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ABSTRACT

Understanding object motion is one of the core problems in computer vision. It
requires segmenting and tracking objects over time. Significant progress has been
made in instance segmentation, but such models cannot track objects, and more
crucially, they are unable to reason in both 3D space and time. We propose a new
spatio-temporal embedding loss on videos that generates temporally consistent
video instance segmentation. Our model includes a temporal network that learns
to model temporal context and motion, which is essential to produce smooth em-
beddings over time. Further, our model also estimates monocular depth, with
a self-supervised loss, as the relative distance to an object effectively constrains
where it can be next, ensuring a time-consistent embedding. Finally, we show that
our model can accurately track and segment instances, even with occlusions and
missed detections, advancing the state-of-the-art on the KITTI Multi-Object and
Tracking Dataset.

1 INTRODUCTION

Explicitly predicting the motion of actors in a dynamic scene is a critical component of intelligent
systems. Humans can seamlessly track moving objects in their environment by using cues such as
appearance, relative distance, and temporal consistency. The world is rarely experienced in a static
way: motion (or its absence) provides essential information to understand a scene. Similarly, incor-
porating past context through a temporal model is essential to segment and track objects consistently
over time and through occlusions.

From a computer vision perspective, understanding object motion involves segmenting instances,
estimating depth, and tracking instances over time. Instance segmentation, which requires seg-
menting individual objects at the pixel level, has gained traction with challenging datasets such as
COCO (Lin et al., 2014), CityScapes (Cordts et al., 2016) and Mapillary Vistas (Neuhold et al.,
2017). Such datasets, which only contain single-frame annotations, do not allow the training of
video models with temporally consistent instance segmentation, nor does it allow self-supervised
monocular depth estimation, that necessitates consecutive frames. Yet, navigating in the real-world
involves a three-dimensional understanding of the other agents with consistent instance segmen-
tation and depth over time. More recently, a new dataset containing video instance segmentation
annotations was released, the KITTI Multi-Object and Tracking Dataset (Voigtlaender et al., 2019).
This dataset contains pixel-level instance segmentation on more than 8,000 video frames which
effectively enables the training of video instance segmentation models.

In this work, we propose a new spatio-temporal embedding loss that learns to map video-pixels to
a high-dimensional space1. This space encourages video-pixels of the same instance to be close to-
gether and distinct from other instances. We show that this spatio-temporal embedding loss, jointly
with a deep temporal convolutional neural network and self-supervised depth loss, produces consis-
tent instance segmentations over time. The embedding accumulates temporal context thanks to the
temporal model, as otherwise, the loss would only be based on appearance. The temporal model is
a causal 3D convolutional network, which is only conditioned on past frames to predict the current
embedding and is capable of real-time operation. Finally, we show that predicting depth improves
the quality of the embedding as knowing the distance to an instance constrains its future location
given that objects move smoothly in space.

1See a video demo of our model here: https://youtu.be/pqRPXRUlQ2I
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Figure 1: An illustration of our video instance segmentation model. Clockwise from top left: input
image, predicted multi-object instance segmentation, visualisation of the high-dimensional embed-
ding and predicted monocular depth.

To summarise our novel contributions, we:

• introduce a new spatio-temporal embedding loss for video instance segmentation,
• show that having a temporal model improves embedding consistency over time,
• improve how the embedding disambiguates objects with a self-supervised monocular depth

loss,
• handle occlusions, contrary to previous IoU based instance correspondence.

We demonstrate the efficacy of our method by advancing the state-of-the-art on the KITTI Multi-
Object and Tracking Dataset (Voigtlaender et al., 2019). An example of our model’s output is given
by Section 1.

2 RELATED WORK

Two main approaches exist for single-image instance segmentation: region-proposal based (He et al.,
2017; Chen et al., 2017; Liu et al., 2018) and embedding based (Brabandere et al., 2017; Kong &
Fowlkes, 2018; Fathi et al., 2017; Kendall et al., 2018). The former method relies on a region of
interest proposal network that first predicts bounding boxes then estimates the mask of the object
inside that bounding box. With such strategy, one pixel can belong to the overlap of many bounding
boxes, and it is largely unclear how correspondence between pixels can be learned. We instead
favour the embedding based method and extend it to space and time.

