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ABSTRACT

In this paper, we develop an unsupervised generative clustering framework that
combines variational information bottleneck and the Gaussian Mixture Model.
Specifically, in our approach we use the variational information bottleneck method
and model the latent space as a mixture of Gaussians. We derive a bound on the
cost function of our model that generalizes the evidence lower bound (ELBO); and
provide a variational inference type algorithm that allows to compute it. In the
algorithm, the coders’ mappings are parametrized using neural networks and the
bound is approximated by Markov sampling and optimized with stochastic gradient
descent. Numerical results on real datasets are provided to support the efficiency
of our method.

1 INTRODUCTION

Clustering consists in partitioning a given data set into various groups (clusters) based on some
similarity metric, such as Euclidean distance, L1 norm, L2 norm, L∞ norm, the popular logarithmic
loss measure or others. The principle is that each cluster should contain elements of the data that are
closer to each other than to any other element outside that cluster, in the sense of the defined similarity
measure. If the joint distribution of the clusters and data is not known, one should operate blindly in
doing so, i.e., using only the data elements at hand; and the approach is called unsupervised clustering.
Unsupervised clustering is perhaps one of the most important tasks of unsupervised machine learning
algorithms nowadays, due to a variety of application needs and connections with other problems.

Examples of unsupervised clustering algorithms include the so-popular K-means (Hartigan & Wong,
1979) and expectation maximization (EM) (Dempster et al., 1977). TheK-means algorithm partitions
the data in a manner that the Euclidean distance among the members of each cluster is minimized.
With the EM algorithm, the underlying assumption is that the data comprises a mixture of Gaussian
samples, namely a Gaussian Mixture Model (GMM); and one estimates the parameters of each com-
ponent of the GMM while simultaneously associating each data sample to one of those components.
Although they offer some advantages in the context of clustering, these algorithms suffer from some
strong limitations. For example, it is well known that the K-means is highly sensitive to both the
order of the data and scaling; and the obtained accuracy depends strongly on the initial seeds (in
addition to that it does not predict the number of clusters or K-value). The EM algorithm suffers
mainly from low convergence, especially for high dimensional data.

Recently, a new approach has emerged that seeks to perform inference on a transformed domain
(generally referred to as latent space), not the data itself. The rationale is that because the latent space
often has fewer dimensions it is more convenient computationally to perform inference (clustering)
on it rather than on the high dimensional data directly. A key aspect then is how to design a latent
space that is amenable to accurate low-complex unsupervised clustering, i.e., one that preserves only
those features of the observed high dimensional data that are useful for clustering while removing
out all redundant or non-relevant information. Along this line of work, we can mention (Ding & He,
2004) which utilizes Principal Component Analysis (PCA) (Wold et al., 1987) for dimensionality
reduction followed by K-means for clustering the obtained reduced dimension data; or (Roweis,
1997) which uses a combination of PCA and the EM algorithm. Other works that use alternatives
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for the linear PCA include Kernel PCA (Hofmann et al., 2008), which employs PCA in a non-linear
fashion to maximize variance in the data.

The usage of deep neural networks (DNN) for unsupervised clustering of high dimensional data
on a lower dimensional latent space has attracted considerable attention, especially with the advent
of autoencoder (AE) learning and the development of powerful tools to train them using standard
backpropagation techniques (Kingma & Welling, 2014; Rezende et al., 2014). Advanced forms
include Variational autoencoders (VAE) (Kingma & Welling, 2014; Rezende et al., 2014) which
are generative variants of AE that regularize the structure of the latent space and the more general
Variational Information Bottleneck (VIB) of (Alemi et al., 2017) which is a technique that is based
on the Information Bottleneck method (Tishby et al., 1999) and seeks a better trade-off between
accuracy and regularization than VAE via the introduction of a Lagrange-type parameter s which
controls that trade-off and whose optimization is similar to deterministic annealing (Slonim, 2002) or
stochastic relaxation.

