46.3] 20.2 18.1
alexnet_Ipf2 57.2[56.6,57.9] 44.0[42.6,45.4] 22.5 29.3
alexnet_Ipf3 56.9 [56.3,57.5] 43.7[42.3,45.1] 22.8 30.6
alexnet_Ipf5 56.6 [56.0,57.2] 43.41[42.0,44.7] 22.8 32.0
alexnet 56.5[55.9,57.1] 43.4[42.0,44.8] 21.6 24.1
resnet50-smoothing_adversaria 54.7[54.0,55.3] 41.7[40.3,43.1] 35.7 53.8

1_.PGD_Istep_eps-512_noise_0.50
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resnet50-randomized._ 53.1[52.5,53.7] 40.7[39.4,42.1] 349 52.1
smoothing_noise_1.00
resnet50-smoothing_adversarial 51.9(51.2,52.5] 39.8[38.4,41.1] 344 51.6
_DNN_2steps_eps-512_noise_1.00
resnetS0_imagenet_subsample_1 51.7 [51.1,52.3] 39.3 [38.0, 40.7] 19.8 19.7
_of_8_batch64_original _images
resnet50-smoothing_adversaria 443 [43.7,44.9] 33.2[31.9, 34.6] 29.8 43.7
1.PGD_Istep_eps_512_noise_1.00
resnet50_imagenet_subsample_1 36.7 [36.1,37.3] 27.0[25.8, 28.3] 12.7 16.0
_of_16_batch64 _original .images
resnet50_with_defocus_blur_aws 31.9[31.3,32.5] 24.6[23.4,25.8] 18.2 9.6
resnet50_imagenet_subsample_1 21.4[20.9,21.9] 15.6[14.5,16.6] 7.2 11.1

_of_32_batch64 _original _images

AS5.1

FULL LIST OF MODELS EVALUATED IN TESTBED

The following list contains all models we evaluated on ImageNet with references and links to the
corresponding source code.

1.

10.

11.

12.

13.

14.

15.

16.

17.

FixResNeXt101_32x48d_v2 https://github.com/facebookresearch/FixRes Model
Type: Trained with more data.

FixResNeXt101_32x48d https://github.com/facebookresearch/FixRes Model
Type: Trained with more data.

instagram-resnext101_32x48d https://github.com/facebookresearch/WSL-Images
Model Type: Trained with more data.

instagram-resnext101_32x32d https://github.com/facebookresearch/WSL-Images
Model Type: Trained with more data.

efficientnet-b7 |https://github.com/lukemelas/EfficientNet—-PyTorch| Model
Type: Standard training.

instagram-resnext101_32x16d https://github.com/facebookresearch/WSL-Images
Model Type: Trained with more data.

. efficientnet-b6 https://github.com/lukemelas/EfficientNet-PyTorch Model

Type: Standard training.

. efficientnet-b5 https://github.com/lukemelas/EfficientNet-PyTorch Model

Type: Standard training.

. FixPNASNet https://github.com/facebookresearch/FixRes Model Type: Standard

training.

pnasnetSlarge https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

instagram-resnext101_32x8d https://github.com/facebookresearch/WSL-Images
Model Type: Trained with more data.

efficientnet-b4 |https://github.com/lukemelas/EfficientNet—-PyTorch| Model
Type: Standard training.

nasnetalarge https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

senetl54 https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

polynet https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

efficientnet-b3 |https://github.com/lukemelas/EfficientNet—-PyTorch| Model
Type: Standard training.

inceptionresnetv2 https://github.com/Cadene/pretrained-models.pytorch
Model Type: Standard training.
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18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

se_resnext101_32x4d https://github.com/Cadene/pretrained-models.pytorch
Model Type: Standard training.

. inceptionv4d https://github.com/Cadene/pretrained-models.pytorch| Model

Type: Standard training.

resnet101_cutmix https://github.com/clovaai/CutMix—PyTorch Model Type: Other
robustness intervention.

dpnl07 https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

FixResNet50CutMix_v2 |https://github.com/facebookresearch/FixRes/ Model
Type: Other robustness intervention.

dpnl31 https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

FixResNet50CutMix https://github.com/facebookresearch/FixRes| Model Type:
Other robustness intervention.

dpn92 https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

resnext101_32x8d https://pytorch.org/docs/stable/torchvision/models.
html Model Type: Standard training.

efficientnet-b2 |https://github.com/lukemelas/EfficientNet-PyTorch/ Model
Type: Standard training.

