
Under review as a conference paper at ICLR 2020

DEEP INTERACTION PROCESSES FOR TIME-EVOLVING
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-evolving graphs are ubiquitous such as online transactions on an e-commerce
platform and user interactions on social networks. While neural approaches have
been proposed for graph modeling, most of them focus on static graphs. In this
paper we present a principled deep neural approach that models continuous time-
evolving graphs at multiple time resolutions based on a temporal point process
framework. To model the dependency between latent dynamic representations of
each node, we define a mixture of temporal cascades in which a node’s neural
representation depends on not only this node’s previous representations but also
the previous representations of related nodes that have interacted with this node.
We generalize LSTM on this temporal cascade mixture and introduce novel time
gates to model time intervals between interactions. Furthermore, we introduce a
selection mechanism that gives important nodes large influence in both k−hop
subgraphs of nodes in an interaction. To capture temporal dependency at mul-
tiple time-resolutions, we stack our neural representations in several layers and
fuse them based on attention. Based on the temporal point process framework,
our approach can naturally handle growth (and shrinkage) of graph nodes and
interactions, making it inductive. Experimental results on interaction prediction
and classification tasks – including a real-world financial application – illustrate
the effectiveness of the time gate, the selection and attention mechanisms of our
approach, as well as its superior performance over the alternative approaches.

1 INTRODUCTION

Representation learning over graph data has become a core machine learning task with a wide range
of applications including e-commerce, finance, social networks, and bioinformatics. Various neural
graph representations such as (Perozzi et al., 2014; Grover & Leskovec, 2016; Wang et al., 2016;
Kipf & Welling, 2017; Defferrard et al., 2016; Scarselli et al., 2009; Ying et al., 2018; Hamilton et al.,
2017b; Monti et al., 2017; Den Berg et al., 2017) have been proposed to learn from static graph data
and successfully used for downstream tasks (e.g., classification). Graph data, however, are often
dynamic in practice; nodes and interactions between them can grow and shrink. A straightforward
approach to handle dynamic graphs is to compress them into one or several static graphs. The
drawbacks of this approach are multifold; we not only blur temporal structural information but also
miss time information that can be critical for real-world applications. An illustrative example is given
in figure 1.

To handle continuous time-evolving graph, we can approximate a by a sequence of snapshot graphs,
each of which includes all interactions that occur during a user-specified discrete-time interval, as
shown in (Leskovec et al., 2007; Hamilton et al., 2016; Kulkarni et al., 2015; Goyal et al., 2018). This
treatment reduces time resolution and it is tricky to specify the appropriate aggregation granularity. To
avoid these problems, Nguyen et al. (2018) proposed continuous-time dynamic networks (CTDNE)
that generalize deep walk methods to learn time-dependent network embedding. As a transductive
method, CTDNE cannot handle the growth of new nodes. Dai et al. (2016) applied temporal point
processes to model time-evolving graphs and, as a nonparametric Bayesian approach, their approach
can naturally cope with the growth of new nodes and interactions. They used recurrent neural networks
(RNNs) to define an intensity function in temporal point processes. These RNN models are shallow
and one-step unrolled, making it easy to compute but relatively limited in modeling power. Trivedi

1

Under review as a conference paper at ICLR 2020

(a) An illegal cash-out event (b) Legal transactions

Figure 1: An illustrative example. Figure (a) shows an illegal cash-out event. It can be revealed by
high-frequency transactions with multiple merchants. However, if we merge the transaction data into
a static graph, we cannot distinguish it from the static graph generated from normal online shopping
activities. Thus, learning from such a static graph will fail to detect the cash-out event.

et al. (2019) extended this approach by modeling two-time scale and adopting temporal-attention
mechanism.

In this paper we present a powerful deep neural approach that models continuous time-evolving graphs
at multiple time resolutions based on a temporal point process framework. We name the new approach
deep interaction processes (DIPs). To model the dependency between latent dynamic representations
of each node, we define a mixture of temporal cascades in which a node’s neural representation
depends on not only this node’s previous representations but also the previous representations of
related nodes that have interacted with this node. We generalize LSTM on this temporal cascade
mixture and introduce novel time gates to model time intervals between interactions. Furthermore, We
introduce a selection mechanism that gives important nodes large influence in both k−hop subgraphs
of nodes in an interaction. To obtain representations from fine-to-coarse time-resolutions, we stack
our neural representations in several layers and fuse them based on attention. Based on the temporal
point process framework, our approach can naturally handle growth of graph nodes and interactions,
making it inductive.

The rest of the paper is organized as follows. In Section 2 we give background on temporal point
processes and in Section 3 we present the new DIP approach. In Section 4 we discuss related works.
In Section 5 we report experimental results on multiple interaction prediction and classification
tasks including an important real-world anti-fraud financial application, demonstrating superior
performance of the new approach over the alternatives.