In this paper, we develop an unsupervised generative clustering framework that combines VIB and the
Gaussian Mixture Model. Specifically, in our approach we use the variational information bottleneck
method and model the latent space as a mixture of Gaussians. The encoder and decoder of the model
are parametrized using neural networks (NN). The cost-function is calculated approximatively by
Markov sampling and optimized with stochastic gradient descent. Furthermore, the application of
our algorithm to the unsupervised clustering of various datasets, including the MNIST (Lecun et al.,
1998), REUTERS (Lewis et al., 2004) and STL-10 (Coates et al., 2011), allows a better clustering
accuracy than previous state of the art algorithms. For instance, we show that our algorithm performs
better than the variational deep embedding (VaDE) algorithm of (Jiang et al., 2017) which is based
on VAE and performs clustering by maximizes the ELBO and can be seen as a specific case of our
algorithm (Section 3.1). Our algorithm also generalizes the VIB of (Alemi et al., 2017) which models
the latent space as an isotropic Gaussian which is generally not expressive enough for the purpose of
unsupervised clustering. Other related works, but which are of lesser relevance to the contribution
of this paper, are the deep embedded clustering (DEC) of (Xie et al., 2016), the improved deep
embedded clustering (IDEC) of (Guo et al., 2017) and (Dilokthanakul et al., 2017). For a detailed
survey of clustering with deep learning, the readers may refer to (Min et al., 2018).

To the best of our knowledge, our algorithm performs the best in terms of clustering accuracy by using
deep neural networks without any prior knowledge regarding the labels (except the usual assumption
regarding the number of the classes) compared to the state-of-the-art algorithms of this category. In
order to achieve the aforementioned accuracy, i) we derive a cost-function that contains the IB hyper
parameter s that controls the trade-off between over-fit and generalization of the model and we used
an approximation of KL divergence that avoid assumptions which do not hold in the beginning of the
learning process and lead to convergence issues; ii) evaluate the hyper-parameter s by following an
annealing approach that improves both the convergence and the accuracy of the proposed algorithm.

Encoder

fθ

Decoder

gφ

U ∼∑
c πc N (u;µc,Σc)

X X̂

Figure 1: Variational Information Bottleneck with Gaussian Mixtures.

2 PROBLEM DEFINITION AND MODEL

Consider a dataset that is composed of N samples {xi}Ni=1 which we wish to partition into |C| ≥ 1
clusters. Let C = {1, . . . , |C|} be the set of all possible clusters; and C designate a categorical
random variable that lies in C and stands for the index of the actual cluster. If X is a random variable
that models elements of the dataset, given X = xi induces a probability distribution on C which
the learner should learn. Thus, mathematically the problem is that of estimating the values of the
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unknown conditional probability PC|X(·|xi) for all elements xi of the dataset. The estimates are
sometimes referred to as the assignment probabilities.

As mentioned previously, we use the VIB framework and model the latent space as a GMM. The
resulting model is depicted in Figure 1, where the parameters πc, µc, Σc, for all values of c ∈ C,
are to be optimized jointly with those of the employed NNs as instantiation of the coders. Also,
the assignment probabilities are estimated based on the values of latent space vector instead of the
observation themselves, i.e., PC|U = QC|U. In the rest of this section, we elaborate on the inference
and generative network models for our method, which are illustrated below.

C X U
PX|C PU|X

Figure 2: Inference Network

C U X
QU|C QX|U

Figure 3: Generative Network

2.1 INFERENCE NETWORK MODEL

We assume that an observed data x is generated from a GMM with |C| components. Then, the latent
representation u is inferred according the following procedure:

1. One of the components of the GMM is chosen according to a categorical variable C.

2. The data x is generated from the c-th competent of the GMM, i.e., PX|C ∼ N (x; µ̃c, Σ̃c).

3. Encoder maps x to a latent representation u according to PU|X ∼ N (µθ,Σθ).

3.1. The encoder is modeled with a DNN fθ which maps x to the parameters of a Gaussian
distribution, i.e., [µθ,Σθ] = fθ(x).