Capturing the inter-relations of objects using multi-modal cues (appearance, motion, interaction) is
difficult, as showcased by the Multi-Object Tracking (MOT) challenge (Xiang et al., 2015). MOT’s
goal is to infer the trajectories of objects and cover a wide range of applications such as biology
(birds (Luo et al., 2014), fish (Spampinato et al., 2008), robot navigation (Elfes, 1989)) and au-
tonomous driving (Petrovskaya & Thrun, 2009; Ess et al., 2009)). Sadeghian et al. (2017) and Son
et al. (2017) learned a representation of objects that follows the ”tracking-by-detection” paradigm
where the goal is to connect detections across video frames by finding the optimal assignment of a
graph-based tracking formulation (i.e. each detection is a node, and an edge is the similarity score
between two detections).

Collecting large-scale tracking datasets is necessary to train deep networks, but that process is expen-
sive and time-consuming. Vondrick et al. (2018) introduced video colourisation as a self-supervised
method to learn visual tracking. They constrained the colourisation problem of a grayscale image
by learning to copy colors from a reference frame, with the pointing mechanism of the model acting
as a tracker once it is fully trained. The colourisation model is more robust than optical flow based
models, especially in complex natural scenes with fast motion, occlusion and dynamic backgrounds.

Voigtlaender et al. (2019) extended the task of multi-object tracking to multi-object tracking and
segmentation (MOTS), by considering instance segmentations as opposed to 2D bounding boxes.
Motivated by the saturation of the bounding box level tracking evaluations (Pont-Tuset et al., 2017),
they introduced the KITTI MOTS dataset, which contains pixel-level instance segmentation on more
than 8,000 video frames. They also trained a model which extends Mask R-CNN (He et al., 2017) by
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incorporating 3D convolutions to integrate temporal information, and the addition of an association
head that produces an association vector for each detection, inspired from person re-identification
(Beyer et al., 2017). The temporal component of their model, however, is fairly shallow (one or two
layers), and is not causal, as future frames are used to segment past frames. More recently, Yang
et al. (2019) collected a large-scale dataset from short YouTube videos (3-6 seconds) with video
instance segmentation labels.

3 EMBEDDING-BASED VIDEO INSTANCE SEGMENTATION LOSS

Contrary to methods relying on region proposals (He et al., 2017; Chen et al., 2017), embedding-
based instance segmentation methods map all pixels of a given instance to a high dimensional space
with desirable properties. This overcomes several limitations of region-proposal methods. Firstly,
two objects may share the same bounding box and in that situation, it is ambiguous which object
mask the model should segment. Secondly, pixels can belong to two separate objects as each pre-
diction is done independently. Finally, the number of detected objects is limited by the fixed number
of proposals of the network.

We propose a spatio-temporal embedding loss that extends Brabandere et al. (2017)’s instance em-
bedding loss to video: each pixel belonging to a given instance in space and time is transformed into
a unique location in a high dimensional space, using cues such as appearance, context and motion.
More concretely, three terms are used in the loss: the attraction loss (Equation (1)) to ensure pix-
els from the same instance are close to each other, the repulsion loss (Equation (2)) to ensure two
separate instances are far from each other and a regularisation term (Equation (3)) so that instance
centers should not diverge too much from the origin.

Let us denote the number of instances, K, and the subset of indices, Sk, corresponding to all the
pixels belonging to instance k in the video. ∀i ∈ Sk, yi is the embedding for pixel position i and µk

is the mean embedding of instance k: µk = 1
|Sk|

∑
i∈Sk

yi.

La =
1

K

K∑
k=1

1

|Sk|
∑
i∈Sk

max(0, ‖µk − yi‖2 − ρa)2 (1)

Lr =
1

K(K − 1)

∑
k1 6=k2

max(0, 2ρr − ‖µk1 − µk2‖2)2 (2)

Lreg =
1

K

K∑
k=1

‖µk‖2 (3)

Where ρa denotes the attraction radius within a cluster: we want the embedding to be within ρa of
the centroid. 2ρr denotes the repulsion radius: we want the centroids of two different clusters to be
at least 2ρr apart. Therefore, if we set ρr > 2ρa, a given pixel embedding of a cluster will be closer
to all the pixel embeddings of its cluster than any other pixel embedding.

The spatio-temporal embedding loss is the weighted sum of the attraction, repulsion and regularisa-
tion losses:

Linstance = λ1La + λ2Lr + λ3Lreg (4)

During inference, each pixel of the considered frame is assigned to an instance by randomly picking
an unassigned point and aggregating close-by pixels with the mean-shift algorithm (Comaniciu &
Meer, 2002). In the ideal case, with a test loss of zero, this will result in perfect clustering if the
repulsion radius, ρr, is twice as large as the attraction radius, ρa.