dpn98 https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

google_resnet101_jft-300M Model not publicly released - internal correspondence. Model Type:
Trained with more data.

se_resnext50_32x4d  https://github.com/Cadene/pretrained-models.pytorch
Model Type: Standard training.

resnext101_64x4d https://github.com/Cadene/pretrained-models.pytorch
Model Type: Standard training.

wide_resnet101_2 https://pytorch.org/docs/stable/torchvision/models.
html Model Type: Standard training.

xception https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

se_resnetl52 https://github.com/Cadene/pretrained-models.pytorch| Model
Type: Standard training.

resnetS0_cutmix https://github.com/clovaai/CutMix-PyTorch Model Type: Other
robustness intervention.

FixResNet50_v2 https://github.com/facebookresearch/FixRes|Model Type: Stan-
dard training.

FixResNet50 https://github.com/facebookresearch/FixRes Model Type: Standard
training.

wide_resnet50_2 https://pytorch.org/docs/stable/torchvision/models.html
Model Type: Standard training.

se_resnetl0l |https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

resnetl52 https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

resnet50_feature_cutmix https://github.com/clovaai/CutMix—-PyTorch Model Type:
Other robustness intervention.

resnext101_32x4d https://github.com/Cadene/pretrained-models.pytorch
Model Type: Standard training.

resnetl01_Ipf3https://github.com/adobe/antialiased-cnns/Model Type: Other ro-
bustness intervention.

resnetl01_pf5https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.
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45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

efficientnet-bl |https://github.com/lukemelas/EfficientNet—-PyTorch| Model
Type: Standard training.

resnetl01_Ipf2https://github.com/adobe/antialiased-cnns/Model Type: Other ro-
bustness intervention.

seresnet50 https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

resnext50_32x4d https://pytorch.org/docs/stable/torchvision/models.html
Model Type: Standard training.

resnet50_mixup https://github.com/clovaai/CutMix-PyTorch Model Type: Other
robustness intervention.

fbresnet152 |https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

resnetl01 https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

FixResNet50_no_adaptation https://github.com/facebookresearch/FixRes| Model
Type: Standard training.

inceptionvd https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

densenetl61 https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

resnet50_cutout https://github.com/clovaai/CutMix-PyTorch| Model Type: Other
robustness intervention.

dpn68b https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

resnet50_1pf5 https://github.com/adobe/antialiased-cnns/Model Type: Other ro-
bustness intervention.

densenet20l https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

resnetS0_1pf3 https://github.com/adobe/antialiased-cnns|Model Type: Other ro-
bustness intervention.

resnet50_Ipf2 https://github.com/adobe/antialiased-cnns/ Model Type: Other ro-
bustness intervention.

resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN |https://github.com/rgeirhos/
texture-vs-shape Model Type: Other robustness intervention.

cafferesnetl01 https://github.com/Cadene/pretrained-models.pytorch| Model
Type: Standard training.

resnetl52-imagenetllk https://github.com/tornadomeet/ResNet, Model Type:
Trained with more data. For this model, we took the 1000 logits corresponding to imagenet classes
and computed the accuracies on those logits (as opposed to taking the max over 11k logits).

resnet50_aws_baseline https://github.com/Cadene/pretrained-models.pytorch
Model Type: Standard training.

resnet50 https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

resnet50_imagenet_100percent_batch64_original_images https://github.com/Cadene/
pretrained-models.pytorch Model Type: Standard training.

dpn68 https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

efficientnet-b0 |https://github.com/lukemelas/EfficientNet-PyTorch| Model
Type: Standard training.

resnet50-randomized_smoothing_noise_0.00 https://github.com/locuslab/smoothing
Model Type: Lp adversarially robust. During evaluation, we called predict with alpha=1 and
n=100.

densenet169 |https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.
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resnet50_with_brightness_aws https://github.com/Cadene/pretrained-models.
pytorch|Model Type: Other robustness intervention.

resnet50_with_spatter_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

densenet121_Ipf3 https://github.com/adobe/antialiased-cnns/Model Type: Other
robustness intervention.

densenet121_Ipf5 https://github.com/adobe/antialiased-cnns/Model Type: Other
robustness intervention.

densenet121_1pf2 https://github.com/adobe/antialiased-cnns|/Model Type: Other
robustness intervention.

resnet50_with_saturate_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

resnet50_trained_on_SIN_and_IN https://github.com/rgeirhos/texture-vs—shape
Model Type: Other robustness intervention.