2 TEMPORAL POINT PROCESSES

We first describe temporal point processes (a class of nonparametric Bayesian models) that our
approach is based on. Specifically, a temporal point process is a stochastic process that gener-
ates a sequence of discrete events localized at times {ti}Ni=1 in any given observed time win-
dow [0, T]. An important way to characterize temporal point processes is via the conditional
intensity function λ (t|Ht) -the stochastic model for the next event time t given all histori-
cal events before time t, denoted as Ht = {ti|ti < t}. Formally, within a small time win-
dow [t, t + dt), λ (t|Ht) dt is the probability for the occurrence for a new event given the Ht:
λ (t|Ht) dt = P { event in [t, t+ dt)|Ht}. From the survival analysis theory(Aalen et al., 2008),
given the times of the past events {t1, t2, . . . , ti}, the conditional density that an event occurs at
ti+1 is given as follows:p

(
ti+1|Hti+1

)
= λ

(
ti+1|Hti+1

)
exp

{
−
∫ ti+1

ti
λ (t|Ht) dt

}
,where the ex-

ponential part in the above equation means the conditional probability that no event happens during
[ti, ti+1). The functional forms of the conditional intensity function λ (t|Ht) can represent certain
forms of dependencies of the historical events. For instance, for Poisson processes(Kingman, 2005)
we set λ to be constant – making the assumption that the process is stationary and the temporal
events in history are independent of each other. For classical Hawkes processes(Hawkes, 1971), the
intensity function λ is often set to be a sum of multiple exponential functions, assuming that the
mutual excitation among events is positive, additive over the past events, and exponentially decaying
with time. Mei & Eisner (2017a) removed these limiting assumptions using LSTM to learn λ from
data.

2

Under review as a conference paper at ICLR 2020

3 DEEP INTERACTION PROCESSES

In this section, we present the new neural nonparametric Bayesian approach over continuous-time
evolving graphs. First, we present a temporal dependency graph that is a mixture of the temporal
cascades, to model interdependence between graph nodes (as well as latent node representations).
Then we present a novel deep model to learn dynamic node representations in the temporal dependency
graph. This model naturally generalizes LSTM on the traditional chain-structured data. Given the
dynamic node representations, we define deep interaction processes that model potential interactions
between any two nodes over time. Finally we layout the maximum likelihood estimation method.

3.1 TEMPORAL DEPENDENCY GRAPH

Figure 2: Dynamic interactions and the corresponding dependency graph

Consider a collections of people-movie records at different time points (e.g., Dave buy Captain
America’s Shield toy at t6.) as shown in figure 2. The people and movies form a dynamic graph
in which each person or movie is a node and interactions happen over time. After one interaction
occurs, we update the neural representation of the two nodes linked to this interaction; e.g., right
after time t6, we update the representations for David and the Captain America’s Shield toy. The new
neural representation of David depends on both his current and previous interactions – as a result,
depending on the representations of the two nodes associated with the previous interaction. This
naturally forms a dependency cascade. Similarly we can obtain a dependency cascade for Lucy’s
representations. Because of the common movies David and Lucy saw and toys they bought, their
dependency cascades overlap and form a cascade mixture. Formally, we denote a dynamic interaction
or link at time t by lu,v,t where u are v are two nodes associated with this interaction. We denote the
node u at time t by u(t) and the two nodes associated with u’s precedent interaction at time t− as
u1(t) and u2(t). Note that one of u1(t) and u2(t) is simply u(t−). For example, u1(t6) and u2(t6)
in figure 2 are u(t4) and w(t4), respectively. For later usage, We denote the subgraph rooted at u(t)
with (k-1) depth as subgraph(u(t),k) shown in Figure 2.

3.2 DIP NEURAL UNIT

Now we present the novel neural unit to update dynamic latent representations of nodes over the
temporal dependency graph. First, let us denote node u’s features or embedding (i.e., a static
representation jointly learned from data) at time t by xu(t) and denote features of interaction l by xl.
The interaction feature can be empty if the interaction contains only the temporal information. The
concatenation of xu(t) and xl is denoted by x̂u(t). Let ∆(u,t) = t− t− be the time interval between
two consecutive interactions involving u at time t and t−.

Our neural unit generalizes LSTM unit on the temporal dependency graph; we use an input gate , an
output gate and two forget gates over x̂u(t), dynamic representation of hui(t) and cell states cui(t)

(i = 1, 2) as shown in figure 3. In addition to these gates, we introduce time gates to capture the
impact of time interval ∆(u,t).

3

Under review as a conference paper at ICLR 2020

Figure 3: Time-evolving graph unit updates the representation hu(t) and cell state cu(t) for node u at
time t based on both the features x̂u(t) and the representations and cell states of the nodes u1(t) and
u2(t) associated with u’s precedent interaction.

Specifically, hu(t) and cu(t) are updated as follows:

zu(t) = σ

(
Wzx̂u(t) +

2∑
i=1

Rzihui(t) + bz

)
ou(t) = σ

(
Wox̂u(t) +

2∑
i=1

Roihui(t) + bo

)

su(t) = tanh

(
Wsx̂u(t) +

2∑
i=1

Rsihui(t) + bs

)
fu(t),ui(t) = σ

(
Wfi x̂u(t) + Rfihui(t) + bfi

)
gu(t),ui(t) = σ

(
Wgi x̂u(t) + Rgihui(t) + Mgi∆u + bgi

)
cu(t) = zu(t) � su(t) +

∑2

i=1
fu(t),ui(t) � cui(t) � gu(t),ui(t)

hu(t) = ou(t) � tanh
(
cu(t)

)
where σ, tanh and � represent the sigmoid function, the hyperbolic tangent function, and the
Hadamard product (pointwise multiplication), respectively, and parameters in the unit including the
recurrent weights Rzi , Roi , Rsi , Rfi and Rgi , the projection matrices Wz , Wo, Ws, Wfi and
Wgi , the bias vectors bz , bo, bs, bfi and bgi and the time weight matrix Mgi are learned from data.

For convenience, we use DIP-UNIT (·) to summarize the above equations,

hu(t), cu(t) = DIP-UNIT
(
x̂u(t), cu1(t), cu2(t),hu1(t),hu2(t),∆u,Θ

)
where Θ represent all the parameters. Similar to LSTM training where a k-hop neighorhood is often
used in practice, we limit the backtracking in subgraph(u(t), k) to the computational cost.