3.1 SELF-SUPERVISED DEPTH ESTIMATION

The relative distance of objects is a strong cue to segment instances in space and time, as the motion
of objects is temporally smooth. Knowing the previous distance of an object relative to the camera
assists tracking as the future position will be constrained by the object’s current location.
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Depth estimation with supervised methods requires a vast quantity of high quality annotated data,
which is challenging to acquire in a range of environments as laser measurements can be imprecise
in natural scenes with motion and reflections. Because we have access to video in our instance
segmentation dataset, we can leverage self-supervised depth losses from monocular videos, where
the supervision comes from consecutive temporal frames. In addition to predicting the depth map,
ego-motion also has to be inferred, but only during training to constrain the depth network.

Following Zhou et al. (2017) and Godard et al. (2019), we train a depth network with a separate
pose estimation network with the assumption that the scenes are mostly rigid, therefore assuming
appearance change is mostly due to the camera motion. The training signal comes from novel view
synthesis: generation of new images of the scene from a different camera pose. Let us denote by
(I1, I2, ..., IT ) a sequence of images, with target view It and source view Is. The view synthesis
loss is given by:

Lvs =
∑
s6=t

e(It, Îs→t) (5)

with Îs→t the synthesised view of It from source image Is using the predicted depth D̂t and the pre-
dicted 4× 4 camera transformation T̂t→s predicted from the separate pose network. The projection
error function, e, is described by Zhao et al. (2017) as a weighted sum of L1, Structural Similarity
Index (SSIM) and a smoothness regularisation term. Let us denote by pt the coordinate of a pixel
in the target image It in homogeneous coordinates. Given the camera intrinsic matrix, K, and the
mapping ϕ from image plane to camera coordinate, the corresponding pixel in the source image is
provided by:

ps ∼ KT̂t→sϕ(K
−1pt, D̂t(pt)) (6)

The projected coordinates ps are continuous values, we use the Spatial Transformer Network (Jader-
berg et al., 2015) sampling mechanism to bilinearly interpolate the four neighbouring pixels to pop-
ulate the reconstructed image Is→t.

Some pixels are visible in the target image, but are not in the source images, leading to a large
projection error. As advocated by Godard et al. (2019), instead of summing, taking the minimum
projection error greatly reduces artifacts due to occlusion and results in sharper predictions. The
resulting view synthesis loss is:

Lvs = min
s6=t

e(It, Îs→t) (7)

The resulting video instance embedding loss is the weighted sum of the attraction, repulsion, regu-
larisation and geometric view synthesis losses:

Linstance = λ1La + λ2Lr + λ3Lreg + λ4Lvs (8)

4 MODEL ARCHITECTURE

Our model contains three components: an encoder, temporal model and the decoders. Each frame
is first encoded to a more powerful and compact representation, then the temporal model learns the
dynamics of the scene, and finally, the decoders output the instance embedding and depth prediction
as illustrated by Figure 2.

Encoder. We use a ResNet-18 (He et al., 2016) with 14.6M parameters as our encoder, which
allows the network to run in real-time on sequences of images.

Temporal Model. The scene dynamics is learned with a causal 3D convolutional network com-
posed of blocks of 3D residual convolutions (convolving in both space and time). For a given time
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Figure 2: Our video instance segmentation and depth model architecture. The embedding, zt, is
trained to explicitly encode appearance, motion and geometry cues in order to predict an instance
embedding and monocular depth prediction.

index, t, the network only convolves over images from indices s ≤ t to compute the temporal repre-
sentation zt. It therefore does not use future frames and is completely causal. The temporal model
does not decimate the spatial dimension of the encoding, but slowly accumulates information over
time from the previous encodings xs with s ≤ t. The temporal model is trained efficiently with
convolutions as all input images are available during training, enabling parallel computations with
GPUs. However, during inference, the model inherently has to be sequential, but can be made signif-
icantly faster by caching the convolutional features over time and eliminating redundant operations,
as proposed by Paine et al. (2016) for WaveNet (Oord et al., 2016).

Decoders. The decoders then map the temporal encoding zt to its instance embedding yt of
dimension p × height × width, with p the embedding dimension, and depth dt of dimension
1 × height × width. The embedding values belonging to the same instance are pushed together
in the high-dimensional space Rp, and pulled away from the other instances, over the whole video.
Therefore, tracking instances simply requires comparing the mean embedding of a newly segmented
instance with previously segmented instances. A distance lower than ρr indicates a match.