3.2. The representation u is sampled from N (µθ,Σθ).

For the inference network, shown in Figure 2, the following Markov chain holds

C −
−X−
−U . (1)

2.2 GENERATIVE NETWORK MODEL

Since encoder extracts useful representations of the dataset and we assume that the dataset is generated
from a GMM, we model our latent space also with a mixture of Gaussians. To do so, the categorical
variable C is embedded with the latent variable U. The reconstruction of the dataset is generated
according to the following procedure:

1. One of the components of the GMM is chosen according to a categorical variable C, with a
prior distribution QC .

2. The representation u is generated from the c-th component, i.e., QU|C ∼ N (u;µc,Σc).

3. The decoder maps the latent representation u to x̂ which is the reconstruction of the source
x by using the mapping QX|U.

3.1. The decoder is modeled with a DNN gφ, that maps u to the estimate x̂, i.e., [x̂] = gφ(u).

For the generative network, shown in Figure 3, the following Markov chain holds

C −
−U−
−X . (2)

3 PROPOSED METHOD

In this section we present our clustering method. First, we provide a general cost function for the
problem of the unsupervised clustering that we study here based on the variational IB framework; and
we show that it generalizes the ELBO bound developed in (Jiang et al., 2017). We then parametrize
our model using NNs whose parameters are optimized jointly with those of the GMM. Furthermore,
we discuss the influence of the hyper-parameter s that controls optimal trade-offs between accuracy
and regularization.
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3.1 BRIEF REVIEW OF VARIATIONAL INFORMATION BOTTLENECK FOR UNSUPERVISED
LEARNING

As described in Chapter 2, the stochastic encoder PU|X maps the observed data x to a representation
u. Similarly, the stochastic decoder QX|U assigns an estimate x̂ of x based on the vector u. As
per the IB method (Tishby et al., 1999) a suitable representation U should strike the right balance
between capturing all information about the categorical variable C that is contained in the observation
X and using the most concise representation for it. This leads to maximizing the following Lagrange
problem

Ls(P) = I(C; U)− sI(X; U) , (3)
where s ≥ 0 designates the Lagrange multiplier and for convenience P denotes the conditional
distribution PU|X.

Instead of equation 3 which is not always computable in our unsupervised clustering setting, we use
a modified version of it (so-called unsupervised IB objective (Alemi et al., 2017)) given by

L̃s(P) : = −H(X|U)− s[H(U)−H(U|X)] (4)

= EPX

[
EPU|X [logPX|U + s logPU − s logPU|X]

]
. (5)

For a variational distribution QU on U (instead of the unknown PU) and a variational stochastic
decoder QX|U (instead of the unknown optimal decoder PX|U), let Q := {QX|U, QU}. Also, let

LVB
s (P,Q) := EPX

[
EPU|X [logQX|U]− sDKL(PU|X‖QU)

]
. (6)

Lemma 1. For given P, we have

LVB
s (P,Q) ≤ L̃s(P), for all Q .

In addition, there exists a unique Q that achieves the maximum maxQ LVB
s (P,Q) = L̃s(P), and is

given by
Q∗X|U = PX|U , Q∗U = PU .

Using Lemma 1, maximization of equation 4 can be written in term of the variational IB cost as
follows

max
P
L′s(P) = max

P
max
Q
LVB
s (P,Q) . (7)

Remark 1. As we already mentioned in the beginning of this chapter, the related work (Jiang et al.,
2017) performs unsupervised clustering by combining VAE with GMM. Specifically, it maximizes the
following ELBO bound

LVaDE
1 := EPX

[
EPU|X [logQX|U]−DKL(PC|X‖QC)− EPC|X [DKL(PU|X‖QU|C)]

]
. (8)

Let, for an arbitrary non-negative parameter s, LVaDE
s be a generalization of the ELBO bound

in equation 8 of (Jiang et al., 2017) given by

LVaDE
s := EPX

[
EPU|X [logQX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
. (9)

Investigating the RHS of equation 9, we get

LVB
s (P,Q) = LVaDE

s + sEPX

[
EPU|X [DKL(PC|X‖QC|U)]

]
. (10)

Thus, by the non-negativity of relative entropy it is clear that LVaDE
s is a lower bound on LVB

s (P,Q).
Also, if variational distribution Q is such that the conditional marginal QC|U is equal to PC|X the
bound is tight since the relative entropy term is zero in this case.