resnet34_Ipf2 https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.

densenetl2l https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

resnet34_Ipf3 https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.

vggl9 bnhttps://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

resnet34_Ipf5 https://github.com/adobe/antialiased-cnns|Model Type: Other ro-
bustness intervention.

nasnetamobile https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

vggl6 bn IpfShttps://github.com/adobe/antialiased-cnns/Model Type: Other ro-
bustness intervention.

vggl6 bn lpf2|https://github.com/adobe/antialiased-cnns/Model Type: Other ro-
bustness intervention.

vggl6_bnlpf3https://github.com/adobe/antialiased-cnns|Model Type: Other ro-
bustness intervention.

resnet50_with_frost_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

resnetS0_with_jpeg_compression_aws https://github.com/Cadene/
pretrained-models.pytorch Model Type: Other robustness intervention.

bninception |https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

mnasnet1_0 https://pytorch.org/docs/stable/torchvision/models.html
Model Type: Standard training.

vgglé_bn https://github.com/Cadene/pretrained-models.pytorch/Model Type:
Standard training.

resnet34 https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

resnet50_with_gaussian_noise_aws https://github.com/Cadene/
pretrained-models.pytorch Model Type: Other robustness intervention.

resnet50_with_gaussian_noise_contrast_motion_blur_jpeg_compression_aws https://github.
com/Cadene/pretrained-models.pytorch/Model Type: Other robustness intervention.

mobilenet_v2_Ipf2 https://github.com/adobe/antialiased-cnns Model Type: Other
robustness intervention.

mobilenet_v2_Ipf3 https://github.com/adobe/antialiased-cnns/Model Type: Other
robustness intervention.

mobilenet_v2_Ipf5https://github.com/adobe/antialiased-cnns|Model Type: Other
robustness intervention.
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vggl9 |https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

vggl6 IpfShttps://github.com/adobe/antialiased-cnns/Model Type: Other robust-
ness intervention.

vggl6 dpf3https://github.com/adobe/antialiased-cnns|/Model Type: Other robust-
ness intervention.

vggl6 dpf2https://github.com/adobe/antialiased-cnns|Model Type: Other robust-
ness intervention.

resnet50_with_contrast_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

mobilenet_v2 https://pytorch.org/docs/stable/torchvision/models.html
Model Type: Standard training.

resnetS0_with_fog_aws https://github.com/Cadene/pretrained-models.pytorch
Model Type: Other robustness intervention.

resnetl8_Ipf3 https://github.com/adobe/antialiased-cnns|Model Type: Other ro-
bustness intervention.

vggl6é https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

vggl3 bnhttps://github.com/Cadene/pretrained-models.pytorch/ Model Type:
Standard training.

resnetl8_Ipf2 https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.

resnetl8_IpfS https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.

resnet50_imagenet_subsample_1_of_2_batch64 _original images https://github.com/
Cadene/pretrained-models.pytorch/Model Type: Standard training.

vggll bnhttps://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

resnet50-randomized_smoothing_noise_0.25 https://github.com/locuslab/smoothing
Model Type: Lp adversarially robust. During evaluation, we called predict with alpha=1 and
n=100.

vggl3 |https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

googlenet/inceptionvl https://pytorch.org/docs/stable/torchvision/models.
html/Model Type: Standard training.

resnetl8 https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

shufflenet_v2_x1_0 https://pytorch.org/docs/stable/torchvision/models.
html Model Type: Standard training.

vggll https://github.com/Cadene/pretrained-models.pytorch Model Type:
Standard training.

resnet50_with_pixelate_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

facebook_adv_trained_resnext101_denoiseAll lhttps://github.com/facebookresearch/
ImageNet-Adversarial-Training Model Type: Lp adversarially robust.

resnet50-smoothing_adversarial DNN_2steps_eps_512_noise_0.25 https://github.com/
Hadisalman/smoothing—adversarial Model Type: Lp adversarially robust. During
evaluation, we called predict with alpha=1 and n=100.

mnasnet0_5 https://pytorch.org/docs/stable/torchvision/models.html
Model Type: Standard training.

resnet50_with_motion_blur_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

facebook_adv_trained_resnet152_denoise https://github.com/facebookresearch/
ImageNet-Adversarial-Training Model Type: Lp adversarially robust.
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resnet50-randomized_smoothing_noise_0.50 https://github.com/locuslab/smoothing
Model Type: Lp adversarially robust. During evaluation, we called predict with alpha=1 and
n=100.