3.3 DIP-UNIT AND FUSION

To model nonlinear dependency relationships at different temporal resolutions, we stack L layers of
DIP-UNIT together. The output of the j-th layer is computed recursively as follows:

(hju(t), c
j
u(t)) = DIP-UNITj

(
hj−1u(t), c

j
u1(t), c

i
u2(t),h

j
u1(t),h

j
u2(t),∆u,Θj

)
were h0u(t) = x̂u(t), j = 1, . . . , L. To train deeper dynamic neural networks easily, we employ

the residual connection as the following form: skip(hj−1u(t), h
j
u(t)) = Wskiph

j−1
u(t) + hu(t) where

Wskip is a weight matrix. Motivated by ELMo (Peters et al., 2018), we fuse all internal dynamic
representations from all the layers to achieve rich dynamic representations. The fusion is a weighted
summation of all layers defined as follows: hu(t) = γtask

∑L
j=0 α

task
j hju(t), where αtask

j are task-
related softmax-normalized weights and γtask is a scaling parameter.

3.4 SELECTION

Given an interaction lu,v,t, it is reasonable to assume that not all the historical interactive nodes have
the equal importance for formalizing this interaction. Thus we use an attention mechanism to select

4

Under review as a conference paper at ICLR 2020

Figure 4: Neural stacking, fusion and selection.

relevant nodes to learn dynamic representations and cell states of the current node. Specifically, a
co-attention mechanism is used to measure relevance of historical time-evolving patterns between
subgraph(u(t), k) and subgraph(v(t), k),

Qj = tanh
(
Hj>
u WQH

j
v

)
where Hj

u =
[
hj1, . . . ,h

j
a, . . . ,h

j
m

]
, a ∈ subgraph(u(t), k),, Hj

v =
[
hj1, . . . ,h

j
b, . . . ,h

j
n

]
, b ∈

subgraph(v(t), k), and WQ ∈ Rd×d are the weight parameters. The Qj is a co-attention affinity
matrix which captures the relevance information in subgraph(u(t),k) and subgraph(v(t),k). The
co-dependent global embedding pju , pjv are obtained by the following equations.

pju = Hj
uSoftMax

(
Max

ColWise
Qj

)
pjv = Hj

vSoftMax
(

Max
RowWise

(Qj)>
)

where Max means max-pooling operation which is used to choose the most relevant information for
the maximum influence (or affinitie) on nodes in the corresponding subgraph. In addition, to adjust
the importance of historical nodes, two adaptive gate functions are designed for previous nodes in
subgraph(u(t),k) and subgraph(v(t),k) respectively,

gu(pju, h
j
a) = σ(wppju + whhja) gv(pjv, h

j
b) = σ(wppjv + whhjb)

where the weights wp, and wh are shared by all the stacked layers. Using these gates, we adjust
dynamic node representations as follows:

(hju(t), c
j
u(t)) = DIP-UNITj

(
hj−1u(t) � gu(pj−1u(t),h

j−1
u(t)), c

j
u1(t), c

j
u2(t),h

j
u1(t),h

j
u2(t),∆u,Θj

)
Similarly, we can update (hjv(t), c

j
v(t)) based on the selection mechanism.

3.5 CONDITIONAL INTENSITY FUNCTION

We model the dynamic interactions as a multi-dimensional temporal point process. Specifically,
we define the conditional intensity function of the temporal point process at the dimension in-
dexed by (u, v), given the dependant histories of non-chain structures Hu,v

t where Hu,v
t =

subgraph(u1(t), k) ∪ subgraph(u2(t), k) ∪ subgraph(v1(t), k) ∪ subgraph(v2(t), k), as follows:

λu,v (t|Hu,v
t) = SoftPlus

(
hu,vt wλ + w>t τ + bλ

)
where

hu,vt =
[
h>u1(t),h

>
u2(t),h

>
v1(t),h

>
v2(t)

]
, τ = [∆u,t,∆v,t]

>
,

the scalar bλ can be viewed as a base intensity level for the occurrence of the next interaction, and the
SoftPlus function is used to ensure the non-negativity of the intensity. A key step for obtaining Hu,v

t
is to get the k-hop subgraphs of u and v’s direct dependants Please see Appendix.A for more details
about fast obtaining k-hop subgraphs

5

Under review as a conference paper at ICLR 2020

3.6 PARAMETER ESTIMATION

3.6.1 INTERACTION PREDICTION

Given a set of interactions as I = {(ui, vi, ti)}i=Ni=1 , we can learn the model by minimizing the nega-
tive joint log-likelihood of I as follows: L1 = −

∑
i logPui,vi

(
ti|Hui,vi

ti

)
where Pui,vi(ti|Hui,vi

ti)
represents the probability of formalizing an interaction between ui and vi at time ti given the
dependant history of non-chain structures Hui,vi

ti . Based on the intensity definition, we have
L1 =

∑
i−λui,vi

(
ti|Hui,vi

ti

)
+
∫ ti
t−i

Λ(t)dt, where t−i is the most recent time point when either
ui or vi was involved in an interaction. Λ(t) =

∑
u,v λ

u,v(t) which represents total survival proba-
bilities for interactions that do not happen. Since the survival part does not have an analytic solution,
we apply Monte Carlo to do numerical integrations. We follow the negative sampling approaches
proprosed by Dai et al. (2016); Trivedi et al. (2019) to accelerate the survival term calculation.