3.2 PROPOSED ALGORITHM: VIB-GMM

In order to compute equation 7, we parametrize the distributions PU|X and QX|U using DNNs. For
instance, let the stochastic encoder PU|X be a DNN fθ and the stochastic decoder QX|U be a DNN
gφ. That is

Pθ(u|x) = N (u;µθ,Σθ) , where [µθ,Σθ] = fθ(x) ,

Qφ(x|u) = gφ(u) = [x̂] ,
(11)
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where θ and φ are the weight and bias parameters of the DNNs. Furthermore, the latent space is
modeled as a GMM with |C| components with parameters ψ := {πc,µc,Σc}|C|c=1, i.e.,

Qψ(u) =
∑

c

πc N (u;µc,Σc) . (12)

Using the parametrizations above, the optimization of equation 7 can be rewritten as

max
θ,φ,ψ

LNN
s (θ, φ, ψ) (13)

where the cost function LNN
s (θ, φ, ψ) given by

LNN
s (θ, φ, ψ) := EPX

[
EPθ(U|X)[logQφ(X|U)]− sDKL(Pθ(U|X)‖Qψ(U))

]
. (14)

Then, for a given observations of N samples, i.e., {xi}Ni=1, equation 13 can be approximated in terms
of an empirical cost as follows

max
θ,φ,ψ

1

n

n∑

i=1

Lemp
s,i (θ, φ, ψ) , (15)

where Lemp
s,i (θ, φ, ψ) is the empirical cost for the i-th observation xi, and given by

Lemp
s,i (θ, φ, ψ) = EPθ(Ui|Xi)[logQφ(Xi|Ui)]− sDKL(Pθ(Ui|Xi)‖Qψ(Ui)) . (16)

Furthermore, the first term of the RHS of equation 16 can be computed using Monte Carlo sampling
and the re-parametrization trick (Kingma & Welling, 2014). In particular, Pθ(u|x) can be sampled
by first sampling a random variable Z with distribution PZ, i.e., PZ = N (0, I), then transforming
the samples using some function f̃θ : X × Z → U , i.e., u = f̃θ(x, z). Thus,

EPθ(Ui|Xi)[logQφ(Xi|Ui)] =
1

M

M∑

m=1

log q(xi|ui,m), ui,m = µθ,i+Σ
1
2

θ,i·εm, εm ∼ N (0, I) ,

where M is the number of samples for the Monte Carlo sampling step.

The second term of the RHS of equation 16 is the KL divergence between a single component
multivariate Gaussian and a Gaussian Mixture Model with |C| components. An exact closed-form
solution for the calculation of this term does not exist. However, a variational lower bound approxi-
mation (Hershey & Olsen, 2007) of it can be obtained as

DKL(Pθ(Ui|Xi)‖Qψ(Ui)) = − log

|C|∑

c=1

πc exp (−DKL(N (µθ,i,Σθ,i)‖N (µc,Σc)) . (17)

In particular, in the specific case in which the covariance matrices are diagonal, i.e., Σθ,i :=
diag({σ2

θ,i,j}nuj=1) and Σc := diag({σ2
c,j}nuj=1), with nu denoting the latent space dimension, equa-

tion 17 can be computed as follows

DKL(Pθ(Ui|Xi)‖Qψ(Ui))

= − log

|C|∑

c=1

πc exp

(
− 1

2

nu∑

j=1

[ (µθ,i,j − µc,j)2
σ2
c,j

+ log
σ2
c,j

σ2
θ,i,j

− 1 +
σ2
θ,i,j

σ2
c,j

])
, (18)

where µθ,i,j and σ2
θ,i,j are the mean and variance of the i-th representation in the j-th dimension of

the latent space. Furthermore, µc,j and σ2
c,j represent the mean and variance of the c-th component

of the GMM in the j-th dimension of the latent space.