resnet50_with_greyscale_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

resnet50_imagenet_subsample_1_of_4_batch64 _original_images https://github.com/
Cadene/pretrained-models.pytorch/Model Type: Standard training.

facebook_adv_trained_resnet152_baseline https://github.com/facebookresearch/
ImageNet-Adversarial-Training Model Type: Lp adversarially robust.

resnet50-smoothing_adversarial DNN_2steps_eps_512_noise_0.50 https://github.com/
Hadisalman/smoothing-adversarial Model Type: Lp adversarially robust. During
evaluation, we called predict with alpha=1 and n=100.

resnet50_with_zoom_blur_aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

shufflenet_v2_x0_5 https://pytorch.org/docs/stable/torchvision/models.
html/Model Type: Standard training.

resnet50_adv-train-free https://github.com/mahyarnajibi/
FreeAdversarialTraining/Model Type: Lp adversarially robust.

resnet50-smoothing_adversarial PGD_1step_eps_512_noise_0.25 https://github.com/
Hadisalman/smoothing—adversarial Model Type: Lp adversarially robust. During
evaluation, we called predict with alpha=1 and n=100.

resnet50_trained_on_SIN https://github.com/rgeirhos/texture-vs—-shape Model
Type: Other robustness intervention.

squeezenetl_1 https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

squeezenetl 0 https://github.com/Cadene/pretrained-models.pytorch Model
Type: Standard training.

alexnet Ipf2 https://github.com/adobe/antialiased-cnns| Model Type: Other ro-
bustness intervention.

alexnet_Ipf3 https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.

alexnet_Ipf5 https://github.com/adobe/antialiased-cnns Model Type: Other ro-
bustness intervention.

alexnet https://github.com/Cadene/pretrained-models.pytorch| Model Type:
Standard training.

resnet50-smoothing_adversarial PGD_1step_eps_512_noise_0.50 https://github.com/
Hadisalman/smoothing—adversarial Model Type: Lp adversarially robust. During
evaluation, we called predict with alpha=1 and n=100.

resnet50-randomized_smoothing_noise_1.00 https://github.com/locuslab/smoothing
Model Type: Lp adversarially robust. During evaluation, we called predict with alpha=1 and
n=100.

resnet50-smoothing_adversarial DNN_2steps_eps_512_noise_1.00 https://github.com/
Hadisalman/smoothing-adversarial Model Type: Lp adversarially robust. During
evaluation, we called predict with alpha=1 and n=100.

resnet50_imagenet_subsample_1_of_8_batch64 _original _images https://github.com/
Cadene/pretrained-models.pytorch/Model Type: Standard training.

resnet50-smoothing_adversarial PGD_1step_eps_512_noise_1.00 https://github.com/
Hadisalman/smoothing—adversarial Model Type: Lp adversarially robust. During
evaluation, we called predict with alpha=1 and n=100.

resnet50_imagenet_subsample_1_of_16_batch64 _original_images https://github.com/
Cadene/pretrained-models.pytorch/Model Type: Standard training.

resnet50_with_defocus_blur_.aws https://github.com/Cadene/pretrained-models.
pytorch/Model Type: Other robustness intervention.

resnetS0_imagenet_subsample_1_of_32_batch64 _original_images https://github.com/
Cadene/pretrained-models.pytorch/Model Type: Standard training.
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Note about the FixRes models: the github repo for the fixres code uses a slightly different implemen-
tation of the Resize () method than the PyTorch default. Our testbed was built with the default
resizing method, and thus the topl numbers we report here are around 0.35% lower than what is
claimed in the paper. We plan to fix this soon.

A.6 DETAILS ON OUR EVALUATION SETTINGS

A.6.1 REAL DISTRIBUTION SHIFT

For Imagenetv2, we evaluate on the following datasets: imagenetv2-matched-frequency,
imagenetv2-matched-frequency-format-val, imagenetv2-threshold-0.7, imagenetv2-threshold-0.7-
format-val, imagenetv2-top-images, imagenetv2-top-images-format-val. The format-val versions
are variants of the original dataset encoded with jpeg settings similar to the original one. Unless oth-
erwise stated, results in our paper referring to imagenetv2 are for imagenetv2-matched-frequency-
format-val.

For Imagenet-Vid-Robust, we look at the 1109 anchor frames in the dataset and evaluate the benign
accuracy for pm0O. For pm10, we look at up to 20 nearest frames marked “similar” to the anchor
frame in the dataset and count it as a misclassification if any one of the predictions is wrong.