3.6.2 INTERACTION CLASSIFICATION

An interaction sequence with markers is denoted as I ′ = {(ui, vi, ti, yi)}i=Ni=1 , where yi is a marker at
time ti and usually is a discrete variable. In practice, the markers have different meanings in distinct
scenes. A marker can be treated as a magnitude in modeling earthquakes and aftershocks, while in
financial transaction scenes, the marker can be used to label whether a transaction is a fraudulent
trading or not. The joint conditional density of an interaction(ui, vi, ti) with marker yi is given as
Pui,vi

(
ti, yi|Ĥui,vi

ti

)
. By applying the Bayesian rule , the joint conditional density can be written as:

Pui,vi
(
ti, yi|Ĥui,vi

ti

)
= Pui,vi(ti|Ĥui,vi

ti)P
(
yi|ti, Ĥui,vi

ti

)
,where Pui,vi(ti|Ĥui,vi

ti) has the same

meaning as given in subsection 3.6.1, while P (yi|ti, Ĥui,vi
ti) means the distribution of yi given the

interaction happened at ti with interaction history Ĥui,vi
ti . It should be noted that the history Ĥui,vi

ti
contains the information of history markers and one need to design marker-specific intensity function
(Mei & Eisner, 2017b). For simplicity, we assume Pui,vi

(
ti, yi|Ĥui,vi

ti

)
is independent on history

markers. Meanwhile, P
(
yi|ti, Ĥui,vi

ti

)
can be obtained by a multinomial function:

P (yi = c|hui,vi,ti) =
exp (V y

c hui,vi,ti)∑C
c=1 exp (V y

c hui,vi,ti)

where hui,vi,ti is the concatenation of hui
and hvi which can be regarded as dynamic representation

for an interaction between ui and vi at ti. C is the number of markers, V y
c is the c-th row of

matrix V y . Then the final objective function for interaction classification can be obtained as follows:
L2 = L1 + Lcross−entropy, where Lcross−entropy is a cross-entropy loss over marks:

Lcross−entropy = −
i=N∑
i=1

C∑
c=1

yi · logP (yi = c|hui,vi,ti)

4 RELATED WORK

Inspired by the Skip-gram (Mikolov et al., 2013) for word embedding, a series of node embedding
methods based on the random walks on graphs have been proposed(Perozzi et al., 2014; Tang et al.,
2015; Grover & Leskovec, 2016; Wang et al., 2016; 2017). GCN and its variants (Bruna et al.,
2013; Hamilton et al., 2017a; Kipf & Welling, 2017) are a recent class of algorithms which extend
convolutions from spatial domains to graph-structured domains. Meanwhile they can efficiently
generate node embeddings for previously unseen data. All models above are designed for static
graphs. The intuitive and popular approaches for modeling dynamic graphs are based on a sequence
for graph snapshots(Goyal et al., 2018; Zhou et al., 2018; Seo et al., 2018; Yu et al., 2018), while
it can be difficult to specify the appropriate aggregation granularity. Nguyen et al. (2018) adds a
temporal constraint on random walk sampling, but it can’t model the rich temporal information
explicitly. Temporal point processes (TPPs) are an another alternative to model dynamics(Daley &
Vere-Jones, 2007). Several dynamic graph modeling methods based on the TPPs (Dai et al., 2016;
Trivedi et al., 2019) have been proposed. Our method DIP differs from these TPP-based methods by

6

Under review as a conference paper at ICLR 2020

the extension of the LSTM model over temporal dependency graphs, the multiple time resolution
modeling via stacking and fusing, and the selection mechanism. Detailed related work are included
in Appendix.C.

5 EXPERIMENTS

We evaluate the proposed DIP model on the task of Interaction Prediction and Interaction classifi-
cation on several real-world datasets.

5.1 BASELINES

GraphSage(Hamilton et al., 2017a) is an inductive graph neural network framework consisting of
three different aggregators which are GCN, Mean and LSTM aggregators respectively. We report
the best result among these three aggregators noted as Graphsage* . What’s more, for comparing with
GAT(Veličković et al., 2017) we also implement a graph attention aggregator based on GraphSage.
CTDNE(Nguyen et al., 2018) is a newly-proposed temporal network embedding method which is
an extension of DeepWalk(Perozzi et al., 2014) by incorporating temporal order constraint when
sampling sequences of walks from time-continuous graphs. DynGEM(Goyal et al., 2018) takes
a sequence of static graph snapshots as inputs to learn node embeddings by a deep auto-encoder
network. DeepCoevolve (Dai et al., 2016) models dynamic interaction sequences with two co-
evolution recurrent neural networks. Hidden embeddings are learned for interactive nodes after each
interaction. DyREP (Trivedi et al., 2019) uses a two-time scale deep temporal point process model
to capture dynamics of graphs.

5.2 EXPERIMENTAL SETTING

We conduct all the experiments with a hyper-parameter grid search strategy. For all methods, we
search the hidden vector dimension from {32, 64, 128, 256} and the learning rate from {0.01, 0.001,
0.0005, 0.0001, 0.00001}. For our DIP model, we go through {1, 2, 3, 4} forK and L. For Graphsage,
the maximum number of 1-hop and 2-hop neighbor nodes are set to 25 and 20 respectively. The
batch sizes for all candidates are {100, 300, 500}. All the models are trained for at most 50 epochs
with an early-stop if the performance does not improve for 5 epochs. For Graphsage, DynGEM
and DeepCoevolve, we use the open source codes provided by the authors. We implement the
CTNDE and GAT based on the Graphsage framework, and implement DyREP based on the pytorch
implementation of DeepCoevolve. After the best configuration has been found, we repeat the full
experiments 5 times and report the mean results and standard deviation.