Finally, we train NNs to maximize the cost function equation 14 over the parameters θ, φ, as well
as those ψ of the GMM. For the training step, we use the ADAM optimization tool (Kingma & Ba,
2015). The training procedure is detailed in Algorithm 1.
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Once our model is trained, we assign the given dataset into the clusters. As mentioned in Section 2,
we do the assignment from the latent representations, i.e., QC|U = PC|X. Hence, the probability that
the observed data xi belongs to the c-th cluster is computed as follows

p(c|xi) = q(c|ui) =
qψ?(c)qψ?(ui|c)

qψ?(ui)
=

π?cN (ui;µ
?
c ,Σ

?
c)∑

c π
?
cN (ui;µ?c ,Σ

∗
c)
, (19)

where ? indicates optimal values of the parameters as found at the end of the training phase. Finally,
the right cluster is picked based on the largest assignment probability value.

Algorithm 1 VIB-GMM algorithm for unsupervised learning

1: input: Dataset D := {xi}ni=1, parameter s ≥ 0.
2: output: Optimal DNN weights θ?, φ? and GMM parameters ψ? = {π?c , µ?c , Σ?

c}|C|c=1.
3: initialization Initialize θ, φ, ψ.
4: repeat
5: Randomly select b mini-batch samples {xi}bi=1 from D.
6: Draw m random i.i.d samples {zj}mj=1 from PZ.
7: Compute m samples ui,j = f̃θ(xi, zj)
8: For the selected mini-batch, compute gradients of the empirical cost equation 15.
9: Update θ, φ, ψ using the estimated gradient (e.g. with SGD or ADAM).

10: until convergence of θ, φ, ψ.

Remark 2. It is worth to mention that with the use of the KL approximation in equation 17, our
algorithm does not use the assumption PC|U = QC|U (not as in Jiang et al. (2017)), which does not
hold in the beginning of the training phase and leads to convergence issues. This assumption is only
used in the final assignment after the training phase is over.

3.3 EFFECT OF THE HYPER-PARAMETER

Algorithm 2 Annealing Algorithm Pseudo-Code

input: Dataset D := {xi}ni=1,
hyper-parameter interval [smin, smax].

output: Optimal DNN weights θ?, φ?, GMM
parameters ψ? = {π?c , µ?c , Σ?

c}|C|c=1,
assignment probability PC|X.

initialization Initialize θ, φ, ψ.
repeat

Apply VIB-GMM algorithm.
Update ψ, θ, φ.
Update s, e.g., s = (1 + εs)sold.

until s does not exceed smax.

As we already mentioned, the hyper-parameter
s controls the trade-off between the relevance
of the representation U and its complexity. As
it can be seen from equation 14 for small val-
ues of s, it is the cross-entropy term that dom-
inates, i.e., the algorithm trains the parameters
so as to reproduce X as accurate as possible.
For large values of s, however, it is most im-
portant for the NN to produce an encoded ver-
sion of X whose distribution matches the prior
distribution of the latent space, i.e., the term
DKL(Pθ(U|X)‖Qψ(U)) is nearly zero.

In the beginning of the training process, the
GMM components are randomly selected; and
so starting with a large value of the hyper-parameter s is likely to steer the solution towards an
irrelevant prior. Hence, for the tunning of the hyper-parameter s in practice it is more efficient to start
with a small value of s and gradually increase it with the number of epochs. This has the advantage to
avoid possible local minimas, an aspect that is reminiscent of deterministic annealing (Slonim, 2002),
where s plays the role of the temperature parameter. The experiments that will be reported in the
next section show that proceeding in the above described manner for the selection of the parameter
s helps getting better accuracy results and better robustness to the initialization (i.e., no need for a
strong pretraining). A pseudo-code for annealing is given in Algorithm 2. We note that tuning s is
very critical, such that the step size εs in update of s should be chosen carefully, otherwise phase
transitions might be skipped that would cause a bad ACC score.