To segment the instances, we first run a background mask network (trained separately) then we
cluster the segmented embeddings using mean shift to discover dense regions of embeddings. Over
time, the embeddings are accumulated up until the sequence length corresponding to the sequence
length used during training to constrain instances spatio-temporally. This creates increasingly dense
regions over time resulting in a better clustering. To ensure that embeddings of a particular instance
can smoothly vary over time, the embeddings have a life span corresponding to the sequence length
of the model.

Pose and Mask Model. For the pose network we use a ResNet and for the mask network we use
an encoder-decoder model, also based on a ResNet. Further details are in Appendix A.1.

5 EXPERIMENTS

Next we describe experimental evidence which demonstrates the performance of our method by
advancing the state-of-the-art on the KITTI Multi-Object and Tracking Dataset (Voigtlaender et al.,
2019).

5.1 DATASET

The KITTI Multi-Object Tracking and Segmentation (MOTS) dataset (Voigtlaender et al., 2019)
contains 8,008 frames with instance segmentation labels resulting in a total of 26,899 annotated
cars. It is composed of 21 scenes with a resolution of 375× 1242 with consistent instance ID labels

5



Under review as a conference paper at ICLR 2020

across time, allowing the training of video instance segmentation models. The frames are annotated
at 10 frames per second, which is suitable for self-supervised monocular depth prediction.

Scenes Frames Annotations Avg. # frames Avg. # annotations
Train 12 5,027 18,831 419 1,569
Validation 9 2,981 8,068 331 896

Table 1: Details of the KITTI Multi-Object Tracking and Segmentation (MOTS) dataset.

The ApolloScape dataset (Huang et al., 2018) also contains video instance segmentation labels for
49,287 frames, but the annotations are not consistent in time, rendering the training of a temporal
model impossible. NuScenes (Caesar et al., 2019) features 1,000 scenes of 20 seconds with annota-
tions at 2Hz in a diverse range of environments (different weather, daytime, city) but only contains
bounding box labels, failing to represent the fine-grained details of instance segmentation. Tempo-
ral instance segmentation is also available on short snippets of the DAVIS dataset (Pont-Tuset et al.,
2017), but each snippet is recorded by a different camera and is too short to effectively learn a depth
model. For this reason, we focus on the KITTI MOTS dataset – it is the only dataset that contains
consistent video instance segmentation in a sufficient quantity to train deep models.

5.2 HYPER-PARAMETERS

We halve the input images to our encoder to use an input RGB resolution of 3 × 192 × 640. The
resulting encoding is 128×24×80. The decoders then map the temporal encoding zt to its instance
embedding yt of dimension p × 192 × 640, with p = 8 the embedding dimension, and depth dt of
dimension 1× 192× 640. Except for the experiments in Table 4, we train with a sequence length of
5 which corresponds to 0.5 seconds of temporal context since the videos are 10Hz.

In the loss function, we set the attraction radius ρa = 0.5 and repulsion radius ρr = 1.5. We weight
the losses with attraction and repulsion loss weight λ1 = λ2 = 1.0, regularisation loss λ3 = 0.001
and depth loss λ4 = 1.0.

5.3 METRICS

Let us define multi-object tracking and segmentation metrics, which measures the quality of the
segmentation as well as the consistency of the predictions over time. Contrary to bounding box
detection, where a ground truth box may overlap with several predicted boxes, in instance segmen-
tation, since each pixel is assigned to at most one instance, only one predicted mask can have an
Intersection over Union (IoU) larger than a given threshold with a given ground truth mask. Let us
denote by H the set of predicted ids, M the set of ground truth ids and g the mapping from hypothesis
masks to ground truth masks. g : H→M ∪ ∅ is defined as:

g(h) =

{
argmaxmIoU(h,m), ifmaxm IoU(h,m) > threshold
∅, otherwise

(9)

We thus define:

• True positives as: TP = {h ∈ H|g(h) 6= ∅}, correctly assigned predicted masks.
• False positives as: FP = {h ∈ H|g(h) = ∅}, predicted masks not assigned to any ground

truth mask.
• False negatives as: FN = {m ∈M|g−1(m) = ∅}, ground truth masks not covered by any

hypothesis mask.
• Soft number of true positives: ˜TP =

∑
h∈TP IoU(h, g(h))

Let the function pred : M → M ∪ ∅ map a ground truth mask to its latest tracked predecessor (∅ if
the ground truth mask is seen for the first time). The set IDS of ID switches is defined as the set of
ground truth masks whose predecessor was tracked by a different ID.