5.3 INTERACTION PREDICTION

5.3.1 DATASETS

CollegeMsg(Leskovec & Krevl, 2014) consists of sending message interactions on an online social
network at the University of California, Irvine during 193 days. Ubuntu(Leskovec & Krevl, 2014) is
a temporal interaction dataset extracted from the stack exchange website. An interaction between
two users means one answered another’s questions or replied to his/her posts. Amazon(McAuley
et al., 2015) is composed of commodity rating data from amazon users. We use the Clothing subset
of this dataset. MathOverflow(Leskovec & Krevl, 2014) is comprised of interactions of commenting
an existing answer on the Math Overflow website. Table 1 shows the detailed dataset statistics. In
this table, Sparsity indicates |Edge|/(|u(t)| ∗ |v(t)|). And the Duplication is the quotient of # of
temporal edges divided by # of statics edges. Duplication equals 1.0 means each unique pair of
participants interact only once. We also give the average time interval of two consequent interactions
of a certain participant as Avg ∆t. For each dataset,we first construct the corresponding dependency
graph as described in section3.1. Then we sort these interactions by occurrence time. The first 60%
interactions are adopted as training set and the next 20% interactions are used for validation. The last
20% interactions are left as test set. The Cold-start participants which only exist in validation set or
test set are removed.

7

Under review as a conference paper at ICLR 2020

Table 1: Dataset Statistics

CollegeMsg Ubuntu Amazon-Clothing Math Overflow
Train 35902 204846 50209 58596
Valid 7814 39913 9195 24045
Test 5055 35271 7598 32705
Duplication 3.0569 1.886 1.000 2.819
Avg ∆t(Hours) 27.79 575.89 3399.82 415.46
Sparsity 0.01181 0.00074 0.00038 0.00567

5.3.2 EVALUATION PROTOCOL AND RESULTS

For each interaction lu,v,t in test set, we fix the first participant u, then replace the second participant
v by all possible participant candidates. The conditional density pu,v(t) = λu,v(t)Su,v(t) for
all candidates are first computed and then sorted by a descending order. The rank of the correct
participant is finally stored and denoted as ranki for the i-th test interaction. We report the Mean
Rank defined as Mean Rank =

∑
ranki

#of Test Interaction , which can represent the overall performance.
Figure 5 summarizes the Mean Rank performance of all the baselines and our DIP method. DIP
outperforms all baselines by 65.84%, 41.64%, 10.69% and 43.99% over the four datasets. When
the average ∆t is small, which means interactions are sensitive to temporal information, our model
achieves the best performance. This gives the evidence of the effectiveness of explicitly modeling the
temporal information. What’s more, for the CollegeMsg dataset which is densest and has the most
duplicated interactions, our model outperforms best again.

5.4 INTERACTION CLASSIFICATION

We conduct this task on an industrial dataset: Huabei Trade Data. For the performance measures,
we employ KS(Kolmogorov-Smirnov) value which is a big concern of the loans provider in anti-fraud
detection, as well as AUC(Area under the ROC Curve) score. This dataset consists of about 150,000
transaction records processed by Huabei during August 2018. Each transaction is initiated with three
parties: the buyer, the seller and transaction details such as merchant category and transaction amount.
Around 15% of the transaction are fraudulent and is labeled by a complicated Ex-Post method. In
order to conducting an Ex-ante detection, we are required to find out fraudulent transaction at the time
of initiating using those basic transaction features. For each interaction event, there are 11 context
features that can be obtained when the trade request is created, including information about buyer
types, seller types, purchased items’ categories and trading platform. We use the first 10 days data as
training set, the following 10 days data as validation set, the rest as test set. Note that, in this scenario,
there are always users who only appear in validation/testing dataset. Thus, traditional transductive
methods are not applicable on this task. Alternatively, we employ the XGBoost (Chen & Guestrin,
2016) as an additional baseline which is a popular model in the cash-out detection task(Hu et al.,
2019). Table 2 compares the results. Obviously, our model outperforms all the baseline methods
again. The contributions of different modules of the proposed DIP models are given in figure 7.

Table 2: Interaction classification results

Xgboost GraphSage* GAT DIP

AUC 0.6818 ±0.0023 0.8603 ±0.0005 0.8597 ±0.0004 0.9017 ±0.0004

KS 0.2536 ±0.0015 0.5934 ±0.0012 0.6018 ±0.0005 0.6703 ±0.0060

5.5 ABLATION STUDY

As we described in Section 3, the DIP model consists of three important components: First, it uses a
Time Gate in the DIP neural unit to explicitly model the temporal information. Second, the selection
mechanism enables our model to select more important historical information for interactions. Third,