4 EXPERIMENTS

4.1 DESCRIPTION OF USED DATASETS

In our empirical experiments, we apply our algorithm to the clustering of the following datasets.
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MNIST: A dataset of gray-scale images of 70000 handwritten digits of dimensions 28× 28 pixel.

STL-10: A dataset of color images collected from 10 categories. Each category consists of 1300
images of size of 96× 96 (pixels) ×3 (rgb code). Hence, the original input dimension nx is 27648.
For this dataset, we use a pretrained convolutional NN model, i.e., ResNet-50 (He et al., 2016) to
reduce the dimensionality of the input. This preprocessing reduces the input dimension to 2048.
Then, our algorithm and other baselines are used for clustering.

REUTERS10K: A dataset that is composed of 810000 English stories labeled with a category
tree. As in (Xie et al., 2016), 4 root categories (corporate/industrial, government/social, markets,
economics) are selected as labels and all documents with multiple labels are discarded. Then, tf-idf
features are computed on the 2000 most frequently occurring words. Finally, 10000 samples are
taken randomly, which are referred to as REUTERS10K dataset.

4.2 NETWORK SETTINGS AND OTHER PARAMETERS

We use the following network architecture: the encoder is modeled with NNs with 3 hidden layers
with dimensions nx−500−500−2000−J , where nx is the input dimension and nu is the dimension
of the latent space. The decoder consists of NNs with dimensions nu − 2000− 500− 500− nx. All
layers are fully connected. For comparison purposes, we chose the architecture of the hidden layers as
well as the dimension of the latent space nu = 10 to coincide with those made for the DEC algorithm
of (Xie et al., 2016) and the VaDE algorithm of (Jiang et al., 2017). All except the last layers of the
encoder and decoder are activated with ReLU function. For the last (i.e., latent) layer of the encoder
we use a linear activation; and for the last (i.e., output) layer of the decoder we use sigmoid function
for MNIST and linear activation for the remaining datasets. The batch size is 100 and the variational
bound equation 15 is maximized by the Adam optimizer of (Kingma & Ba, 2015). The learning rate
is initialized with 0.002 and decreased gradually every 20 epochs with a decay rate of 0.9 until it
reaches a small value (0.0005 is our experiments). The reconstruction loss is calculated by using the
cross-entropy criterion for MNIST and mean squared error function for the other datasets.

MNIST STL-10 REUTERS10K
GMM 50.4 77.1 53.74
DEC 84.3‡ 80.6† 72.17‡

VaDE 94.5† 84.3 79.8†
VIB-GMM 96.2 91.6 80.4
† values are taken from VaDE (Jiang et al., 2017)
‡ values are taken from DEC (Xie et al., 2016)

Table 1: Comparison of clustering accuracy of various algorithms.
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Figure 6: Visualization of the latent space before training; and after 1, 5 and 500 epochs.

4.3 CLUSTERING ACCURACY

We evaluate the performance of our algorithm in terms of the so-called unsupervised clustering
accuracy (ACC), which is a widely used metric in the context of unsupervised learning (Min et al.,
2018). For comparison purposes, we also present those of algorithms from previous art.