Following Voigtlaender et al. (2019), we define the following MOTS metrics: multi-object tracking
and segmentation precision (MOTSP), multi-object tracking and segmentation accuracy (MOTSA)
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and finally the soft multi-object tracking and segmentation accuracy (sMOTSA) that measures seg-
mentation as well as detection and tracking quality.

MOTSP =
| ˜TP |
TP

(10)

MOTSA = 1− |FP |+ |FN |+ |IDS|
|M|

=
|TP | − |FP | − |IDS|

|M|
(11)

sMOTSA =
| ˜TP | − |FP | − |IDS|

|M|
(12)

We also measure the average precision (AP), i.e. the normalised area under the precision/recall
curve.

5.4 RESULTS

We compare our model to the following baselines for video instance segmentation and report the
results in Table 2.

• Single-frame embedding loss (Brabandere et al., 2017), previous state-of-the-art method
where instance segmentations are propagated in time using intersection-over-union associ-
ation.

• Without temporal model, spatio-temporal embedding loss, without the temporal model.
• Without depth, temporal model and spatio-temporal embedding loss, without the depth

loss.

MOTSA sMOTSA MOTSP AP recall precision
Brabandere et al. (2017) 0.575 0.423 0.803 0.612 0.770 0.841
Without temporal model 0.582 0.426 0.799 0.607 0.777 0.835
Without depth 0.591 0.433 0.801 0.614 0.795 0.822
Ours 0.613 0.461 0.801 0.600 0.764 0.839

Table 2: KITTI MOTS validation set results comparing our model with baseline approaches.

The variant without the temporal model performs poorly as it does not have any temporal context
to learn a spatio-temporal embedding and therefore only relies on spatial appearance. The temporal
model on the other hand learns with the temporal context and local motion, which results in a better
embedding. Our model, which learns to predict both a spatio-temporal embedding and monocular
depth, achieves the best performance. In addition to using cues from appearance and temporal
context, estimating depth allows the network to use information from the relative distance of objects
to disambiguate them.

5.4.1 ANALYSIS OF CLUSTERING AND MASK SEGMENTATION.

Our model first relies on the mask segmentation to isolate which pixel locations to consider for
instance clustering. We evaluate the impact of using the ground truth mask against our predicted
mask in Table 3. The performance gain is significant, hinting that a better instance segmentation
would be possible by improving the mask network.

Next, we evaluate the effect of clustering. In the best scenario, the validation loss would be zero, and
the clustering would be perfect using the MeanShift algorithm. However, this scenario is unlikely
and the clustering algorithm is affected by noisy embeddings. We evaluate the effect of this noise by
clustering with the ground-truth mean for each instance, by thresholding with ρr around the ground
truth instance embedding mean. This also results in a boost in the evaluation metrics, but most
interestingly, a model that uses both ground truth instance embedding mean clustering and ground
truth mask performs worse than a model segmented with ground truth mask and our clustering
algorithm. This is because our clustering algorithm accumulates embeddings from past frames and
therefore creates an attraction force for the mean shift algorithm that enables the instances to be
matched more consistently.
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GT Mean GT Mask MOTSA sMOTSA MOTSP AP Recall Precision
7 7 0.613 0.461 0.801 0.600 0.764 0.839
3 7 0.700 0.616 0.897 0.691 0.816 0.886
7 3 0.804 0.751 0.936 0.786 0.832 0.971
3 3 0.714 0.644 0.915 0.710 0.824 0.892

Table 3: Comparing the effect of noisy against ground-truth clustering and mask segmentation on
the KITTI MOTS dataset.

5.4.2 EFFECT OF THE SEQUENCE LENGTH

Our model learns a spatio-temporal embedding that clusters video-pixels from a given instance.
Correspondence of instances between frames is achieved by matching detected instances to previous
instances if the embedding distance is below the repulsion radius, pa. Instance tracking can occur
for an arbitrarily long sequence of time, as long as the embedding changes smoothly over time,
which is likely the case as temporal context and depth must evolve gradually. However, when the
spatio-temporal embedding is trained over sequences which are too long, the embedding learning
collapses. This is because the attractive loss term is detrimental between distant frames, it pressures
pixels from the same instance to be have corresponding embeddings when their appearance and
depth is no longer similar. It also suggests our model is able to reason over lower order motion cues
more effectively than longer term dynamics. This is seen experimentally in Table 4.