8

Under review as a conference paper at ICLR 2020

CollegeMsg
100

200

300

400

500

600

M
ea
n
Ra

nk

101.81

345.56
313.28

356.58
314.42 311.57

550.71

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Ubuntu

1000

1500

2000

2500

3000

3500

M
ea

n
Ra

nk

796.09

1713.48
2055.05

2202.06

1529.8 1512.92

3406.14

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Clothing
4000

5000

6000

7000

8000

9000

M
ea
n
Ra

nk

5552.41

6862.01 6742.4
6216.84

7164.38 7173.11

8641.16

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

MathOverflow
100

200

300

400

500

600

700

M
ea

n
Ra

nk
92.87

188.72

312.61 294.9 301.6 272.12

723.23

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Figure 5: Mean rank results

CollegeMsg

60

80

100

120

140

M
ea
n
Ra

nk

101.81

129.36
120.48

130.92

FullModel
No-TimeGate

No-Selection
No-Fusion

Ubuntu

700

725

750

775

800

825

850

875

M
ea

n
Ra

nk

796.09
814.62 816.3 806.09

FullModel
No-TimeGate

No-Selection
No-Fusion

Clothing
3000

4000

5000

6000

7000

8000

M
ea

n
Ra

nk

5552.41

6602.65 6602.68
7127.69

FullModel
No-TimeGate

No-Selection
No-Fusion

MathOverflow

60

80

100

120

M
ea

n
Ra

nk

92.87

115.67
106.71

115.9

FullModel
No-TimeGate

No-Selection
No-Fusion

Figure 6: Ablation study results of the interaction prediction task

the Fusion of multi-layer DIP-UNIT’s hidden state vector helps to extract high level feature. We
investigate the contribution of each component by disabling each of them one by one, and compare
the corresponding result to the full model. figure 6 and figure 7 give the detailed ablation results.
FullModel in the two figures means all the three components are enabled.

9

Under review as a conference paper at ICLR 2020

AUC

0.80

0.85

0.90

0.95
AU

C

0.9017

0.8381 0.8509 0.8459

FullModel
No-TimeGate

No-Selection
No-Fusion

KS

0.55

0.60

0.65

0.70

KS

0.6703

0.5703
0.5948

0.5654

FullModel
No-TimeGate

No-Selection
No-Fusion

Figure 7: Ablation study results of the interaction classification task

• No Time Gate: In this configuration, the time gate in DIP-UNIT is disabled. This leads to a
significant drop of the Mean Rank performance. It provides a strong evidence for the effectiveness
of the time gate.

• No Selection: In this configuration the selection mechanism is disabled. Accordingly, all the
historical node representations contribute equally, thus again leading to a performance drop.

• No Fusion: In this variant, we directly use the hidden state vector of the last layer. Again, the per-
formance degrades significantly. This demonstrates that a fusion of different layers’ representations
gives richer information than the last layer only.

6 CONCLUSIONS

In this paper, we have proposed a deep multidimensional point process approach, DIP, to learn
dynamic graph representations. We generalize LSTM over temporal dependency graphs and model
multiple time resolutions via stacking, selection and fusion. Experimental results show the effective-
ness of the components of our neural unit and the superior performance on several datasets.

REFERENCES

Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history analysis: a process point
of view. Springer Science & Business Media, 2008.

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J Smola.
Distributed large-scale natural graph factorization. In Proceedings of the 22nd international
conference on World Wide Web, pp. 37–48. ACM, 2013.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pp. 585–591, 2002.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
ACM, 2016.

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network: Embedding
user and item features for recommendation. arXiv preprint arXiv:1609.03675, 2016.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. neural information processing systems, pp. 3844–3852,
2016.

Rianne Van Den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv: Machine Learning, 2017.

10

Under review as a conference paper at ICLR 2020

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1555–1564. ACM, 2016.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. knowledge
discovery and data mining, pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017a.

William L Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings reveal statistical
laws of semantic change. arXiv preprint arXiv:1605.09096, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data(base) Engineering Bulletin, 40:52–74, 2017b.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971.

Binbin Hu, Zhiqiang Zhang, Chuan Shi, Jun Zhou, Xiaolong Li, and Yuan Qi. Cash-out user detection
based on attributed heterogeneous information network with a hierarchical attention mechanism.
2019.

John Frank Charles Kingman. P oisson processes. Encyclopedia of biostatistics, 6, 2005.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
international conference on learning representations, 2017.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Statistically significant detection
of linguistic change. In Proceedings of the 24th International Conference on World Wide Web, pp.
625–635. International World Wide Web Conferences Steering Committee, 2015.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 43–52. ACM, 2015.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 6754–6764. Curran Associates, Inc., 2017a.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In Advances in Neural Information Processing Systems, pp. 6754–6764,
2017b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013.

Federico Monti, Michael M Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. neural information processing systems, pp. 3697–3707,
2017.

11

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Under review as a conference paper at ICLR 2020

Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and Sungchul
Kim. Continuous-time dynamic network embeddings. In Companion of the The Web Conference
2018 on The Web Conference 2018, WWW 2018, Lyon , France, April 23-27, 2018, pp. 969–976,
2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710. ACM, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International Conference on Neural
Information Processing, pp. 362–373. Springer, 2018.

Sucheta Soundarajan, Acar Tamersoy, Elias B Khalil, Tina Eliassi-Rad, Duen Horng Chau, Brian Gal-
lagher, and Kevin Roundy. Generating graph snapshots from streaming edge data. In Proceedings
of the 25th International Conference Companion on World Wide Web, pp. 109–110. International
World Wide Web Conferences Steering Committee, 2016.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee, 2015.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/
forum?id=HyePrhR5KX.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. pp. 1225–1234, 2016.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving
network embedding. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. In Advances in Neural Information Processing
Systems, pp. 3247–3257, 2017.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. knowledge discovery
and data mining, pp. 974–983, 2018.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2672–2681. ACM, 2018.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

12

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX

Under review as a conference paper at ICLR 2020

Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. Scalable temporal latent
space inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge
and Data Engineering, 28(10):2765–2777, 2016.

13

Under review as a conference paper at ICLR 2020

A TEMPORAL DEPENDENCY GRAPH

The key step for efficient training or inference is to fast obtain k_subgraph(u(t)) or k_subgraph(v(t))
for an interaction (u, v, t). Obviously, our definition of temporal dependency graph(TDG) in Subsec-
tion.3.1 provides a recursive and incremental way for its construction. As illustrated in figure 2, we
can easily find that k_subgraph(u(t)) is the union of k_subgraph(u(t−)), k_subgraph(w(t−)) and the
newly added two edges e1, e2. Based on this feature, to fast obtain k−hop subgraph, we design two
algorithms, TDG-COLORING and CONSTRUCTION OF K-HOP TDG orderly.