For each of the aforementioned datasets, we run our VIB-GMM algorithm for various values of the
hyper-parameter s inside an interval [smin, smax], starting from the smaller valuer s1 and gradually
increasing the value of s every nepoch epochs. For the MNIST dataset, we set (smin, smax, nepoch) =
(1, 5, 500); and for the STL-10 dataset and the REUTERS10K datset we choose these parameters to
be (1, 20, 500) and (1, 5, 100), respectively. The obtained ACC accuracy results are reported in the
Table 1 from which it can be seen that our algorithm outperforms significantly the DEC algorithm
of (Xie et al., 2016) as well as the VaDE algorithm of (Jiang et al., 2017) and GMM on the same
datsets. Important to note, for the MNIST dataset the reported ACC accuracy of 96.2% using our VIB-
GMM algorithm is obtained as the best case run out of ten times run all with random initializations.
For instance, we do not use any pretrained values for the initialization of our algorithm in sharp
contrast with the VaDE of (Jiang et al., 2017) and the DEC of (Xie et al., 2016). For the STL-10
dataset, none of the compared algorithms use a pretrained network except the intimal ResNet-50 for
dimensionality reduction. For REUTERS10K, we used the same pretrain parameters as DEC and
VaDE. Figure 4 depicts the evolution of the ACC accuracy with iterations (number of epochs) for the
four compared algorithms.

Figure 5 shows the evolution of the reconstruction loss of our VIB-GMM algorithm for the STL-10
dataset, as a function of simultaneously varying values of the hyper-parameter s and the number of
epochs (recall that, as per-the described methodology, we start with s = s1 and we increase its value
gradually every nepoch = 500 epochs). As it can be seen from the figure, the few first epochs are spent
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almost entirely on reducing the reconstruction loss (i.e., a fitting phase) and most of the remaining
epochs are spent in making the found representation more concise (i.e., smaller KL-divergence). This
is reminiscent of the two-phase (fitting v.s. compression) that was observed for supervised learning
using VIB in (Schwartz-Ziv & Tishby, 2017).

4.4 VISUALIZATION ON THE LATENT SPACE

In this section, we investigate the evolution of the unsupervised clustering of the STL-10 dataset on
the latent space using our VIB-GMM algorithm. For this purpose, we find it convenient to visualize
the latent space through application of the t-SNE algorithm of (van der Maaten & Hinton, 2008)
in order to generate meaningful representations in a two-dimensional space. Figure 6 shows 4000
randomly chosen latent representations before the start of the training process and respectively after
1, 5 and 500 epochs. The shown points (with a · marker in the figure) represent latent representations
of data samples whose labels are identical. Colors are used to distinguish between clusters. Crosses
(with an x marker in the figure) correspond to the centroids of the clusters. More specifically,
Figure 6-(a) shows the initial latent space before the training process. If the clustering is performed
on the initial representations it allows ACC accuracy of as small as 10%, i.e., as bad as a random
assignment. Figure 6-(b) shows the latent space after one epoch, from which a partition of some of
the points starts to be already visible. With five epochs, that partitioning is significantly sharper and
the associated clusters can be recognized easily. Observe, however, that the cluster centers seem still
not to have converged. With 500 epochs, the ACC accuracy of our algorithm reaches %91.6 and the
clusters and their centroids are neater as visible from Figure 6-(d).
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A THE PROOF OF LEMMA 1

First, we expand L̃s(P) as follows

L̃s(P) =−H(X|U)− sI(X; U)

=−H(X|U)− s[H(U)−H(U|X)]

=

∫∫

ux

p(u,x) log p(x|u) du dx

+ s

∫

u

p(u) log p(u) du− s
∫∫

ux

p(u,x) log p(u|x) du dx.

Then, LVB
s (P,Q) is defined as follows

LVB
s (P,Q) :=

∫∫

ux

p(u,x) log q(x|u) du dx

+ s

∫

u

p(u) log q(u) du− s
∫∫

ux

p(u,x) log p(u|x) du dx. (20)
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Hence, we have the following relation

L̃s(P)− LVB
s (P,Q) = EPX

[DKL(PX|U‖QX|U)] + sDKL(PU‖QU) ≥ 0

where equality holds under equalities QX|U = PX|U and QU = PU. We note that s ≥ 0.

B THE PROOF OF ALTERNATIVE EXPRESSION LVADE
s

Here we show how we obtained equation 10.