A.6.2 PGD

We run the following 4 pgd attacks one each model with these settings:
pgd.linf.eps0.5 Norm: 0.5/255, Step size: 5.88e-5, Num steps: 100
pgd.linf.eps2 Norm: 2/255, Step size: 2.35e-4, Num steps: 100
pgd.12.eps0.1 Norm: 0.1, Step size: 0.01, Num steps: 100
pgd.12.eps0.5 Norm: 0.5, Step size: 0.05, Num steps: 100

Most of the models were attacked with only 10% of the dataset (in a class-balanced manner) due to
computational constraints. These models are displayed with larger error bars in the plots.

A.6.3 CORRUPTIONS

We include 38 different corruption types: greyscale, gaussian noise (in memory and on disk), shot
noise (in memory and on disk), impulse noise (in memory and on disk), speckle noise (in memory
and on disk), gaussian blur (in memory and on disk), defocus blur (in memory and on disk), glass
blur (in memory), motion blur (in memory and on disk), zoom blur (in memory and on disk), snow
(in memory and on disk), frost (in memory and on disk), fog (in memory and on disk), spatter
(in memory and on disk), brightness (in memory and on disk), contrast (in memory and on disk),
saturate (in memory and on disk), pixelate (in memory and on disk), jpeg compression (in memory
and on disk), elastic transform (in memory and on disk).

For each corruption, we average over the five severities. Unfortunately we were not able to im-
plement glass blur efficiently in memory and so that entry is missing. We make sure to make the
distinction between in memory corruptions, for which we provide custom fast gpu implementations,
and on disk corruptions, for which we use the publicly available imagenet-c dataset, since it was re-
ported in|Ford et al.|(2019)) that jpeg compression can have a significant impact on model accuracies
(indeed, as evidenced by Figure [22).

A.6.4 STYLIZED IMAGENET

We use the stylized imagenet dataset used by (Geirhos et al.,[2019) as another evaluation dataset.

A.6.5 125 CLASS EVALUATION

For the 125 class evaluation, we evaluate on the following classes from ILSVRC:

n01494475 n01630670 n01644373 n01644900 n01669191 n01677366
n01697457 n01742172 n01796340 n01829413 n01871265 n01924916
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n01944390
n02033041
n02093428
n02097474
n02112706
n02165105
n02483708
n02777292
n02837789
n02977058
n03240683
n03379051
n03670208
n03838899
n03908714
n04041544
n04149813
n04330267
n04505470

n01978287
n02037110
n02093991
n02100236
n02113023
n02219486
n02486261
n0279099¢6
n02859443
n03000247
n03250847
n03447721
n03673027
n03840681
n03920288
n04067472
n04204238
n04335435
n07715103

n01980166
n02056570
n02095314
n02100583
n02114855
n02226429
n02488291
n02795169
n02892201
n03110669
n03272562
n03492542
n03692522
n03868242
n03933933
n04074963
n04208210
n04336792
n07875152

n02007558
n02071294
n02095570
n02102318
n02128925
n02264363
n02492035
n02808440
n02895154
n03201208
n03297495
n03527444
n03710193
n03873416
n04004767
n04099969
n04229816
n04355338
n09256479

41

n02009229
n02085936
n02096294
n02105056
n02134418
n02280649
n02641379
n02814533
n02948072
n03208938
n03337140
n03535780
n03775071
n03877845
n04009552
n04125021
n04266014
n04417672
nl2620546

n02017213
n02086079
n02096437
n02107574
n02138441
n02441942
n02730930
n02814860
n02951585
n03216828
n03376595
n03642806
n03832673
n03884397
n04037443
n04141975
n04310018
n04479046



	Introduction
	Experimental setup
	Types of Distribution Shifts
	Natural Distribution Shifts
	Synthetic Distribution Shifts

	Classification models

	Measuring the Effect of Robustness Interventions
	Does synthetic robustness predict natural robustness?
	What helps with natural distribution shift?
	How does the amount of training data impact robustness?
	Related work
	Conclusion
	Appendix
	Synthetic corruptions vs. effective robustness (Imagenet-vid-robust)
	Synthetic robustness vs. effective natural robustness
	Original accuracies vs. distribution shift accuracies
	Corruption Robustness
	Details on our models
	Full list of models evaluated in testbed

	Details on our evaluation settings
	Real distribution shift
	PGD
	Corruptions
	Stylized Imagenet
	125 class evaluation