A.1 TDG-COLORING

The TDG-COLORING algorithm is shown in Algorithm 1, which is the pre-step of Algorithm 2. This
algorithm takes I = {(ui, vi, ti)}i=Ni=1 as input and generate a new sorted sequence of interactions
ordered by color numbers in an ascending way. The TDG-COLORING algorithm ensures that,
interactions in the same color group are independent and interactions from groups with smaller color
numbers are precedents of the larger ones.

Algorithm 1 TDG-COLORING

Require: I: A sequence of interaction with a chronological order.
Ensure: ColorGpSeq: A sequence of sorted interactions by color no.

1: Initialize ColorGroupArray[x]← −1 . x represents nodes in I and assign an initial color no
-1 for all nodes

2: Initialize LastNodeT ime[x]← −1 . Record the latest time when node x was involved in an
interaction and initialize with -1

3: for event in I do
4: cur_u, cur_v, cur_time = event.u, event.v, event.t
5: if cur_time > LastNodeT ime[cur_u] then
6: ColorGroupArray[cur_u] + +
7: LastNodeT ime[cur_u] = cur_time
8: end if
9: if cur_time > LastNodeT ime[cur_v] then

10: ColorGroupArray[cur_v] + +
11: LastNodeT ime[cur_v] = cur_time
12: end if
13: event.gn = max(ColorGroupArray[cur_u], ColorGroupArray[cur_v]) . gn is short

for group no
14: end for
15: ColorGpSeq = Sort(I) . sort I by an ascending order with assigned group color no.
16: return ColorGpSeq

A.2 CONSTRUCTION OF K-HOP TDG

The details of CONSTRUCTION OF K-HOP TDG are given in Algorithm 2. In Algorithm 2,
based on the definition of TDG and ColorGpSeq output by Algorithm 1, we can incremen-
tally construct the k-step subgraphs for any two nodes in a new interaction. Specifically, we
first call PREVIOUS function to get each node’s adjacent interaction in which it was involved
before current interaction. Then incrementally construct a graph(ugraph) rooted at cur_u(lines
6 to 10). Here Hk_subgraph[u_preInteraction] stores the subgraph of ugraph which was ob-
tained before ugraph because u_preInteraction ranks ahead of current event in ColorGpSeq.
Likely, we can get vgraph incrementally. At last, we call the Breadth-First-Search algorithm
with the traverse depth = K to obtain the k-step subgraphs for cur_event and then store it into
Hk_subgraph[cur_event].

A.3 OBTAINING AND UPDATING K-HOP TDG

As for efficiency, fast obtaining k-step subgraph of TDG for an interaction is both important for
offline training and online inference. Based on Algorithm 2, for an interaction l from the collected

14

Under review as a conference paper at ICLR 2020

Algorithm 2 CONSTRUCTION OF K-HOP TDG

Require: ColorGpSeq: A seq of sorted interaction by group color no.
Ensure: HashTable Hk_subgraph: Map an interaction to its corresponding k_subgraph.

1: Initialize an empty HashTable Hk_subgraph
2: for cur_event in ColorGpSeq do
3: cur_u, cur_v = cur_event.u, cur_event.v
4: u_preInteraction = Previous[cur_u] . Previous Function returns last interaction in which
cur_u was involved

5: v_preInteraction = Previous[cur_v]
6: if u_preInteraction exits then
7: edge1 = (u_preInteraction.u, cur_u) . The edge is defined according to the

definition of dependency graph
8: edge2 = (u_preInteraction.v, cur_u)
9: ugraph = edge1 ∪ edge2

10: ugraph = Hk_subgraph[u_preInteraction] ∪ ugraph . Incremental Update
11: else
12: ugraph = cur_u
13: end if
14: if v_preInteraction exits then
15: edge3 = (v_preInteraction.u, cur_v)
16: edge4 = (v_preInteraction.v, cur_v)
17: vgraph = edge3 ∪ edge4
18: vgraph = Hk_subgraph[v_preInteraction] ∪ vgraph . Incremental Update
19: else
20: vgraph = cur_v
21: end if
22: GK−step = BFS(ugraph ∪ vgraph, depth = K) . Call Breadth-First-Search with max

depth = K
23: Hk_subgraph[cur_event] = GK−step
24: end for
25: return Hk_subgraph

training interaction data, we can obtain its corresponding k-hop subgraphs directly usingHk_subgraph[l]
with time complexity O(1). For a new incoming interaction i with two nodes cur_u and cur_v ,
we can easily reuse Algorithm 2’s code from line 3 to 22 to find ugraph and vgraph, respectively.
Then we merge them to get k-step subgraph for doing inference online. At the same time, we can
incrementally update TDG by Hk_subgraph[l]. The time complexity here for updating TDG mainly
depends on union between ugraph and vgraph in line 22 of Algorithm 2 and is O(n+ e) where n
and e are the total number of nodes and edges for ugraph and vgraph.

B ADDITIONAL EXPERIMENT RESULTS

Figure 8 and Figure 9 provides HIT@5,1 results in addition to the Mean Rank results in Section
5.3.2 of the main paper. HIT@n is defined as HIT@n =

∑
δi

#of Test Interaction , where δi = 1 if
ranki <= n else 0, which measures the ability of top prediction precision.