Length 1 3 5 7 10 15
MOTSA 0.575 0.590 0.613 0.555 0.538 0.402
sMOTSA 0.423 0.435 0.461 0.402 0.398 0.273
MOTSP 0.803 0.810 0.801 0.788 0.792 0.783

Table 4: Influence of the sequence length on model performance. This indicates that our model can
learn short-term motion features effectively, but not long-term cues. We reason that this is because
over longer sequences, the loss prevents the embedding smoothly shifting, which naturally occurs to
changing pose, appearance, context and lighting in the scene. We find the optimum sequence length
on this dataset to be five.

5.5 QUALITATIVE EXAMPLES

The instance segmentation of our model is consistent across frames as instances are clustered in
both space and time. This provides more robust clustering compared to a per-frame approaches. We
demonstrate this with the following scenarios showing tracking through partial (Figure 3 and full
occlusion (Figure 5), as well as continuous tracking through noisy detections (Figure 4). Additional
examples and failure cases of our model are shown in Appendix A.2 and a video demo can be viewed
here: https://youtu.be/pqRPXRUlQ2I

In each example, we show from left to right: RGB input image, ground truth instance segmentation,
predicted instance segmentation, embedding visualised in 2D, embedding visualised in RGB and
predicted monocular depth. The embedding is visualised in 2D with the corresponding mean shift
clustering. Each color represents a different instance, the inner circle is the attraction radius of the
instance mean embedding, and the outer circle is the repulsion radius of each instance. Additionally,
we also visualise the embedding spatially in 3D, by projecting its three principal components to an
RGB image.

6 CONCLUSIONS

We proposed a new spatio-temporal embedding loss that generates consistent instance segmentation
over time. The temporal network models the past temporal context and the depth network constrains
the embedding to aid disambiguation between objects. We demonstrated that our model could ef-
fectively track occluded instances or instances with missed detections, by leveraging the temporal
context. Our method advanced the state-of-the-art at video instance segmentation on the KITTI
Multi-Object and Tracking Dataset.
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Figure 3: Partial occlusion. The segmented brown car is correctly segmented even when being
partially occluded by the segmented red car, as the embedding contains past temporal context and is
aware of the motion of brown car.

Figure 4: Continuous tracking. The segmented pink and purple cars are accurately tracked even
with missing detections.

Figure 5: Total occlusion. The segmented green car correctly tracked, even though it was com-
pletely occluded by another car.
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A APPENDIX

A.1 NETWORK ARCHITECTURE DETAILS

We report the details of each component of our model in this section. The number of parameters and
layers of each module are in Table 5.

Encoder Temporal Decoders Pose Mask
Parameters 14.6M 0.7M 0.4M 13.0M 14.8M
Layers 18 36 7 22 25

Table 5: Number of parameters and layers of each module.

Encoder. The encoder is a ResNet-18 convolutional layer (He et al., 2016), with 128 output chan-
nels.

Temporal model. The temporal model contains 12 residual 3D convolutional blocks, with only
the first and last block convolving over time. Each residual block is the succession of: projection
layer of kernel size 1×1×1 to halve the number of channels, 3D causal convolutional layer t×3×3,
projection layer 1× 1× 1 to double the number of channels.

We set the temporal kernel size to t = 2, and the number of output channels to 128.

Decoders. The decoders for instance embedding and depth estimation are identical and consist of
7 convolutional layers with channels [64, 64, 32, 32, 16, 16] and 3 upsampling layers. The final
convolutional layer contains p channels for instance embedding and 1 channel for depth.

Pose Network. The pose network is the succession of a ResNet-18 model followed by 4 convo-
lutions with [256, 256, 256, 6] channels. The last feature map is averaged to output a single 6-DoF
transformation matrix.

Mask Network. The mask network is trained separately to mask the background and is the suc-
cession of the Encoder and Decoder described above.

A.2 ADDITIONAL QUALITATIVE EXAMPLES

The following examples show qualitative results and failure examples of our video instance segmen-
tation model on the KITTI Multi-Object and Tracking Dataset. From left to right: RGB input image,
ground truth instance segmentation, predicted instance segmentation, embedding visualised in 2D,
embedding visualised in RGB and predicted monocular depth.
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Figure 6: Video instance segmentation of parked cars.

Figure 7: Video instance segmentation of other traffic.
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Figure 8: Failure case: the vehicle is segmented into two separate instances.

Figure 9: Failure case: two far-away cars are segmented as one instance.
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