To do so,

LVaDE
s = EPX

[
EPU|X [logQX|U]− sDKL(PU|X‖QU)− sEPU|X

[
DKL(PC|X‖QC|U)

]

= EPX
[
EPU|X [logQX|U]

]
− s

∫

x

p(x)

∫

u

p(u|x) log
p(u|x)

q(u)
du dx

− s
∫

x

p(x)

∫

u

p(u|x)
∑

c

p(c|x) log
p(c|x)

q(c|u)
du dx

(a)
= EPX

[
EPU|X [logQX|U]

]
− s

∫∫

ux

p(x)p(u|x) log
p(u|x)

q(u)
du dx

− s
∫∫

ux

∑

c

p(x)p(u|c,x)p(c|x) log
p(c|x)

q(c|u)
du dx

= EPX
[
EPU|X [logQX|U]

]
− s

∫∫

ux

∑

c

p(u, c,x) log
p(u|x)p(c|x)

q(u)q(c|u)
du dx

= EPX
[
EPU|X [logQX|U]

]
− s

∫∫

ux

∑

c

p(u, c,x) log
p(c|x)

q(c)

p(u|x)

q(u|c) du dx

= EPX
[
EPU|X [logQX|U]

]
− s

∫

x

∑

c

p(c,x) log
p(c|x)

q(c)
dx

− s
∫∫

ux

∑

c

p(x)p(c|x)p(u|c,x) log
p(u|x)

q(u|c) du dx

(b)
= EPX

[
EPU|X [logQX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]

(c)
= LVB

s (P,Q)− sEPX

[
EPU|X

[
DKL(PC|X‖QC|U)

]]
,

where (a) and (b) follow due to the Markov chain C −
−X−
−U; (c) follows from the definition of
LVB
s (P,Q) in equation 6.

C KL DIVERGENCE BETWEEN MULTIVARIATE GAUSSIAN DISTRIBUTIONS

The KL divergence between two multivariate Gaussian distributions P1 ∼ N (µ1,Σ1) and
P2 ∼ N (µ2,Σ2) in RJ is

DKL(P1‖P2) =
1

2

(
(µ1 −µ2)TΣ−12 (µ1 −µ2) + log |Σ2| − log |Σ1| − J + tr(Σ−12 Σ1)

)
. (21)

For the case in which Σ1 and Σ2 covariance matrices are diagonal, i.e., Σ1 := diag({σ2
1,j}Jj=1) and

Σ2 := diag({σ2
2,j}Jj=1), equation 21 boils down to the following

DKL(P1‖P2) =
1

2

( J∑

j=1

(µ1,j − µ2,j)
2

σ2
2,j

+ log
σ2
2,j

σ2
1,j

− 1 +
σ2
1,j

σ2
2,j

)
. (22)
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D KL DIVERGENCE BETWEEN GAUSSIAN MIXTURE MODELS

An exact close form for the calculation of the KL divergence between two Gaussian mixture models
does not exist. In this paper, we use a variational lower bound approximation for calculations of KL
between two Gaussian mixture models. Let f and g be GMMs and the marginal densities of x under
f and g are

f(x) =

M∑

m=1

ωmN (x;µf
m,Σ

f
m) =

M∑

m=1

ωmfm(x)

g(x) =

C∑

C=1

πcN (x;µg
c ,Σ

g
c) =

C∑

c=1

πcgc(x).

The KL divergence between two Gaussian mixtures f an g can be approximated as follows

DvKL(f‖g) :=

M∑

m=1

ωm log

∑
m′∈M\m ωm′ exp (−DKL(fm‖fm′))
∑C
c=1 πc exp (−DKL(fm‖gc))

. (23)

In this paper, we are interested, in particular, M = 1. Hence, equation 23 simplifies to

DvKL(f‖g) = − log

C∑

c=1

πc exp (−DKL(f‖gc)) , (24)

where DKL(·‖·) is the KL divergence between single component multivariate Gaussian distribution,
defined as in equation 21.
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