C DETAILED RELATED WORK

Graph representation learning, which is also known as graph embedding or network embedding, is a
task aiming to learn low-dimensional dense vectors for vertex and edges that preserve the original
graph structural information and network properties. Before the era of deep learning, conventional
graph representation learning methods usually adopts dimension reduction (Belkin & Niyogi, 2002;
Tenenbaum et al., 2000; Roweis & Saul, 2000) or matrix factorization(Ahmed et al., 2013) techniques.
While these methods usually suffer a heavy computational cost. After the great success of deep
learning methods in the field of computer vision and natural language processing, especially Skip-

15

Under review as a conference paper at ICLR 2020

CollegeMsg
0

2

4

6

8

10

12

14

HI
T@

5

9.59

7.05

4.98

1.58

6.57
5.01

1.49

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Ubuntu
0

5

10

15

20

25

30

35

40

45

HI
T@

5

29.95

12.5 12.18

4.46

23.15

28.49

1.35

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Clothing
0.0

0.1

0.2

0.3

0.4

0.5

HI
T@

5

0.23
0.27

0.21

0.36

0.08 0.06
0.03

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

MathOverflow
0

10

20

30

40

50

60

HI
T@

5

41.07

27.9
24.74

9.06
14.14

32.51

14.4

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Figure 8: Hit@5 Results

CollegeMsg
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

HI
T@

1

2.34

1.91

1.3

0.32

1.94
1.76

0.36

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Ubuntu
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

HI
T@

1

13.75

5.73 6.5

1.81

10.83

14.32

0.77

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Clothing
0.00

0.05

0.10

0.15

0.20

0.25

0.30

HI
T@

1

0.22

0.12

0.06 0.07

0.02 0.02 0.01

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

MathOverflow
0

5

10

15

20

25

30

HI
T@

1

20.33

13.25
10.57

1.86
4.89

12.74

8.06

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE

Figure 9: HIT@1 Results

gram(Mikolov et al., 2013) in word representation learning, this problem has been widely investigated
by neural network methods. We review the development of this research direction from the following
perspectives.

Static Graph Representation Learning: Perozzi et al. (2014) proposed the DeepWalk model
utilizing random walks on graph to generate sequences of nodes, and feed them into the Skip-gram

16

Under review as a conference paper at ICLR 2020

model to learn nodes’ low dimensional representation vector. Then, Tang et al. (2015) proposed
the definition of first-order proximity and second-order proximity in the model named LINE, that
jointly models this two different level structure information. Grover & Leskovec (2016) designed
a biased random-walk sampling method to capture more flexible neighborhood information which
is helpful to learn richer representations. And Wang et al. (2016; 2017) extended these models
by considering high-order proximity and community structure. But these mentioned methods are
somehow shallow. Another type of method is the Graph Convolution Network (Bruna et al., 2013;
Kipf & Welling, 2017). They extends the convolution neural network to the graph spectral space,
thus realized DEEP model on graph data. While these methods are still transductive, and can not
jointly models the network structure information and the attributed on nodes or edges of graph. To
overcome this problem, Hamilton et al. (2017a) proposed an inductive graph embedding framework,
which divided the representation learning into two phrase: sampling and aggregation, such that it
could incorporates node feature information and thus generate embedding from these features using
the well-trained graph neural network for unseen nodes. Veličković et al. (2017) uses self-attention to
learn weights for neighborhood, then aggregates them by the self-adapted weight. While, most of
these approaches can only model static graph data.

Dynamic Graph Representation Learning: A popular approach for modeling dynamic graph data
is considering the dynamics as a sequence of graph snapshot(Soundarajan et al., 2016). Zhu et al.
(2016) uses an non-negative matrix factorization technique to embed social network in a temporal
latent space. Zhou et al. (2018) models the specific triadics closure formation procedure over the
snapshots. Goyal et al. (2018) adapts an graph autoencoder and learns a stable embedding over time.
Seo et al. (2018) combines a CNN module and a RNN module to capture spatial characteristics and
temporal characteristics. NetWalk(Yu et al., 2018) also learns vertex representations from sequences
of snapshots, and it is designed specially for anomaly detection. In contrast, Nguyen et al. (2018)
adds temporal order constraint on random walk sampling to capture evolving neighborhood. But, it
can’t explicitly models the rich temporal information.

Temporal Point Process: Temporal Point Process is a powerful statistical tool for modeling se-
quences of events with unequal interval. It has been wildly used in recent research with different
intensity function: from parametric(Du et al., 2016) to recurrent neural networks(Dai et al., 2016; Mei
& Eisner, 2017b), event reinforcement learning based(Xiao et al., 2017). DeepCoevolve(Dai et al.,
2016) designs a recurrent neural network to capture the co-evolution dynamics of interaction data.
But it just takes the interaction counterpart into the co-evolution module, which may loss temporal
structural information. DyREP(Trivedi et al., 2019) divides the interactions between nodes into two
different types as communication and association and models them separately. Although it uses the
neighborhood of interaction counterpart to update node representation, the relevance between the
different neighbors of counterpart and the node itself has not been modeled.

17

	Introduction
	TEMPORAL POINT PROCESSES
	Deep Interaction processes
	Temporal dependency graph
	DIP neural unit
	DIP-UNIT and Fusion
	SELECTION
	conditional intensity function
	Parameter Estimation
	interaction prediction
	interaction classification

	Related Work
	Experiments
	Baselines
	Experimental Setting
	Interaction Prediction
	Datasets
	Evaluation Protocol And Results

	Interaction classification
	Ablation Study

	Conclusions
	Appendix TEMPORAL DEPENDENCY GRAPH
	TDG-coloring
	Construction of k-hop TDG
	Obtaining and Updating k-hop TDG

	Appendix Additional Experiment results
	Appendix Detailed Related Work

